Bootstrapping Not Independent and Not Identically Distributed Data
Abstract
:1. Introduction and Motivation
1.1. State of the Art
1.2. Structure of the Paper
2. Bootstrap Methods for NINID Data
2.1. Independent Bootstrap
Procedure 1 Independent bootstrap for the sample mean. |
Input: Data consisting of n IID vectors of observations . |
Output: Empirical bootstrap distribution of , i.e., the empirical distribution, where the probability mass concentrates at each of . |
|
2.2. Moving Block Bootstrap
Procedure 2 Moving block bootstrap for the sample mean. |
Input: Data consisting of n NINID vectors of observations and . |
Output: Empirical bootstrap distribution of sample mean , i.e., the empirical distribution, where the probability mass concentrates at each of . |
|
2.3. Blocksize
3. Types of Bootstrap Convergences
3.1. Properties of the Bootstrap Convergences
- (i)
- (ii)
- For each subsequence such that
- (iii)
- For each subsequence there exists a subsequence such that conditional on converges in distribution in probability to the distributional limit of as .
- (i)
- (ii)
- (iii)
- ;
- (iv)
- ;
- (v)
- ;
- (vi)
- , provided that and are invertible;
- (vii)
- , provided that and are invertible.
- (viii)
- (ix)
- (x)
- ;
- (xi)
- ;
- (xii)
- ;
- (xiii)
- , provided that and are invertible;
- (xiv)
- , provided that and are invertible.
3.2. Weak Dependence
- (i)
- ,
- (ii)
- .
4. Bootstrap Laws of Large Numbers
4.1. Bootstrap Weak LLN for Independent Data
4.2. Bootstrap Weak LLNs for NINID
5. Bootstrap Central Limit Theorems
5.1. Bootstrap CLT for Independent Data
- (i)
- ,
- (ii)
- is defined for all and non-decreasing on .
5.2. Bootstrap CLTs for NINID
6. Real Data Analyses
6.1. Psychometry
6.2. Insurance
7. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IID | Independent and identically distributed |
NINID | Not independent and not identically distributed |
LLN | Law of large numbers |
SLLN | Strong law of large numbers |
WLLN | Weak law of large numbers |
BWLLN | Bootstrap weak law of large numbers |
CLT | Central limit theorem |
BCLT | Bootstrap central limit theorem |
Appendix A. Proofs
- (i)
- (ii)
- (iii)
References
- Efron, B. Bootstrap methods: Another look at the jackknife. Ann. Stat. 1979, 7, 1–26. [Google Scholar]
- Bickel, P.J.; Freedman, D.A. Some asymptotic theory for the bootstrap. Ann. Stat. 1981, 9, 1196–1217. [Google Scholar] [CrossRef]
- Efron, B.; Tibshirani, R. An Introduction to the Bootstrap; Chapman and Hall: London, UK, 1990. [Google Scholar]
- Efron, B.; Hastie, T. Computer Age Statistical Inference, Student ed.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Hall, P. The Bootstrap and Edgeworth Expansion; Springer: New York, NY, USA, 2013. [Google Scholar]
- Lahiri, S.N. Resampling Methods for Dependent Data; Springer: New York, NY, USA, 2003. [Google Scholar]
- Politis, D.N.; Romano, J.P.; Wolf, M. Subsampling; Springer: New York, NY, USA, 1999. [Google Scholar]
- Künsch, H.R. The jacknife and the bootstrap for general stationary observations. Ann. Stat. 1989, 17, 1217–1241. [Google Scholar] [CrossRef]
- Liu, R.Y.; Singh, K. Moving blocks jackknife and bootstrap capture weak dependence. In Proceedings of the Exploring the Limits of Bootstrap; Lapage, R., Billard, L., Eds.; Wiley: New York, NY, USA, 1992; pp. 225–248. [Google Scholar]
- Lahiri, S.N. Non-strong mixing autoregressive processes. Stat. Probabil. Lett. 1991, 11, 335–341. [Google Scholar]
- Politis, D.N.; Romano, J.P. A general resampling scheme for triangular arrays of α-mixing random variables with application to the problem of spectral density estimation. Ann. Stat. 1992, 20, 1985–2007. [Google Scholar] [CrossRef]
- Fitzenberger, B. The moving block bootstrap and robust inference for linear least squares and quantile regression. J. Econometr. 1998, 82, 235–287. [Google Scholar] [CrossRef]
- Maciak, M.; Peštová, B.; Pešta, M. Structural breaks in dependent, heteroscedastic, and extremal panel data. Kybernetika 2019, 54, 1106–1121. [Google Scholar] [CrossRef]
- Pesarin, F.; Salmaso, L. Permutation Tests for Complex Data: Theory, Applications and Software; Wiley: New York, NY, USA, 2010. [Google Scholar]
- Pešta, M. Total least squares and bootstrapping with application in calibration. Statistics 2013, 47, 966–991. [Google Scholar] [CrossRef]
- Pešta, M. Block bootstrap for dependent errors-in-variables. Commun. Stat. A-Theory 2017, 46, 1871–1897. [Google Scholar] [CrossRef]
- Hall, P.; Horowitz, J.L.; Jing, B.Y. On blocking rules for the bootstrap with dependent data. Biometrika 1995, 82, 561–574. [Google Scholar]
- Politis, D.N.; White, H. Automatic block-length selection for the dependent bootstrap. Econometr. Rev. 2004, 23, 53–70. [Google Scholar] [CrossRef]
- Lahiri, S.; Furukawa, K.; Lee, Y.D. A nonparametric plug-in rule for selecting optimal block lengths for block bootstrap methods. Stat. Methodol. 2007, 4, 292–321. [Google Scholar] [CrossRef]
- Kirch, C. Resampling Methods for the Change Analysis of Dependent Data. Ph.D. Thesis, University of Cologne, Cologne, Germany, 2006. [Google Scholar]
- Peštová, B.; Pešta, M. Abrupt change in mean using block bootstrap and avoiding variance estimation. Comput. Stat. 2018, 33, 413–441. [Google Scholar]
- Billingsley, P. Convergence of Probability Measures, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1999. [Google Scholar]
- Bradley, R.C. Basic properties of strong mixing conditions. A survey and some open questions. Probab. Surv. 2005, 2, 107–144. [Google Scholar]
- Gijbels, I.; Omelka, M.; Pešta, M.; Veraverbeke, N. Score tests for covariate effects in conditional copulas. J. Multivar. Anal. 2017, 159, 111–133. [Google Scholar]
- Rosenblatt, M. A central limit theorem and a strong mixing condition. Proc. Natl. Acad. Sci. USA 1956, 42, 43–47. [Google Scholar] [CrossRef]
- Lin, Z.; Lu, C. Limit Theory for Mixing Dependent Random Variables; Springer: New York, NY, USA, 1997. [Google Scholar]
- Ibragimov, I.A. Some limit theorems for stochastic processes stationary in the strict sense. Dokl. Akad. Nauk. SSSR 1959, 125, 711–714. (In Russian) [Google Scholar]
- Pešta, M. Asymptotics for weakly dependent errors-in-variables. Kybernetika 2013, 49, 692–704. [Google Scholar]
- Anderson, T.W. An Introduction to Multivariate Statistical Analysis; John Wiley & Sons: New York, NY, USA, 1958. [Google Scholar]
- Billingsley, P. Convergence of Probability Measures, 1st ed.; John Wiley & Sons: New York, NY, USA, 1968. [Google Scholar]
- Doob, J.L. Stochastic Processes; John Wiley & Sons: New York, NY, USA, 1953. [Google Scholar]
- Ibragimov, I.A.; Linnik, Y.V. Independent and Stationary Sequences of Random Variables; Wolters-Noordhoff: Amsterdam, The Netherlands, 1971. [Google Scholar]
- Rosenblatt, M. Markov Processes: Structure and Asymptotic Behavior; Springer: Berlin/Heidelberg, Germany, 1971. [Google Scholar]
- Antoch, J.; Hušková, M.; Prášková, Z. Effect of dependence on statistics for determination of change. J. Stat. Plan. Infer. 1997, 60, 291–310. [Google Scholar] [CrossRef]
- Andrews, D.W.K. Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica 1991, 59, 817–858. [Google Scholar] [CrossRef]
- Belyaev, Y.K. Bootstrap, Resampling and Mallows Metric. Lecture Notes 1; Institute of Mathematical Statistics, UmeåUniversity: Umeå, Sweden, 1995. [Google Scholar]
- Singh, K. On the asymptotic accuracy of Efron’s bootstrap. Ann. Stat. 1981, 9, 1187–1195. [Google Scholar] [CrossRef]
- Peštová, B.; Pešta, M. Testing structural changes in panel data with small fixed panel size and bootstrap. Metrika 2015, 78, 665–689. [Google Scholar]
- Peštová, B.; Pešta, M. Erratum to: Testing structural changes in panel data with small fixed panel size and bootstrap. Metrika 2016, 79, 237–238. [Google Scholar] [CrossRef] [Green Version]
- Peštová, B.; Pešta, M. Change point estimation in panel data without boundary issue. Risks 2017, 5, 7. [Google Scholar] [CrossRef] [Green Version]
- Culpepper, S.A.; Balamuta, J.J. Inferring latent structure in polytomous data with a higher-order diagnostic model. Multivar. Behav. Res. 2021, 1–19. [Google Scholar] [CrossRef]
- Maciak, M.; Mizera, I.; Pešta, M. Functional profile techniques for claims reserving. ASTIN Bull. 2022, 52, 449–482. [Google Scholar]
- Gerthofer, M.; Pešta, M. Stochastic claims reserving in insurance using random effects. Prague Econ. Pap. 2017, 26, 542–560. [Google Scholar] [CrossRef] [Green Version]
- McNeil, A.J. Estimating the tails of loss severity distributions using extreme value theory. ASTIN Bull. 1997, 27, 117–137. [Google Scholar] [CrossRef] [Green Version]
- Pešta, M. Changepoint in error-prone relations. Mathematics 2021, 9, 89. [Google Scholar] [CrossRef]
- Pešta, M.; Wendler, M. Nuisance-parameter-free changepoint detection in non-stationary series. Test 2020, 29, 379–408. [Google Scholar]
- Maciak, M.; Pešta, M.; Peštová, B. Changepoint in dependent and non-stationary panels. Stat. Pap. 2020, 61, 1385–1407. [Google Scholar] [CrossRef]
- Pešta, M.; Peštová, B.; Maciak, M. Changepoint estimation for dependent and non-stationary panels. Appl. Math.-Czech. 2020, 65, 299–310. [Google Scholar] [CrossRef]
- Pešta, M.; Hudecová, Š. Asymptotic consistency and inconsistency of the chain ladder. Insur. Math. Econ. 2012, 51, 472–479. [Google Scholar] [CrossRef]
- Hudecová, Š.; Pešta, M. Modeling dependencies in claims reserving with GEE. Insur. Math. Econ. 2013, 53, 786–794. [Google Scholar]
- Pešta, M.; Okhrin, O. Conditional least squares and copulae in claims reserving for a single line of business. Insur. Math. Econ. 2014, 56, 28–37. [Google Scholar] [CrossRef] [Green Version]
- Maciak, M.; Okhrin, O.; Pešta, M. Infinitely stochastic micro reserving. Insur. Math. Econ. 2021, 100, 30–58. [Google Scholar]
- Belyaev, Y.K.; Sjöstedt-de Luna, S. Weakly approaching sequences of random distributions. J. Appl. Probab. 2000, 37, 807–822. [Google Scholar] [CrossRef] [Green Version]
- Zagdaǹski, A. On the construction and properties of bootstrap-t prediction intervals for stationary time series. Probab. Math. Statist. 2005, 25, 133–153. [Google Scholar]
- van der Vaart, A.W. Asymptotic Statistics; Cambridge University Press: New York, NY, USA, 1998. [Google Scholar]
- Chen, X.; Wu, Y. Strong law for mixing sequence. Acta Math. Appl. Sin. 1989, 5, 367–371. [Google Scholar]
- Xuejun, W.; Shuhe, H.; Yan, S.; Wenzhi, Y. Moment inequalities for φ-mixing sequences and its applications. J. Inequal. Appl. 2009, 2009, 12. [Google Scholar] [CrossRef] [Green Version]
- Herrndorf, N. A functional central limit theorem for strongly mixing sequence of random variables. Probab. Theory Relat. Fields 1985, 69, 541–550. [Google Scholar] [CrossRef]
- Utev, S.A. The central limit theorem for φ-mixing arrays of random variables. Theory Probab. Appl. 1990, 35, 131–139. [Google Scholar] [CrossRef]
- Katz, M.L. Note on the Berry–Esseen theorem. Ann. Math. Stat. 1963, 34, 1107–1108. [Google Scholar]
Empirical Quantity | Independent Bootstrap | Moving Block Bootstrap |
---|---|---|
th percentile | 0.2647 | 0.3125 |
First quartile | 0.3824 | 0.4062 |
Median | 0.4412 | 0.4375 |
Third quartile | 0.5000 | 0.4999 |
97.5th percentile | 0.6176 | 0.5938 |
Empirical Quantity | Independent Bootstrap | Moving Block Bootstrap |
---|---|---|
2.5th percentile | 27.94 | 29.39 |
First quartile | 30.28 | 31.20 |
Median | 31.64 | 32.20 |
Third quartile | 33.08 | 33.29 |
97.5th percentile | 35.90 | 35.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hrba, M.; Maciak, M.; Peštová, B.; Pešta, M. Bootstrapping Not Independent and Not Identically Distributed Data. Mathematics 2022, 10, 4671. https://doi.org/10.3390/math10244671
Hrba M, Maciak M, Peštová B, Pešta M. Bootstrapping Not Independent and Not Identically Distributed Data. Mathematics. 2022; 10(24):4671. https://doi.org/10.3390/math10244671
Chicago/Turabian StyleHrba, Martin, Matúš Maciak, Barbora Peštová, and Michal Pešta. 2022. "Bootstrapping Not Independent and Not Identically Distributed Data" Mathematics 10, no. 24: 4671. https://doi.org/10.3390/math10244671
APA StyleHrba, M., Maciak, M., Peštová, B., & Pešta, M. (2022). Bootstrapping Not Independent and Not Identically Distributed Data. Mathematics, 10(24), 4671. https://doi.org/10.3390/math10244671