A Multi-Category Inverse Design Neural Network and Its Application to Diblock Copolymers
Abstract
1. Introduction
2. Direct Problem
2.1. Fourier Pseudospectral Method
2.2. Phase Diagram
3. Inverse Design Neural Network
3.1. Multi-Category Inverse Design Network
3.2. Computational Complexity
- Convolution. The computational amount of a convolution layer is , where is the size of the convolution kernel. and represent the number of channels of the previous layer and the current layer. H and W are the height and width of the current layer.
- Max-pooling. The computational amount of a pooling layer is , where is the size of the pooling kernel. and represent the number of channels of the previous layer and the current layer. H and W are the height and width of the current layer.
- Full connection. The computational amount of a fully connected layer is , where and represent the dimensionality of the previous layer and the current layer.
3.3. Reciprocal-Space Data Augmentation (RSDA) Method
4. Application
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beu, T.A.; Onoe, J.; Hida, A. First-principles calculations of the electronic structure of one-dimensional C60 polymers. Phys. Rev. B 2005, 72, 155416. [Google Scholar] [CrossRef]
- He, X.; Song, M.; Liang, H.; Pan, C. Self-assembly of the symmetric diblock copolymer in a confined state: Monte Carlo simulation. J. Chem. Phys. 2001, 114, 10510–10513. [Google Scholar] [CrossRef]
- Sugimura, N.; Ohno, K. A Monte Carlo simulation of water + oil + ABA block copolymer ternary system. I. Patterns in thermal equilibrium. AIP Adv. 2021, 11, 055312. [Google Scholar] [CrossRef]
- Lemak, A.S.; Lepock, J.R.; Chen, J.Z. Molecular dynamics simulations of a protein model in uniform and elongational flows. Proteins Struct. Funct. Bioinform. 2003, 51, 224–235. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, V.; Nielsen, S.O.; Discher, D.E.; Klein, M.L.; Lipowsky, R.; Shillcock, J. Dissipative particle dynamics simulations of polymersomes. J. Phys. Chem. B 2005, 109, 17708–17714. [Google Scholar] [CrossRef][Green Version]
- Gavrilov, A.A.; Kudryavtsev, Y.V.; Chertovich, A.V. Phase diagrams of block copolymer melts by dissipative particle dynamics simulations. J. Chem. Phys. 2013, 139, 224901. [Google Scholar] [CrossRef]
- Fredrickson, G.; Fredrickson, D. The Equilibrium Theory of Inhomogeneous Polymers; International Series of Monographs on Physics; OUP Oxford: Oxford, UK, 2006. [Google Scholar]
- Fraaije, J. Dynamic density functional theory for microphase separation kinetics of block copolymer melts. J. Chem. Phys. 1993, 99, 9202–9212. [Google Scholar] [CrossRef]
- Liu, C.C.; Nealey, P.F.; Raub, A.K.; Hakeem, P.J.; Brueck, S.R.J.; Han, E.; Gopalan, P. Integration of block copolymer directed assembly with 193 immersion lithography. J. Vac. Sci. Technol. B 2010, 28, C6B30. [Google Scholar] [CrossRef]
- Suh, H.S.; Kim, D.H.; Moni, P.; Xiong, S.; Ocola, L.E.; Zaluzec, N.J.; Gleason, K.K.; Nealey, P.F. Sub-10-nm patterning via directed self-assembly of block copolymer films with a vapour-phase deposited topcoat. Nat. Nanotechnol. 2017, 12, 575–581. [Google Scholar] [CrossRef]
- Li, W.; Gu, X. Square patterns formed from the directed self-assembly of block copolymers. Mol. Syst. Des. Eng. 2021, 6, 355–367. [Google Scholar] [CrossRef]
- Ouk Kim, S.; Solak, H.H.; Stoykovich, M.P.; Ferrier, N.J.; De Pablo, J.J.; Nealey, P.F. Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates. Nature 2003, 424, 411–414. [Google Scholar] [CrossRef] [PubMed]
- Ji, S.; Nagpal, U.; Liao, W.; Liu, C.C.; de Pablo, J.J.; Nealey, P.F. Three-dimensional directed assembly of block copolymers together with two-dimensional square and rectangular nanolithography. Adv. Mater. 2011, 23, 3692–3697. [Google Scholar] [CrossRef] [PubMed]
- Chuang, V.P.; Gwyther, J.; Mickiewicz, R.A.; Manners, I.; Ross, C.A. Templated self-assembly of square symmetry arrays from an ABC triblock terpolymer. Nano Lett. 2009, 9, 4364–4369. [Google Scholar] [CrossRef]
- Malkiel, I.; Nagler, A.; Mrejen, M.; Arieli, U.; Wolf, L.; Suchowski, H. Deep learning for design and retrieval of nano-photonic structures. arXiv 2017, arXiv:1702.07949. [Google Scholar]
- Gahlmann, T.; Tassin, P. Deep neural networks for the prediction of the optical properties and the free-form inverse design of metamaterials. arXiv 2022, arXiv:2201.10387. [Google Scholar] [CrossRef]
- Liu, D.; Tan, Y.; Khoram, E.; Yu, Z. Training deep neural networks for the inverse design of nanophotonic structures. ACS Photonics 2018, 5, 1365–1369. [Google Scholar] [CrossRef]
- Peurifoy, J.; Shen, Y.; Jing, L.; Yang, Y.; Cano-Renteria, F.; DeLacy, B.G.; Tegmark, M.; Joannopoulos, J.D.; Soljacic, M. Nanophotonic particle simulation and inverse design using artificial neural networks. Sci. Adv. 2018, 4, eaar4206. [Google Scholar] [CrossRef] [PubMed]
- Xuan, Y.; Delaney, K.T.; Ceniceros, H.D.; Fredrickson, G.H. Deep learning and self-consistent field theory: A path towards accelerating polymer phase discovery. J. Comput. Phys. 2021, 443, 110519. [Google Scholar] [CrossRef]
- Lin, D.; Yu, H.Y. Deep learning and inverse discovery of polymer self-consistent field theory inspired by physics-informed neural networks. Phys. Rev. E 2022, 106, 014503. [Google Scholar] [CrossRef]
- Hagita, K.; Aoyagi, T.; Abe, Y.; Genda, S.; Honda, T. Deep learning-based estimation of Flory–Huggins parameter of A–B block copolymers from cross-sectional images of phase-separated structures. Sci. Rep. 2021, 11, 1–16. [Google Scholar] [CrossRef]
- Nakamura, I. Phase diagrams of polymer-containing liquid mixtures with a theory-embedded neural network. New J. Phys. 2020, 22, 015001. [Google Scholar] [CrossRef]
- Aoyagi, T. Deep learning model for predicting phase diagrams of block copolymers. Comput. Mater. Sci. 2021, 188, 110224. [Google Scholar] [CrossRef]
- Brazovskiĭ, S.A. Phase transition of an isotropic system to a nonuniform state. J. Exp. Theor. Phys. 1975, 41, 85–89. [Google Scholar]
- Leibler, L. Theory of microphase separation in block copolymers. Macromolecules 1980, 13, 1602–1617. [Google Scholar] [CrossRef]
- Fredrickson, G.; Helfand, E. Fluctuation effects in the theory of microphase separation in block copolymers. J. Chem. Phys. 1987, 87, 697. [Google Scholar] [CrossRef]
- Shi, A.C.; Noolandi, J.; Desai, R.C. Theory of anisotropic fluctuations in ordered block copolymer phases. Macromolecules 1996, 29, 6487–6504. [Google Scholar] [CrossRef]
- Miao, B.; Wickham, R.A. Fluctuation effects and the stability of the Fddd network phase in diblock copolymer melts. J. Chem. Phys. 2008, 128, 054902. [Google Scholar] [CrossRef]
- McClenagan, D. Landau Theory of Complex Ordered Phases. Ph.D. Thesis, McMaster University, Hamilton, ON, Canada, 2019. [Google Scholar]
- Jiang, K.; Si, W. AGPD: Automatically Generating Phase Diagram; National Copyright Administration: Beijing, China, 2022. [Google Scholar]
- Shi, A.C. Nature of anisotropic fluctuation modes in ordered systems. J. Phys. Condens. Matter 1999, 11, 10183–10197. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, X. An efficient numerical method of Landau–Brazovskii model. J. Comput. Phys. 2008, 227, 5859–5870. [Google Scholar] [CrossRef]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Li, B.; Hou, Y.; Che, W. Data augmentation approaches in natural language processing: A survey. AI Open 2021, 3, 71–90. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1026–1034. [Google Scholar]
Layer Type | Output Shape | Layer Type | Output Shape |
---|---|---|---|
Conv2d | Connect left | ||
MaxPool2d | Reshape | ||
Conv2d | Fully connected | ||
MaxPool2d | Fully connected | ||
Conv2d | Fully connected | ||
MaxPool2d | Fully connected |
Training Set | Validation Set | Test Set | |
---|---|---|---|
Classifier | 278,480 | 69,620 | 26,600 |
Identified LAM | Identified HEX | |
---|---|---|
Certain LAM | 13,100 | 0 |
Certain HEX | 0 | 13,500 |
Training Data | Validation Data | Test Data | |
---|---|---|---|
LAM subnet | 150,480 | 37,620 | 2620 |
HEX subnet | 128,000 | 32,000 | 2700 |
Classifier | LAM Subnet | HEX Subnet | |
---|---|---|---|
Training time | 11.5 min | 11.6 h | 20.0 h |
Test time | 0.0078 s | 0.0034 s | 0.0074 s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, D.; Zhou, T.; Huang, Y.; Jiang, K. A Multi-Category Inverse Design Neural Network and Its Application to Diblock Copolymers. Mathematics 2022, 10, 4451. https://doi.org/10.3390/math10234451
Wei D, Zhou T, Huang Y, Jiang K. A Multi-Category Inverse Design Neural Network and Its Application to Diblock Copolymers. Mathematics. 2022; 10(23):4451. https://doi.org/10.3390/math10234451
Chicago/Turabian StyleWei, Dan, Tiejun Zhou, Yunqing Huang, and Kai Jiang. 2022. "A Multi-Category Inverse Design Neural Network and Its Application to Diblock Copolymers" Mathematics 10, no. 23: 4451. https://doi.org/10.3390/math10234451
APA StyleWei, D., Zhou, T., Huang, Y., & Jiang, K. (2022). A Multi-Category Inverse Design Neural Network and Its Application to Diblock Copolymers. Mathematics, 10(23), 4451. https://doi.org/10.3390/math10234451