Asymptotic Expansions for Symmetric Statistics with Degenerate Kernels
Abstract
:1. Introduction
2. Symmetric Statistics
3. Non-Central Limit Theorems for U-Statistics with Degenerate Kernels
4. Asymptotic Expansions for Single Sums which Hit a Ball in a Hilbert Space
5. The Sato–Mercer Theorem
6. Asymptotic Expansions for Degenerate V-Statistics and U-Statistics with Degree 2
7. Cramer–Von Mises Statistics
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Callaert, H.; Janssen, P.; Veraverbeke, N. An edgeworth expansion for U-statistics. Ann. Stat. 1980, 8, 299–312. [Google Scholar] [CrossRef]
- Withers, C.S. Some asymptotics for U-statistics. Commun. Stat. Theory Methods 1988, 17, 3269–3276. [Google Scholar] [CrossRef]
- Maesono, Y. Asymptotic representations of skewness estimators of studentized U-statistics. Bull. Inform. Cybern. 2004, 36, 91–104. [Google Scholar] [CrossRef]
- Bentkus, V.; Götze, F. Optimal bounds in non-Gaussian limit theorems for U-statistics. Ann. Probab. 1999, 27, 454–521. [Google Scholar] [CrossRef]
- Zubayraev, T. Asymptotic analysis for U-statistics and its application to Von Mises statistics. Open J. Stat. 2011, 1, 139–144. [Google Scholar] [CrossRef] [Green Version]
- Sazonov, V.V.; Ul’yanov, V.V. Asymptotic expansions for the probability that the sum of independent random variables hits a ball in a Hilbert space. Russ. Math. Surv. 1995, 50, 1045–1063. [Google Scholar] [CrossRef]
- Serfling, R.J. Approximation Theorems of Mathematical Statistics; John Wiley & Sons: Hoboken, NJ, USA, 1980. [Google Scholar] [CrossRef]
- Sato, H. Nuclearity of a nonnegative definite integral kernel on a separable metric space. J. Theor. Probab. 1992, 5, 349–353. [Google Scholar] [CrossRef]
- Kanagawa, S.; Yoshihara, K. The almost sure invariance principles of degenerate U-statistics of degree two for stationary random variables. Stoch. Process. Their Appl. 1994, 49, 347–356. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanagawa, S. Asymptotic Expansions for Symmetric Statistics with Degenerate Kernels. Mathematics 2022, 10, 4158. https://doi.org/10.3390/math10214158
Kanagawa S. Asymptotic Expansions for Symmetric Statistics with Degenerate Kernels. Mathematics. 2022; 10(21):4158. https://doi.org/10.3390/math10214158
Chicago/Turabian StyleKanagawa, Shuya. 2022. "Asymptotic Expansions for Symmetric Statistics with Degenerate Kernels" Mathematics 10, no. 21: 4158. https://doi.org/10.3390/math10214158
APA StyleKanagawa, S. (2022). Asymptotic Expansions for Symmetric Statistics with Degenerate Kernels. Mathematics, 10(21), 4158. https://doi.org/10.3390/math10214158