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Abstract: Asymptotic expansions for U-statistics and V-statistics with degenerate kernels are inves-
tigated, respectively, and the remainder term O(n1−p/2), for some p ≥ 4, is shown in both cases.
From the results, it is obtained that asymptotic expansions for the Cramér–von Mises statistics of the
uniform distribution U(0, 1) hold with the remainder term O

(
n1−p/2

)
for any p ≥ 4. The scheme

of the proof is based on three steps. The first one is the almost sure convergence in a Fourier series
expansion of the kernel function u(x, y). The key condition for the convergence is the nuclearity of a
linear operator Tu defined by the kernel function. The second one is a representation of U-statistics
or V-statistics by single sums of Hilbert space valued random variables. The third one is to apply
asymptotic expansions for single sums of Hilbert space valued random variables.
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1. Introduction

Asymptotic expansions for symmetric statistics are studied by many people. See, e.g.,
Callaert–Janssen–Veraverbeke (1980) [1], Withers (1988) [2], Maesono (2004) [3], and so on.
They treat U-statistics with non-degenerate kernels. On the other hand, Bentkus—Götze
(1999) [4]and Zubayraev (2011) [5] obtained optimal bounds in asymptotic expansions for
U-statistics with degenerate kernels. They treat the following modified U-statistics,

Wn =
1
n2 ∑

1≤i<j≤n
φ
(
ξi, ξ j

)
+

1
n ∑

1≤i≤n
φ1(ξi), (1)

where φ(·, ·) is a symmetric function, φ1(·) is a measurable function and {ξi} are i.i.d.
random variables. Wn coincides with V-statistics when

φ1(x) =
1
2

φ(x, x). (2)

If φ1(x) = 0 for any x, then Wn coincides with U-statistics. They obtained asymptotic
expansions with remainder O(n−1) for the distribution function of Wn.In this paper, we
investigate asymptotic expansions for the simple U-statistics and the V-statistics with
degree two defined by

Un =
2
n2 ∑

1≤i<j≤n
u
(
ξi, ξ j

)
, Vn =

1
n2 ∑

1≤i,j≤n
u
(
ξi, ξ j

)
, (3)

respectively. We obtain asymptotic expansions with remainder O(n1−p/2) for some p ≥ 4
for the distribution function of Un or Vn under some assumptions for {ξi} and u(x, y). Our
scheme of the proof is based on three steps. The first one is the almost sure convergence
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in a Fourier series expansion of u
(
ξi, ξ j

)
. The key condition for the convergence is the

nuclearity of a linear operator Tu defined by the kernel function u(x, y). The second one is a
representation of U-statistics or V-statistics by single sums of Hilbert space valued random
variables. The third one is to apply asymptotic expansions for single sums of Hilbert space
valued random variables due to Sazonov—Uyanov (1995) [6].

2. Symmetric Statistics

Let
{

ξ j, j ≥ 1
}

be i.i.d. random variables with a probability distribution µ on an arbi-
trary measurable space (X, B). Suppose that u(x1, x2, · · · , xn) is a real valued symmetric
function for some k ≥ 1, i.e.,

u(x1, x2, · · · , xk) = u
(
xi1 , xi2 , · · · , xik

)
, (4)

for any permutation (i1, i2, · · · , ik) of (1, 2, · · · , k). A statistics defined by the kernel function
u(x1, x2, · · · , xk) is called a symmetric statistics. The followings are the typical examples of
the symmetric statistics.

Example 1. U-statistics with degree k ≥ 1:

Un =

(
n
k

)−1

∑
1≤i1<i2<···<ik≤n

u
(
ξi1 , ξi2 , · · · , ξik

)
. (5)

Example 2. V-statistics with degree k ≥ 1:

Vn = n−k ∑
1≤i1,i2,··· ,ik≤n

u
(
ξi1 , ξi2 , · · · , ξik

)
. (6)

In this paper, we treat V-statistics Vn and U-statistics Un with degree two defined by
(3) when the kernel function u(x, y) is degenerate, i.e.,

E[u(ξ1, x)] = 0, (7)

for any real number x.

3. Non-Central Limit Theorems for U-Statistics with Degenerate Kernels

Assume that {ξi} are i.i.d. random variables with a distribution µ. Let u(x, y) be a real
valued symmetric function on R× R and square integrable such that

E
[
u(ξ1, ξ2)

2
]
< ∞. (8)

Suppose that u(x, y) is a degenerate kernel satisfying the condition (7). Let L2(R, µ)
be the space of all square integrable functions with respect to µ. Then, according to Serfling
(1980) [7], we see that the kernel u(x, y) induces a bounded linear operator L2(R, µ) →
L2(R, µ) (trace class) defined by

Tu( f ) = E[u(ξ1, x) f (ξ1)] =
∫ ∞

−∞
u(y, x) f (y)µ(dy), f ∈ L2, (9)

which has eigenvalues {λi} and eigenfunctions {gi} satisfying for each i ≥ 1{
E[gi(ξ1)] = 0, E

[
g2

i (ξ1)
]
= 1

E
[
gi(ξ1)gj(ξ1)

]
= 0 (i 6= j), E[u(ξ1, x)gi(ξ1)] = λigi(x)

. (10)
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With respect to (10), see Serfling (1980) [7], pp. 196 and Dunford and Schwartz (1963),
pp. 905, 1009, 1083, 1087 for more details. Then we have

lim
n→∞

E

(u
(
ξi, ξ j

)
−

n

∑
k=1

λkgk(ξi)gk
(
ξ j
))2

 = 0, (11)

for each i, j ≥ 1. Serfling (1980) [7] showed the non-central limit theorem for U-statistics
with degree 2.

Theorem 1. (Serfling (1980) [7])
Put θ = E[u(ξ1, ξ2)]. Let Un be a U-statistics with the degenerate kernel u(x, y) defined by

Un =
2
n2 ∑

1≤i<j≤n
u
(
ξi, ξ j

)
, (12)

Let {Zi} be i.i.d. random variables with the standard Normal distribution N(0, 1). Then, as n→ ∞

nUn ⇒
∞

∑
j=1

λj

(
Z2

j − 1
)

, (13)

where “⇒” means the weak convergence in R.

It is well known that the rate of convergence in (13) is O(n−1/2) (See, e.g., Serfling
(1980) [7] for more details). We obtain asymptotic expansions for Un and Vn using asymp-
totic expansions due to Sazonov—Uyanov (1995) [6] for sums of Hilbert space valued i.i.d.
random variables in the next section.

4. Asymptotic Expansions for Single Sums which Hit a Ball in a Hilbert Space

In this section we consider an asymptotic expansions for sums of Hilbert space valued
random vectors {Xi} according to Sazonov—Uyanov (1995) [6]. Let {Xi} be a sequence
of i.i.d. random vectors in a separable Hilbert space H with E[X1] = 0 and E

[
‖X1‖2

]
= 1,

where ‖x‖2 = 〈x, x〉 for x ∈ H and 〈·, ·〉 is the inner product in H. Define the covariance
operator V of X1 by

〈Vx, y〉 = E[〈X1 − E[X1], x〉〈X1 − E[X1], y〉], (14)

for x, y ∈ H. Denote by σ2
1 ≥ σ2

2 ≥ · · · the eigenvalues of V and by e1, e2, · · · be the
orthonormal eigenvectors corresponding to the eigenvalues. Put

Sn =
1

σ
√

n

n

∑
i=1

(Xi − E[Xi]), vk =

(
k

∏
i=1

σi

)−1/k

, ck(V) = vk−1
k , (15)

where σ2 = E
[
‖X1 − E(X1)‖2

]
. Define the projection K : H → H by

Ky =
6k−5

∑
i=1
〈y, ei〉ei, y ∈ H. (16)

Put

θk(L) = sup
{∣∣∣E[exp

(√
−1〈y, X1〉

)]∣∣∣ ∣∣∣∣‖Ky‖ ≥ 1
L

}
. (17)
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for any L > 0. Let Y be the H-valued Gaussian random variables with mean 0 and the
covariance operator V. For a, h ∈ H, r > 0, i = 0, 1, · · · we put

Φi(a, r) = P

{∥∥∥∥∥
(

1− i
n

)1/2
Y− a

∥∥∥∥∥ < r

}
, (18)

dhΦi(a, r) = lim
t→∞

Φi(a− th, r)−Φi(a, r)
t

. (19)

Define the differential operators dk
h by

d1
hΦi(a, r) = dhΦi(a, r), dk

hΦi(a, r) = dh

(
dk−1

h Φi(a, r)
)

, k ≥ 2. (20)

Put
χj,L

′ = I
{∥∥Xj

∥∥ < L
}

(21)

for the indicator I{·}
χj,t = χj,

√
n(1+t)

′ (22)

and χj = χj,0. For positive integers l1, l2, · · · , ls we put

Qs =
(

dl1
X1χ1
− dl1

Y1

)
· · ·
(

dls
X1χs
− dls

Ys

)
(23)

and for integers k ≥ 2, 1 ≤ i ≤ k− 2, we put

Ai(a, r) = n−i/2
n

∑
j=1

∑ ′n−j
(

n
j

)(
l(j)!

)−1
E
(
Qj
)
Φj(a, r), (24)

where l(j) = l1! · · · lj! and ∑ ′ denotes the summation over all, such that

l1 ≥ 3, l2 ≥ 3, · · · , lj ≥ 3, l1 + l2 + · · · ,+lj = 2j + i. (25)

The following theorem is the key result for the proofs of our theorems.

Theorem 2. Sazonov—Uyanov (1995) [6]
Suppose that E

[
‖X1‖p] < ∞ for some p ≥ 4. For any t ≥ 0 and integer k ≥ 2, let L be a

positive number, such that

E
[
‖X1‖2(1− χj,L

′)] ≤ σ2
6k−5
3

. (26)

Then, for L ≤ n1/2

∆n(a, r) :=

∣∣∣∣∣P{‖Sn − a‖ < r} − P{‖Y− a‖ < r} −
k−2

∑
i=1

Ai(a, r)

∣∣∣∣∣ (27)

≤ A(p, s, t)

+c(k) exp{−sα}
{

c6k−5(V)E[B2(a, r)(1− χ1)] +
(

1 + M(a, r)k−2
)

E[Bk+1(a, r)(1− χ1)]

+c6k−5(V)
(

1 + m3(a, r)|a|〈Va, a〉
)k−2

(
L2

n

)(k−1)/2

+ θ
n
/
(k log(n

/
L2))

k (L) log
(

n
/

L2
)}

,

where for s = |‖a‖ − r| and α ≥ 1
5 ,

A(p, s, t) := nE[(1− χ1,t)] + cp(1− s)pn1−p/2E
[
‖X1‖p(χ1,t − χ1)

]
, (28)
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B(j, r) = n−(j−2)
(
‖X1‖j + mj(a, r)|〈X1, a〉|j

)
, (29)

M(a, r) = m2(a, r)〈Va, a〉 (30)

and

m(a, r) :=

{
min

{
1, r
‖a‖

}
, ‖a‖ > 0

0, a = 0
. (31)

In addition, the terms in the asymptotic expansion for ε > 0 satisfies the estimates

|Ai(a, r)| ≤ c(ε, i) exp
{
− s2

2 + ε

}
n−i/sc6i+3(V) (32)

×E
[
χi‖X1‖i+2 + |〈X1, a〉|i+2χimi+2(a, r)×{

1 + m2(i+2)(a, r)
(

1 + m2(i+2)(a, r)〈Va, a〉i−1
)}

+ M(a, r)3i+2
]

for even i, and if i is odd, then we have

|Ai(a, r)| ≤ c(ε, i) exp
{
− s2

2 + ε

}
n−i/s

{
c6i+3(V)

(
1 +

(
m2(a, r)〈Va, a〉i−1

))
(33)

×E
[
|〈X1, a〉|χim(a, r)

{
‖X1‖2 + ‖X1‖i+1 + 〈X1, a〉i+1(a, r)mi+1(a, r)

}]
+c6i+3(V)m(a, r)〈Va, a〉1/2E

[
χi‖X1‖i+1

]
5. The Sato–Mercer Theorem

In the proofs of our theorems we use the Fourier series expansion for the kernel
function u

(
ξi, ξ j

)
by eigenvalues and eigenfunction of the linear operator Tu defined by

(9). Since (11) holds in the sense of the L2-convergence, (11) can not be applied to show
the asymptotic expansions for U-statistics or V-statistics as it is. We show that u

(
ξi, ξ j

)
can

be represented by the Fourier series expansion in (11) almost surely using the following
Sato–Mercer theorem. (See Sato (1992) [8] for more details.)

Theorem 3. (The Sato–Mercer theorem)
Let X be a separable metric space with a Borel measure ν on X, and K(x, y) be a function on

X× X such that there exists a Borel-measurable subset X0, such that

ν(X\X0) = 0. (34)

Suppose that K(x, y) is continuous on X0 and satisfies∫
X

∫
X
|K(x, y)|2ν(dx)ν(dy) < ∞ (35)

and ∫
X

∫
X

K(x, y) f (x) f (y)ν(dx)ν(dy) ≥ 0, (36)

for any f ∈ L2(X, ν). Then, the linear operator TK on L2(X, ν) defined by

TK f (x) =
∫

X
K(x, y) f (y)ν(dy), f ∈ L2(X, ν) (37)

is nuclear if, and only if, ∫
X

K(x, x)ν(dx) < ∞ (38)

holds.
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From Theorem 3, we have the next result.

Theorem 4. Let
{

ξ j, j ≥ 1
}

be i.i.d. random variables with the distribution µ. Let u(x, y) be a
real valued symmetric function on R× R and Tu be a linear operator defined by

Tu f (x) = E[u(ξ1, x) f (ξ1)] =
∫ ∞

−∞
u(y, x) f (y)µ(dy), f ∈ L2(R, µ). (39)

Suppose that u(x, y) is the square integrable degenerate kernel of the linear operator Tu, such that∫ ∞

−∞

∫ ∞

−∞
u2(x, y)µ(dx)µ(dy) < ∞, (40)

∫ ∞

−∞

∫ ∞

−∞
u(x, y) f (x) f (y)µ(dx)µ(dy) ≥ 0, (41)

for any f ∈ L2(R, µ) and

E[u(ξ1, x)] =
∫ ∞

−∞
u(y, x)µ(dy) = 0 (42)

for any x ∈ R. Let {λk} and {gk} be eigenvalues and eingenfunctions of the linear operator Tu,
respectively. Suppose

λk ≥ 0, k ≥ 1. (43)

Furthermore assume that there exists a Lebesgue measurable subset X0 ⊂ R, such that

µ(X0) = 1 (44)

and u(x, y) is continuous on X0. Then, we have

u
(
ξi, ξ j

)
=

∞

∑
k=1

λkgk(ξi)gk
(
ξ j
)

a.s., (45)

for each i, j ≥ 1.

Proof. It is easy to see that from (10)

E

[
n

∑
k=1

∣∣λkgk(ξi)gk
(
ξ j
)∣∣] =

n

∑
k=1

E
[∣∣λkgk(ξi)gk

(
ξ j
)∣∣] (46)

=
n

∑
k=1
|λk|E

[∣∣gk(ξi)gk
(
ξ j
)∣∣]

≤
n

∑
k=1
|λk|

{
E
[

gk(ξi)
2
]}1/2{

E
[

gk
(
ξ j
)2
]}1/2

=
n

∑
k=1
|λk|,

for each n ≥ 1. Tending n→ ∞, (46) implies that

E

[
∞

∑
k=1

∣∣λkgk(ξi)gk
(
ξ j
)∣∣] ≤ ∞

∑
k=1
|λk|. (47)
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On the other hand, from (40) and (41), u(x, y) satisfies (35) and (36). Therefore, Tu is nuclear
by Theorem 3. Hence, from (43) and the nuclearity of Tu, we have

∞

∑
k=1
|λk| =

∞

∑
k=1

λk < ∞. (48)

From (47) and (48), we have

E

[
∞

∑
k=1

∣∣λkgk(ξi)gk
(
ξ j
)∣∣] < ∞, (49)

which implies
∞

∑
k=1

∣∣λkgk(ξi)gk
(
ξ j
)∣∣ < ∞, a.s. (50)

Therefore, (45) is proved from (11) and (50).

Remark 1. If the symmetric function u(x, y) is piecewise continuous on R, then there exists
X0 ⊂ R satisfying (44) such that u(x, y) is continuous on X0. In the next section, we show a
typical example of U- or V-statistics defined by such piecewise continuous function u(x, y) as its
kernel function.

6. Asymptotic Expansions for Degenerate V-Statistics and U-Statistics with Degree 2

For applying Theorem 2 for Hilbert space valued random variables to the proof of
asymptotic expansions for Vn, we represent Vn by sums of Hilbert space valued random
variables {Gi} by the following method.

According to K.—Yoshihara (1994) [9], we introduce a separable Hilbert space H-
equipped with the inner product 〈·, ·〉 and the norm ‖ · ‖ as follows,

H =

{
x = (x1, x2, · · ·) ∈ R∞

∣∣∣∣∣ ∞

∑
k=1
|λk|x2

k < ∞

}
, (51)

〈x, y〉 =
∞

∑
k=1
|λk|xkyk (52)

and

‖x‖ =
(

∞

∑
k=1
|λk|x2

k

)1/2

. (53)

Using the assumptions of Theorem 4, we have from (10) and (48) that

E

[
∞

∑
k=1
|λk|g2

k(ξi)

]
=

∞

∑
k=1
|λk|E

[
g2

k(ξi)
]
=

∞

∑
k=1
|λk| < ∞, (54)

which implies that we can define H-valued random variables by

Gi = (g1(ξi), g2(ξi), g3(ξi), · · ·) (55)

for each i ≥ 1. Let {Un, n ≥ 1} and {Vn, n ≥ 1} be U-statistics and V-statistics with degree
2 defined by (3), respectively.

Theorem 5. Without loss of generality we assume that θ = 0. Suppose that
{

ξ j, j ≥ 1
}

is
a sequence of i.i.d. random variables with the distribution µ. Assume that u(x, y) is a square
integrable symmetric function with respect to µ× µ satisfying (40) ∼ (42). Suppose that for some
p ≥ 4

E
[
‖G1‖p] < ∞. (56)
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Furthermore, without loss of generality, assume that

∞

∑
k=1

λk = 1. (57)

Let Y be the H-valued Gaussian random variables with mean 0 and the covariance operator V
satisfying (14) with the eigenvalues σ2

1 ≥ σ2
2 ≥ · · · and the orthogonal eigenvectors e1, e2, · · · . For

any t ≥ 0, integer k ≥ 2, let L be a positive number, such that

E
[
‖G1‖2(1− χj,L

′)] ≤ σ2
6k−5
3

. (58)

Then, for L ≤ n1/2 and α ≥ 1
5 ,∣∣∣∣∣P{|nVn| ≤ r} − P{‖Y‖ ≤ r} −

k−2

∑
i=1

Ai(0, r)

∣∣∣∣∣ (59)

≤ A(p, s, t) + c(k) exp{−rα}[c6k−5(V)E[B2(0, r)(1− χ1)]

+E[Bk+1(0, r)χ1] + c6k−5(V)

(
L2

n

)(k−1)/2

+ θ
n
/
(k log(n

/
L2))

k (L) log
(

n
/

L2
)

,

where

‖Y‖ =
∣∣∣∣∣ ∞

∑
j=1

λj

(
Z2

j − 1
)∣∣∣∣∣, (60)

A(p, s, t) = nE[(1− χ1,t)] + c(p)(1 + r)−pn1−p/2E
[
‖G1‖p(χ1,t − χ1)

]
(61)

and
Bj(0, r) = n−(j−2)/2‖G1‖j. (62)

Proof. Put

h(x) =
∞

∑
k=1

λkxk (63)

for

x ∈ H =

{
x = (x1, x2, · · ·)

∣∣∣∣∣ ∞

∑
k=1
|λk|x2

k < ∞

}
(64)

Recall that for each i,

1√
n

n

∑
i=1

Gi =

(
1√
n

n

∑
i=1

g1(ξi),
1√
n

n

∑
i=1

g2(ξi), · · ·
)
∈ H. (65)

Then we have

nVn =
1
n ∑

1≤i,j≤n
u
(
ξi, ξ j

)
=

1
n ∑

1≤i,j≤n

∞

∑
k=1

λkgk(ξi)gk
(
ξ j
)

(66)

=
1
n

∞

∑
k=1

λk

{
∑

1≤i,j≤n
gk(ξi)gk

(
ξ j
)}

=
1
n

∞

∑
k=1

λk

{
n

∑
i=1

gk(ξi)

}2

=

∥∥∥∥∥ 1√
n

n

∑
i=1

Gi

∥∥∥∥∥.

Thus, we can apply Theorem 2 to show Theorem 5.
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Theorem 6. Suppose that the i.i.d. random variables {ξi, i ≥ 1} obey a continuous distribution.
Let v(x, y) be a symmetric function defined by

v(x, y) =
{

u(x, y), x 6= y
0, x = y

. (67)

Under the same assumptions in Theorem 5, the equation (59) holds for Un with the degenerate kernel
v(x, y).

Proof. Since the i.i.d. random variables {ξi, i ≥ 1} obey a continuous distribution, we
have

P
{

ξi 6= ξ j
}
= 1 (i 6= j). (68)

Therefore, from (67) and (68)

nUn =
2
n ∑

1≤i<j≤n
u
(
ξi, ξ j

)
=

1
n ∑

1≤i,j≤n
v
(
ξi, ξ j

)
a.s. (69)

Since the right hand side of (69) is the V-statistics with the degenerate kernel v(x, y)
satisfying all assumptions of Theorem 5, Theorem 6 holds from Theorem 5.

Remark 2. From (10), E[G1] = 0 and σ2 = E
[
‖G1‖2

]
= 1 in Theorem 5.

7. Cramer–Von Mises Statistics

There are some examples of U-statistics or V-statistics for which the above theorems
are applicable under the assumption of nuclearity of the kernel functions where the above
theorems are applicable.

Example 3. (Cramér-von Mises Statistics, Sato (1992) [8])
Assume that i.i.d. random variables

{
ξ j, j ≥ 1

}
obey the uniform distribution U(0, 1), i.e., µ is the

Lebesgue on [0, 1]. Define a kernel function u(x, y) by

u(x, y) =
∫ 1

0

(
I[x,1](t)− t

)(
I[y,1](t)− t

)
t(1− t)

dt, x, y ∈ [0, 1] (70)

satisfies the hypothesis of Theorem 5 or Theorem 6. On the other hand, we have

∫ 1

0
u(x, x)dx =

∫ 1

0
dx
∫ 1

0

(
I[x,1](t)− t

)2

t(1− t)
dt (71)

=
∫ 1

0

dt
t(1− t)

∫ 1

0

(
I[x,1](t)− t

)2
dx = 1 < ∞.

Therefore, the integral operator Tu defined by

Tu f (y) =
∫ 1

0
u(x, y) f (y)dx (72)

is nuclear from Theorem 3. Therefore, since the degenerate kernel u(x, y) defined by (70) satisfies
all assumptions of Theorem 5, Theorem 5 holds for the Cramér-von Mises Statistics. Furthermore,
Theorem 6 also holds for U-statistics with the degenerate kernel v(x, y) defined by (67) and (70).

8. Conclusions

Bentkus—Götze (1999) [4] and Zubayraev (2011) [5] obtained the remainder O(n−1)
in asymptotic expansions for U-statistics or V-statistics with degenerate kernels. From
Theorems 5 and 6, if we assume E

[
‖G1‖p] ≤ ∞, p ≥ 4 and some conditions, then we
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obtain the remainder O
(

n1−p/2
)

. Applying Theorem 5, we obtain asymptotic expansions
for the Cramér–von Mises statistics of the uniform distribution U(0, 1) with the remainder
O
(

n1−p/2
)

for any p ≥ 4.
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