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Abstract: In this article, we study the existence and uniqueness of multiple positive periodic solutions
for a Gilpin–Ayala predator-prey model under consideration by applying asymptotically periodic
functions. The result of this paper is completely new. By using Comparison Theorem and some
technical analysis, we showed that the classical nonlinear fractional model is bounded. The Banach
contraction mapping principle was used to prove that the model has a unique positive asymptotical
periodic solution. We provide an example and numerical simulation to inspect the correctness and
availability of our essential outcomes.
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1. Introduction of the Model

In 1973, Ayala et al. conducted tests on natural product fly flow to test the legitimacy
of ten models of competition [1]. The Gilpin–Ayala biological system is one of the fore-
most vital organic numerical models. One of the model’s best ways of bookkeeping for
exploration is given by [1]

U′(s) = ζ1(s)U(s)

[
1−

(
U(s)

ω1(s)

)ν1

− c1(s)
V(s)

ω2(s)

]
,

V′(s) = ζ2(s)U(s)

[
1−

(
V(s)

ω2(s)

)ν2

− c2(s)
U(s)

ω1(s)

]
.

(1)

As we all know, many competitive systems, including ecosystems, economic systems and
some social systems, can be described by the Lotka–Volterra model. When ν1 = ν2 = 1,
system (1) changes into the Lotka–Volterra competitive model. In the past decade, many
generalizations and modifications to system (1) have been proposed and studied [2–10].

More so, many authors have taken into account several important factors in the Lotka–
Volterra predator-prey model in order to get a more realistic model. In [11], the authors
introduced a complex model presented by
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
U′i (s) = Ui(s)

[
bi(s)−

n

∑
j=1

aij(s)U
αij
i (s)

]
, i = 1, . . . , n

U′i (s) = Ui(s)

[
bi(s) +

n

∑
j=1

aij(s)U
αij
i (s)−

n

∑
j=m+1

aij(s)U
αij
i (s)

]
, i = m + 1, . . . , n

(2)

where Ui is the size of the i-th prey population, and for i = m + 1, . . . , n, Ui is the size of
the i-th predator population and αij > 0, i, j = 1, . . . , n, are the parameters that modify
the classical Lotka–Volterra model and they represent a nonlinear measure of interspecific
interference. Liao et al. investigated the two-species Gilpin–Ayala competition predator-
prey system using the harvesting terms as follows:

U′(s) = ζ1(s)U(s)

[
1−

(
U(s)

ω1(s)

)ν1

− c1(s)
V(s)

ω2(s)

]
− ζ̀1,

V′(s) = ζ2(s)U(s)

[
1−

(
V(s)

ω2(s)

)ν2

− c2(s)
U(s)

ω1(s)

]
− ζ̀2,

(3)

where ζi(s) > 0, ωi(s) > 0, ζ̀i > 0, the functions ci ∈ C([0, ∞), (0, ∞)) are λ-periodic
functions, νi are positive constants for i = 1, 2 and U, and V represents the number of
individuals in the prey and predator population [2]. On the other hand, in model (3), the
interaction between populations is assumed to be instantaneous, whereas in reality, this
interaction always has a delay time due, for example, to the time of maturation or the
gestation time of the population, for this, several authors have observed that it is more
natural to assume that the growth rate also depends on the past, which can result from
a variety of causes, such as the hatching period, the slowness of food replacement, or
the profit of the stock of food, which takes us to a functional differential equation with
delay or distributed delay [12–15]. Amdouni et al. considered the following Gilpin–Ayala
competitive system with delays, distributed delay, feedback control, and the effect of a
toxic substance, which is given by the following model

U′i (s) = U(s)

[
ζi(s)−

m

∑
j=1

aij(s)ζ
νij
j (s)−

m

∑
j=1

bij(s)ζ
σij
j (s− τij(s))− hi(s)di(s)

−
m

∑
j=1
j 6=i

cij(s)ζ
νii
j (s)ζ

νij
j (s)−

m

∑
j=1

∫ 0

−qij

gij(s, η)ζωii
j (s+ η)dη

]
,

d′i(s) = li(s)− fi(s)di(s) + ki(s)ζ
νii
i (s),

(4)

where νij, σij, and ωij are positive constants, gij(s, η) are nonnegative, pseudo almost
periodic functions with respect to s uniformly in η ∈ [−qij, 0], and di, ζi, hi, li, ki, fi
are all nonnegative pseudo almost periodic functions defined in R. More so, in recent
years, many authors have used fractional theory for modeling many phenomena, such
as physics, biology, ecology, etc. [16–20]. The authors of [20] reviewed the basic ideas of
fractional differential equations and their applications to nonlinear biochemical reaction
models and applied the idea to a nonlinear model of enzyme inhibitor reactions with a
suggested method that provides a good step forward in understanding the model dynamics
in complex enzymatic reactions. Nikan et al., in [21], focused on an efficient meshless
numerical method for seeking accurate solutions to the nonlinear time-fractional fourth-
order diffusion problem:

∂U(s, τ)

∂τ
− ∂β∆U(s, τ)

∂τβ
− δU(s, τ) + ∆2U(s, τ) = g(s, τ) + G(U), (5)
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for s ∈ Ω ⊂ R2 and 0 < τ ≤ >, under initial and boundary conditions U(s, 0) = }(s)
for s ∈ Ω and U(s, τ) = ∆U(s, τ) = 0, s ∈ ∂Ω for τ > 0, where 0 < β < 1, s(t1, t2)
stands for the space variable, ∂Ω is the closed curve bounding the region, Ω = Ω ∪ ∂Ω
represents the space domain, g(s, τ) is the forcing term with sufficient smoothness, and }(s)
is a given continuous function. The symbols ∆ and ∆2 denote the Laplacian and double
Laplacian operators corresponding to the space directions, respectively. An improved
asymptotic expansion approximation was constructed, and the asymptotic expansion was
approximated numerically using the Runge–Kutta methods and hybrid finite difference
methods in [22].

In addition, the fractional calculus yields an excellent description of the interactions
and changes in ecosystems. Furthermore, the fractional derivative is not a neighborhood of
the initial state but of the past state. For this reason, this theory allows us to describe a real
object more than any other theory. Motivated by the above, in this paper, we consider the
fractional prey-predator Gilpin–Ayala model given by

CDγ
s U(s) = U(s)

[
ζ1(s)− c11(s)Uα1(s)− c12(s)

∫ 0

−q
ζ̀1(η)V(s+ η)dη −ϕ1(s)

]
,

CDγ
s V(s) = V(s)

[
ζ2(s)− c22(s)Vα2(s) + c12(s)

∫ 0

−q
ζ̀2(η)U(s+ η)dη −ϕ2(s)

]
,

(6)

for s ≥ 0. The initial conditions associated with system (6) are of the form:

U(s) = φ1(s), V(s) = φ2(s), s ∈ Λ =: [−q, 0], (7)

where CDγ
s denotes the Caputo fractional derivative of order 0 < γ < 1, φi ∈ Cb(Λ);

that is,
Cb(Λ) =

{
φ ∈ C(Λ) : φ is bounded

}
,

φi(s) ≥ 0 and αi > 0 for s ∈ Λ, φi(0) > 0, sups∈Λ φi(s) < ∞, for i = 1, 2, and ζ1, ζ2,
c11, c22, c12, ϕ1, ϕ2 are all nonnegative S-asymptotically λ-periodic functions with the
declaration in Table 1.

Table 1. The declaration of the symbols in system (6).

Symbols Declaration

s Time variable
U(s) Prey population density
V(s) Predator population density
ζ1(s), ζ2(s) Natural growth rates
c11(s), c22(s) Intraspecific competition rates
c12(s) Predation rates
ζ̀1(s), ζ̀2(s) Kernel functions with innite distributed delay
ϕ1(s), ϕ2(s) Manual control functions

The solution of System (6) with the initial values is equivalent to the following Volterra
integral equation

U(s) = φ1(0) +
∫ s

0

(s− η)γ−1

Γ(γ)
F1(η, U(η), V(η))dη,

V(s) = φ2(0) +
∫ s

0

(s− η)γ−1

Γ(γ)
F2(η, U(η), V(η))dη,
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where

F1(s, U(s), V(s)) = U(s)

[
ζ1(s)− c11(s)Uα1(s)

−c12(s)
∫ 0

−q
ζ̀1(η)V(s+ η)dη −ϕ1(s)

]
,

F2(s, U(s), V(s)) = V(s)

[
ζ2(s)− c22(s)Vα2(s)

+c12(s)
∫ 0

−q
ζ̀2(η)U(s+ η)dη −ϕ2(s)

]
. (8)

Our model is more complicated and accurate since the theory of fractional calculus has
received extensive attention. The importance of fractional calculus in our paper is to
describe the interactions and changes in ecosystems.

The rest of the paper can be sketched out as: In Section 2, we mainly introduce the
basic concepts, important and necessary propositions results of fractional calculus, and
S-asymptotically λ-periodic with related assumptions. In Section 3.1, the positivity and
boundedness solution of system (6) is obtained. Model (6) is studied with S-asymptotically
λ-periodic functions, coefficient, distributed delay, and control terms, which extends the
characterization of the ecological model. In addition, by Banach’s fixed point theorem, the
existence of an S-asymptotically λ-periodic fractional Gilpin–Ayala predator-prey model
with distributed delay and a control term is obtained in Section 3.2. Further, we shall show
that the unique solution is globally asymptotically stable in Section 3.3. Numerical examples
and simulations are provided in Section 3.4. Finally, Section 4 provides a conclusion.

2. Preliminaries

We consider the space of all continuous and bounded functions φ : [s◦, ∞) → Rn,
which is denoted by Cb([s◦, ∞),Rn) with the norm uniform as ‖φ‖ = sups≥s◦ |φ(s)|. The
space of r-order continuous and differentiable functions are presented by Cr([s◦, ∞),Rn).
The fractional integral of order γ > 0 of a given function φ is defined by [23]

Iγs◦φ(s) =
∫ s

s◦

(s− η)γ−1

Γ(γ)
φ(η)dη, s ≥ s◦.

Using the definition, the fractional Riemann–Liouville derivative of order 0 < γ < 1 of φ is
defined as [23]

RLDγ
s◦φ(s) = D1

(
I1−γ
s◦ φ

)
(s) =

d
ds

∫ s

s◦

(s− η)−γ

Γ(1− γ) φ(η)dη.

The Caputo derivative with order γ > 0 of function φ(s) ∈ Cm+1([s◦, ∞)) is defined as [23]

CDγ
s◦φ(s) =

∫ s

s◦

(s− η)m−α−1

Γ(m− γ) φ(m)(η)dη, s ≥ s◦,

where m − 1 < γ < m, m is a positive integer number, and Γ(·) is the Euler’s gamma
function. The one-parameter and two-parameter Mittag–Leffler functions are defined as

Eγ(z) =
+∞

∑
k=0

zk

Γ(γk + 1)
, Eγ,γ́(z) =

+∞

∑
k=0

zk

Γ(γ k + γ́)
,

where the real part Re(γ) of complex number γ is Re(γ) > 0, z and γ́ are also both complex
numbers.
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Definition 1 ([12]). A function φ ∈ Cb(R+) is called S-asymptotically λ-periodic if there exists
λ > 0 such that

lim
s→∞

∣∣∣φ(s+ λ)−φ(s)∣∣∣ = 0.

In this case, we say that λ is an asymptotic period of φ.

We denote by SAPλ(R) the space of all S-asymptotically λ-periodic functions endowed
with the following norm

‖φ‖λ = sup
s≥0

e−s|φ(s)|, ∀φ ∈ SAPλ(R),

where SAPλ(R) is a Banach space [6].

Lemma 1 ([5]). Let φ(s) ∈ C1([0, ∞)) and 0 < γ ≤ 1 then the following inequality holds true
almost everywhere

CDγ
s |φ(s)| ≤ sgn(φ(s))CDγ

s φ(s).

Corollary 1 ([24]). Let φ ∈ C([0, r]), CDγ
s φ(s) ∈ C([0, r]) and 0 < γ < 1. If

CDγ
s φ(s) ≥ 0

(
CDγ

s φ(s) ≤ 0
)

, ∀ s ∈ (0, r),

then φ(s) is a non-decreasing function (non-increasing function).

We consider the following assumptions

(A1) The kernel satisfies

ζ̀i(s) ≤ eµis, ∀ s ∈ Λ, µi > 0, i = 1, 2; (9)

(A2)

ζ1

[
c11Mα1 + c12M

1− e−qµ1

µ1
+ϕ1

]−1

< 1; (10)

(A3)
ζ2 + c12Mqζ̀2
c22Mα2 +ϕ2

< 1; (11)

(A4) ∣∣∣∣ζ1 − c11(1 + α1)Mα1 −ϕ1 − c12M
[

1− e−qµ1

µ1
+

1− e−(µ1−1)q

µ1 − 1

]∣∣∣∣ < 1,

∣∣∣∣ζ2 − c22(1 + α2)Mα2 −ϕ2 + c12M
[

1− e−qµ2

µ2
+

1− e−(µ2−1)q

µ2 − 1

]∣∣∣∣ < 1,

(12)

where ζ1 = infs∈Λ ζ1, c11 = sups∈Λ c11, c12 = sups∈Λ c12, ζ2 = infs∈Λ ζ2, c22 = sups∈Λ c22,
ζ1 = infs∈Λ ζ1, c11 = infs∈Λ c11, c22 = infs∈Λ c22, c12 = infs∈Λ c12, ϕi = sups∈Λϕi, ϕi =
infs∈Λϕi for i = 1, 2 and M = max{M1, M2},

M1 >

(
ζ1
c11

)1/α1

, M2 >

(
ζ2
c22

+ M1
c12(1− e−qµ2)

µ2c22

)1/α2

. (13)

3. Main Results
3.1. Positivity and Boundedness of the Solution

First, we state the following lemma.

Lemma 2. System (6) with the initial conditions of (7) has a positive solution.
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Proof. Let X (s) = (U(s), V(s)) be a solution of system (6). First, we show that U(s) ≥
0, ∀ s ≥ 0. Suppose that it is false, so we can find s1 > 0 such that{

U(s) > 0, s ∈ [0, s1),
U(s) < 0, s > s1.

Under the first equation of system (6), we get

CDγ
s U(s)

∣∣∣
s=s1

= 0.

By Corollary 1, we obtain U(s+1 ) = 0, which contradicts the fact that U(s+1 ) < 0. Therefore,
U(s) ≥ 0 for all s ≥ 0. Secondly, by the same way, we can obtain that V(s) ≥ 0 for all s ≥ 0.
This completes the proof.

Lemma 3. Under (A1)-(A3) there exists T̆ > 0 such that

m < V(s), U(s) < M, ∀ s ≥ T̆.

Proof. Let X (s) = (U(s), V(s)) be a solution of system (6). From the first equation of
system (6) we have

CDγ
s U(s) ≤ U(s)(ζ1(s)− c11(s)Uα1(s)).

Suppose that there exists T̆1 > 0 such that for s > T̆1,

U(s) < M1, (14)

or
U(s) > M1. (15)

If Inequality (14) holds, then U(s) < M1 < M for s > T̆1 and if inequality (15) holds, then
for s ≥ T̆1, we get

CDγ
s U(s) ≤ U(s)(ζ1(s)− c11(s)Uα1(s)) ≤ −c11U(s)

(
Uα1(s)− ζ1

c11

)

≤ −c11U(s)

(
Mα1

1 −
ζ1
c11

)
.

Therefore, the comparison theorem (see [3]) gives

U(s) ≤ U(0) Eγ

(
−c11

(
Mα1

1 −
ζ1
c11

)
sγ

)
.

For s→ ∞, we obtain U(s)→ 0, which contradicts the fact that U(s) > M1. Now, we turn
our attention to V(s). Suppose that there exists T̆2 > T̆1 such that for s > T̆2, we have

V(s) < M2, (16)

or
V(s) > M2. (17)

Then, V(s) < M2 for s > T̆2 > T̆1 whenever inequality (16) holds, and then V(s) > M2 for
s ≥ T̆2 whenever inequality (17) holds. By the second equation of system (6) we have



Mathematics 2022, 10, 3655 7 of 18

CDγ
s V(s) ≤ V(s)

(
ζ2(s)− c22(s)Vα2(s) + c12(s)

∫ 0

−q
ζ̀2(η)U(s+ η)dη

)
≤ −c22V(s)

(
Vα2 − ζ2

c22
− c12

c22

∫ 0

−q
eµ2η U(s+ η)dη

)

≤ −c22V(s)

(
Mα2

2 −
ζ2
c22
−M1

c12(1− e−qµ2)

µ2c22

)
.

The comparison theorem leads

V(s) ≤ V(0) Eγ

(
−c22

(
Mα2

2 −
ζ1
c22
−M1

c12(1− e−qµ2)

µ2c22

)
sγ

)
.

Similarly, we obtain that V(s)→ 0 as s→ ∞, which contradicts inequality (17). Let

M = max
{

M1, M2

}
,

then 0 < U(s), V(s) ≤ M for s ≥ T̆2. Next, we have to show that U(s) ≥ m1. The first
equation of system (6) gives

CDγ
s U(s) ≥ U(s)

(
ζ1(s)−

(
c11(s)Mα1 + c12(s)M

∫ 0

−q
ζ̀1(η)dη +ϕ1(s)

))
.

Let

CDγ
s H(s) = H(s)

(
ζ1 −

(
c11Mα1 + c12M

1− e−qµ1

µ1
+ϕ1

))
, s ≥ 0,

H(s) = ϕ(s), s ∈ Λ.

By the fractional comparison principle (see [4]), we get U(s) ≥ H(s). Now let us prove that
H(s) > m1. Suppose that there exists T̆3 > T̆2 such that for s > T̆3, we have

H(s) < m1, (18)

or
H(s) > m1. (19)

If inequality (19) holds, then H(s) > m2 for s ≥ T̆3. If (18) holds, then for s ≥ T̆3,

CDγ
s H(s) = H(s)

(
c11Mα1 + c12M

1− e−qµ1

µ1
+ϕ1

) ζ1

c11Mβ1 + c12M 1−e−qµ1
µ1

+ϕ1
− 1

.

Therefore,

H(s) = ϕ(0) E

((
c11Mα1 + c12M

1− e−qµ1

µ1
+ϕ1

)

×

 ζ1

c11Mα1 + c12M 1−e−qµ1
µ1

+ϕ1
− 1

sγ

)
, s ≥ 0.

By (A2), H(s) → ∞ as s → ∞, which contradicts (18). Consequently, there exists T̆4 > 0
such that for s ≥ T̆4,

0 < m1 < U(s) < M.
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Now, we have to prove that V(s) > m2 for s ≥ T̆4. Suppose that there exists T̆5 > T̆4 such
that for s > T̆5, we have

V(s) < m2, (20)

or
V(s) > m2. (21)

If (21) holds, then V(s) > m2 for s ≥ T̆5. If (20) holds, then for s ≥ T̆5,

CDγ
s V(s) ≥ V(s)(c22Mα2 +ϕ2)

(
ζ2 + c12Mqζ̀2(η)

c22Mα2 +ϕ2
− 1

)
.

Therefore,

V(s) ≥ ϕ2(0) E

(
[c22Mα2 +ϕ2]

(
ζ2 + c12Mq.2(η)

c22Mα2 +ϕ2
− 1

)
sγ

)
,

for s ≥ 0. For s → ∞, V(s) → ∞, which contradicts the fact that V(s) < m2. Therefore,
there exists T̆ > T̆5 such that m < V(s), U(s) < M where m = min{m1, m2}.

3.2. Existence and Uniqueness of the Solution

Lemma 4. Let H ∈ Cb([0, ∞),R), 0 < γ < 1. Then

s→ J(s) :=
∫ s

0

(s− η)γ−1

Γ(γ)
H(η)dη,

is bounded.

Proof. To prove the boundedness of J, we have to prove the boundedness of the intervals

[0, ρ], [ρ, 2ρ], . . . , [nρ, (n + 1)ρ], n ∈ N.

Let us prove the boundedness of J in [0, ρ]. For s ∈ [0, ρ], we have

|J(s)| =
∫ s

0

(s− η)γ−1

Γ(γ)
|H(η)|dη ≤ ργ

‖H‖
Γ(γ)

.

Therefore,

sup
s∈[0,ρ]

|J(s)| ≤ ργ
‖H‖
Γ(γ)

.

Hence, J is bounded on [0, ρ]. Similarly, using the same method in [ρ, 2ρ], . . ., [nρ, (n + 1)ρ],
n ∈ N, we prove that J is bounded.

Theorem 1. Under (A1)-(A4). System (6) has a unique asymptotically λ-periodic solution.

Proof. Let Ξ : SAPλ(R)→ Cb([0, ∞),R) be the operator defined by

(ΞX)(s) =

(
(ΞU)(s)

(ΞV)(s)

)
=


φ1(0) +

∫ s

0

(s− η)γ−1

Γ(γ)
F1(η, U(η), V(η))dη

φ2(0) +
∫ s

0

(s− η)γ−1

Γ(γ)
F2(η, U(η), V(η))dη

,

where F1 and F2 are defined by (8). Next, we prove the above theorem in two steps.
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Step 1: Now, we show that (ΞX )(.) ∈ SAPλ(R).
Let X = (U, V) ∈ SAPλ(R),(

ΞX
)
(s+ λ)−

(
ΞX

)
(s)

=

(
(ΞU)(s+ λ)− (ΞU)(s)

(ΞV)(s+ λ)− (ΞV)(s)

)

=


∫ s

0

(s− η)γ−1

Γ(γ)
F1(η + λ, U(η + λ), V(η + λ))− F1(η, U(η), V(η))dη

∫ s

0

(s− s)γ−1

Γ(γ)
F2(η + λ, U(η + λ), V(η + λ))− F2(η, U(η), V(η))dη

.

On the other hand,

F1
(
η + λ, U(η + λ), V(η + λ)

)
− F1(η, U(η), V(η))

= U(η + λ)

[
ζ1(η + λ)− c11(η + λ)Uα1(η + λ)

−c12(η + λ)
∫ 0

−q
ζ̀1(u)V(η + λ+ u)du−ϕ1(η + λ)

]
−U(η)

[
ζ1(η)− c11(η)Uα1(η)− c12(η)

∫ 0

−q
ζ̀1(u)V(η + u)du−ϕ1(η)

]
= ζ1(η + λ)[U(η + λ)−U(η)] + U(η)[ζ1(η + λ)− ζ1(η)]

+U(η)[ϕ1(η)−ϕ1(η + λ)] +ϕ1(η + λ)[U(η)−U(η + λ)]

+U1+α1(η + λ)[c11(η + λ)− c11(η)] + c11(η)
[
U1+α1(η + λ)−U1+α1(η)

]
+
∫ 0

−q
ζ̀1(u)

[
V(η + u)c12(η)[U(η)−U(η + λ)]

+U(η + λ)c12(η + λ)
[
V(η + u)−V(η + λ+ u)

]
+V(η + u)U(η + λ)

[
c12(η)− c12(η + λ)

]]
du,

and

F2(η + λ, U(η + λ), V(η + λ))− F2(η, U(η), V(η))

= V(η + λ)

[
ζ2(η + λ)− c22(η + λ)Vα2(η + λ)

+c12(η + λ)
∫ 0

−q
ζ̀2(u)U(η + u)du− ϕ2(η)

]
−V(η)

[
ζ2(η)− c22(η)Vα2(η) + c12(η)

∫ 0

−q
ζ̀2(u)U(η + u)du−ϕ2(η)

]
= ζ̀2(η + λ)[V(η + λ)−V(η)] + V(η)[ζ̀2(η + λ)− ζ̀2(η)]

+V(η)[ϕ2(η)−ϕ2(η + λ)] +ϕ2(η + λ)[V(η)−V(η + λ)]

+V1+α2(η + λ)[c22(η + λ)− c22(η)]

+c22(η)[V1+α2(η + λ)−V1+α2(η)]

+
∫ 0

−q
ζ̀2(u)

[
U(η + λ+ u)c12(η + λ)[−V(η) + V(η + λ)]

+V(η)c12(η)[−U(η + u) + U(η + λ+ u)]

+U(η + λ+ u)V(η)[−c12(η) + c12(η + λ)]
]

du.
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Since, Ψ(s) = |ps1 − ps2 | are monotonically increasing functions, p1, p2 > 0 and s ≥ 1. Then

|U1+α1(η + λ)−U1+α1(η)| ≤ (1 + α1)|U(η + λ)−U(η)|Mα1

|V1+α2(η + λ)−V1+α2(s)| ≤ (1 + α2)|V(η + λ)−V(η)|Mα2 .

Since ζ1, ζ2, ϕ1, ϕ2, c11, c12, c22, U, V are asymptotically λ-periodic functions, then for each
ε > 0, there exists sε > 0 such that for s ≥ sε we obtain

|ζ1(s+ λ)− ζ1(s)| < ε, |ζ2(s+ λ)− ζ2(s)| < ε,

|ϕ1(s+ λ)−ϕ1(s)| < ε, |ϕ2(s+ λ)−ϕ2(s)| < ε,

|U(s+ λ)−U(s)| < ε, |V(s+ λ)−V(s)| < ε,

and |c11(s+ λ)− c11(s)| < ε, |c22(s+ λ)− c22(s)| < ε, |c12(s+ λ)− c12(s)| < ε, which leads

∫ s

0

(s− η)γ−1

Γ(γ)

∣∣∣F1(η + λ, U(η + λ), V(η + λ))− F1(η, U(η), V(η))
∣∣∣dη

≤
∫ s

0

(s− η)γ−1

Γ(γ)

(
|ζ1(η + λ)| |U(η + λ)−U(η)|+ |U(η)| |ζ1(η + λ)− ζ1(η)|

+|U(η)| |ϕ(η)−ϕ1(η + λ) +ϕ(η + λ)[U(η)−U(η + λ)]

+|U1+α1(η + λ)| |c11(η + λ)− c11(η)|+ |c11(η)| |U1+α1(η + λ)−U1+α1(η)|

+
∫ 0

−q
ζ̀1(u)

[
|V(η + u)| |c12(η)| |U(η)−U(η + λ)|

+|U(η + λ)| |c12(η + λ)| |V(η + u)−V(η + λ+ u)|

+|V(η + u)| |U(η + λ)| |c12(η)− c12(η + λ)|
]

du
)

dη

≤
∫ s

0

(s− η)γ−1

Γ(γ)

(
|ζ1(η + λ)|ε + 2ε|U(η)|+ εϕ(η + λ)

+|U1+α1(η + λ)|ε + |c11(η)|(1 + α1)Mα1 ε +
∫ 0

−q
ζ̀1(u)

[
ε|V(η + u)||c12(η)|

+|U(η + λ)| |c12(η + λ)|ε + ε|V(η + u)| |U(η + λ)|
]

du
)

dη

≤ ε
∫ s

0

(s− η)γ−1

Γ(γ)

(
|ζ1(η + λ)|+ 2|U(η)|+ |ϕ(η + λ)|

+|U1+α1(η + λ)|+ |c11(η)|(1 + α1)Mα1

+
1− e−qµ1

µ1

[
‖V‖ |c12(η)|+ ‖U‖ |c12(η + λ)|+ M|U(η + λ)|

])
dη.

Similarly,

∫ s

0

(s− η)γ−1

Γ(γ)

∣∣∣F2(η + λ, U(η + λ), V(η + λ))− F2(η, U(η), V(η))
∣∣∣dη

≤
∫ s

0

(s− η)γ−1

Γ(γ)

(
|ζ2(η + λ)| |V(η + λ)−V(η)|+ |V(η)| |ζ2(η + λ)− ζ2(η)|

+|V(η)| |ϕ(η)−ϕ2(η + λ)|+ |ϕ2(η + λ)| |V(η)−V(η + λ)|
+|V1+α2(η + λ)| |c22(η + λ)− c22(η)|+ |c22(η)| |V1+α2(η + λ)−V1+α2(η)|

+
∫ 0

−q
ζ̀2(u)

[
|U(η + λ+ u)| |c12(η + λ)| | −V(η) + V(η + λ)|

+|V(η)| |c12(η)| | −U(η + u) + U(η + λ+ u)|

+|U(η + λ+ u)| |V(η)| | − c12(η) + c12(η + λ)|
]

du
)

dη
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≤
∫ s

0

(s− η)γ−1

Γ(γ)

(
|ζ2(η + λ)|ε + |V(η)|ε + |V(η)|ε + |ϕ2(η + λ)|ε + |V1+α2(η + λ)|ε

+c22(η)(1 + α2)Mα2 ε +
∫ 0

−q
euµ2

[
|U(η + λ+ u)| |c12(η + λ)|ε + |V(η)| |c12(η)|ε

+|U(η + λ+ u)| |V(η)|ε
]

du
)

dη

≤ ε
∫ s

0

(s− η)γ−1

Γ(α)

[
|ζ2(η + λ)|+ 2|V(η)|+ |ϕ2(η + λ)|+ |V1+α2(η + λ)|

+c22(η)(1 + α2)Mα2 +
1− e−qµ2

µ2

[
‖U‖ |c12(η + λ)|+ ‖V‖ |c12(η)|+ ‖U‖ |V(η)|

]]
dη.

By Lemma 4, there exists ς > 0, such that

sup
s≥0

∫ s

0

(s− η)γ−1

Γ(γ)
|ζi(η + λ)|dη < ς,

sup
s≥0

∫ s

0

(s− η)γ−1

Γ(γ)
|ϕi(η + λ)|dη < ς, i = 1, 2

sup
s≥0

∫ s

0

(s− η)γ−1

Γ(γ)
|c12(η + λ)|dη < ς,

sup
s≥0

∫ s

0

(s− η)γ−1

Γ(γ)
|U(η + λ)|dη < ς,

sup
s≥0

∫ s

0

(s− η)γ−1

Γ(γ)
|V(η + λ)|dη < ς,

sup
s≥0

∫ s

0

(s− η)γ−1

Γ(γ)
|U(η)|dη < ς,

sup
s≥0

∫ s

0

(s− η)γ−1

Γ(γ)
|V(η)|dη < ς,

sup
s≥0

∫ s

0

(s− η)γ−1

Γ(γ)
|cii(η + λ)|dη < ς, i = 1, 2.

Therefore, we have∫ s

0

(s− η)γ−1

Γ(γ)

∣∣∣F1(η + λ, U(η + λ), V(η + λ))− F1(η, U(η), V(η))|dη

≤ ες

(
5 + (1 + α1)Mα1 + 3M

1− e−qµ1

µ1

)
and ∫ s

0

(s− η)γ−1

Γ(γ)
|F2(η + λ, U(η + λ), V(η + λ))− F2(η, U(η), V(η))|dη

≤ ες

(
5 + (1 + α2)Mα2 + 3M

1− e−qµ2

µ2

)
.
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From the above estimates, we obtain

|(ΞU)(s+ λ)− (ΞU)(s)| ≤ ες

(
5 + (1 + α1)Mα1 + 3M

1− e−qµ1

µ1

)
|(ΞV)(s+ λ)− (ΞV)(s)| ≤ ες

(
5 + (1 + α2)Mα2 + 3M

1− e−qµ2

µ2

)
.

For s ≥ sε, we have

lim
s→∞
|(ΞU)(s+ λ)− (ΞU)(s)| = 0 and lim

s→∞
|(ΞV)(s+ λ)− (ΞV)(s)| = 0.

In addition,

|(ΞU)(s)| ≤ |φ1(0)|+
∫ s

0

(s− η)γ−1

Γ(γ)
|U(η)| |ζ1(η)− c11(η)Uα1(η)

−c12(η)
∫ 0

−q
ζ̀1(u)V(η + u)du−ϕ1(η)|dη

≤ |ϕ1(0)|+
∫ t

0

(t− s)α−1

Γ(γ)
|U(η)| |ζ1(η)|dη

≤ |ϕ1(0)|+
‖U‖
Γ(γ)

∫ s

0
(s− η)γ−1|ζ1(η)|dη < ∞,

which results that (ΞU)(SAPλ(R)) ⊂ SAPλ(R).
Step 2: Let X = (U, V), Z = (A, B) ∈ SAPλ(R), ‖X ‖λ = max{|U|λ, |V|λ},

e−s
[
(ΞX )(s)− (ΞZ)(s)

]
=

(
e−s[(ΞU)(s)− (ΞA)(s)]

e−s[(ΞV)(s)− (ΞB)(s)]

)

=


e−s

∫ s

0

(s− η)γ−1

Γ(γ)
[F1(η, U(η), V(η))− F1(η, A(η), B(η))]dη

e−s
∫ s

0

(s− η)γ−1

Γ(γ)
[F2(η, U(η), V(η))− F2(η, A(η), B(η))]dη,


and

e−s
(
F1(η, U(η), V(η))− F1(η, A(η), B(η))

)
= e−s

(
ζ1(η)[U(η)− A(η)]−ϕ1(η)[U(η)− A(η)]− c11(η)[U1+α1(η)− A1+α1(η)]

−
∫ 0

−q
ζ̀1(u)(c12(η)[(U(η)− A(η))V(η + u) + A(η)[V(η + u)− B(η + u)]])du

)
= e−(s−η)

(
[ζ1(η)− c11(η)(1 + α1)Mα1 −ϕ1(η)

−c12(η)
∫ 0

−q
ζ̀1(u)V(η + u)]e−η [U(η)− A(η)]du

−
∫ 0

−q
ζ̀1(u)c12(η)A(η)e−(η+u)e−u[V(η + u)− B(η + u)]du

)
,
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which gives,

∫ s

0

(s− η)γ−1

Γ(γ)
e−s
∣∣∣F1(η, U(η), V(η))− F1(η, A(η), B(η))

∣∣∣dη

≤
∫ s

0

(s− η)γ−1

Γ(γ)
e−(s−η)

∣∣∣∣ζ1(η)−ϕ1(η)− c11(η)(1 + α1)Mα1

−c12(η)
∫ 0

−q
ζ̀1(u)V(η + u)−

∫ 0

−q
ζ̀1(u)c12(η)A(η)e−u

∣∣∣∣ ‖X − Z‖λ

≤ ‖X − Z‖λ
∫ s

0

(s− η)γ−1

Γ(γ)
e−(s−η)|ζ1 − c11(1 + α1)Mα1 −ϕ1

−c12M
[ ∫ 0

−q
euµ1 du +

∫ 0

−q
euµ1 e−u du

]∣∣∣∣dη

≤ ‖X − Z‖λ
1

Γ(γ)

∫ s

0
(s− η)γ−1e−(s−η)|ζ1 − c11(1 + α1)Mα1 −ϕ1

−c12M
[

1− e−qµ1

µ1
+

1− e−(µ1−1)q

µ1 − 1

]∣∣∣∣dη.

Consequently,

e−s|(ΞU)(s)− (ΞA)(s)| ≤ ‖X − Z‖λ
∫ s

0

(s− η)γ−1

Γ(γ)
e−(s−η)|ζ1 − c11(1 + α1)Mα1

−ϕ1 − c12M
[

1− e−qµ

µ
+

1− e−(µ−1)q

µ− 1

]∣∣∣∣dη

< ‖X − Z‖λ.

In addition,

e−s|(ΞV)(s)− (ΞB)(s)|

=

∣∣∣∣e−s ∫ s

0

(s− η)γ−1

Γ(γ)

[
F2(η, U(η), V(η))− F2(η, A(η), B(η))

]
dη

∣∣∣∣
≤

∫ s

0

(s− η)γ−1

Γ(γ)
e−(s−η)

∣∣∣∣ζ2(η)−ϕ2(η)− c22(η)(1 + α2)Mα2

+c12(η)
∫ 0

−q
ζ̀2(u) B(η + u) +

∫ 0

−q
ζ̀2(u)c12(η)U(η)e−u)

∣∣∣∣ ‖X − Z‖λ

≤ ‖X − Z‖λ
∫ s

0

(s− η)γ−1

Γ(γ)
e−(s−η)

∣∣∣∣ζ2 − c22(1 + α2)Mα2 −ϕ2

−c12M
[ ∫ 0

−q
e−uη2 du +

∫ 0

−q
e−uη2 e−u du

]∣∣∣∣dη

≤ ‖X − Z‖λ
∫ s

0

(s− η)γ−1

Γ(γ)
e−(s−η)

∣∣∣∣ζ2 − c22(1 + α2)Mα2 −ϕ2

+c12M
[

1− e−qµ2

µ2
+

1− e−(µ2−1)q

µ2 − 1

]∣∣∣∣dη

< ‖X − Z‖λ
∫ s

0

(s− η)γ−1

Γ(γ)
e−(s−η) dη

< ‖X − Z‖λ.

Therefore, there exists a unique asymptotically λ-periodic solution X ∗ = (U∗, V∗) of
system (6).
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3.3. Stability of the Solution

Theorem 2. Assume that (A1)-(A4) holds. Furthermore, suppose that the following assump-
tions holds

mins∈R

(
− ζ1(s) + c11(s)mα1(1 + α1)− c12

∫ 0
−q ζ̀2(η)dη +ϕ1(s)

)
> 0

mins∈R

(
− ζ2(s) + c22(s)mα2(1 + α2)− c12

∫ 0
−q ζ̀1(η)dη +ϕ2(s)

)
> 0.

(22)

Then, System (6) is globally asymptotic stable.

Proof. Let X ∗(s) = (U∗(s), V∗(s)) and Y(s) = (H(s), J(s)) be a solution for system (6)
with initial condition (U∗0 , V∗0 ), (H0, J0), respectively. Consider Laypunov’s function V(s) =
V1(s) + V2(s), with

V1(s) = |U∗(s)− H(s)|+ c12

∫ 0

−q
ζ̀1(η)

∫ s

s+η
|V∗(e)− J(e)|de dη

V2(s) = |V∗(s)− J(s)|+ c12

∫ 0

−q
ζ̀2(η)

∫ s

s+η
|U∗(e)− H(e)|de dη.

Under Lemma 1, the upper right derivative CDγ
s V1(s) and CDγ

s V2(s) along the solution of
system (6), gives

CDγ
s V1(s) ≤ [ζ1(s)−ϕ1(s)]|U∗(s)− H(s| − c11(s)|(U∗)1+α1(s)− H1+α1(s)|

+c12

∫ 0

−q
ζ̀1(η)|V∗(s)− J(s)|dη,

CDγ
s V2(s) ≤ [ζ2(s)−ϕ2(s)]|V∗(s)− J(s| − c22(s)|(V∗)1+α1(s)− J1+α1(s)|

+c12

∫ 0

−q
ζ̀2(η)|U∗(s)− H(s)|dη.

Hence

CDγ
s V(s) ≤

[
ζ1(s)−ϕ1(s) + c12

∫ 0

−q
ζ̀2(η)dη − c11(s)(1 + α1)mα1

]
|U∗(s)− H(s)|

+

[
ζ2(s)−ϕ2(s) + c12

∫ 0

−q
ζ̀1(η)dη − c22(s)(1 + α2)mα2

]
|V∗(s)− J(s)|

≤ −
[
ϕ1(s) + c11(s)(1 + α1)mα1 − ζ1(s)− c12

∫ 0

−q
ζ̀2(η)dη

]
|U∗(s)− H(s)|

−
[

ζ2(s) + c22(s)(1 + α2)mα2 − ζ2(s)− c12

∫ 0

−q
ζ̀1(η)dη

]
|V∗(s)− J(s)|.

By (22), let z be a positive constant such that

z ≥ min
s∈R

(
− ζ1(s) + c11(s)mα1(1 + α1)− c12

∫ 0

−q
ζ̀2(η)dη +ϕ1(s),

−ζ2(s) + c22(s)mα2(1 + α2)− c12

∫ 0

−q
ζ̀1(η)dη +ϕ2(s)

)
> 0.

Then
CDγ

s V(s) ≤ −zV(s). (23)

Consequently, CDγ
s V(s) < 0, for all s ≥ 0. Therefore, the asymptotically λ-periodic solution

of (6) is globally asymptotically stable.



Mathematics 2022, 10, 3655 15 of 18

3.4. An Example with Numerical Simulation

In this section, we present a few illustrative examples that guarantee our main results.
Furthermore, we provide nice algorithms that help us calculate all numerical results.

Example 1. In model (3), we consider the following Gilpin–Ayala predator-prey system with the
harvesting terms as:

CDγ
s U(s) = U(s)

[
3.25 + 2 sin(s)−

[
2.75 + 0.2 sin(s)

5

]
(s)U1/

√
5(s)

−
(

2 +
√

3 cos(s)
36

) ∫ 0

−q

1
η2 + 6

V(s+ η)dη −
(

1.8 + sin(s)
15

)]
,

CDγ
s V(s) = V(s)

[
4.25 + cos(s)−

[√
7 + cos(s)

6

]
V0.7(s)

+

(
2 +
√

3 cos(s)
36

) ∫ 0

−q
exp(2η)U(s+ η)dη −

(
1.5 + sin(s)

10

)]
,

(24)

for s ≥ 0 and for γ ∈ {0.13, 0.5, 0.96}, under initial conditions

U(s) =
1.2 + cos(s)

12
, V(s) =

2.43 + sin(s)
7

, s ∈ Λ = [−1, 0]. (25)

Without a doubt ζ1(s) = 3.25 + 2 sin(s), c11 = 1
5 (2.75 + 0.2 sin(s)), c12 = 1

36 (2 +
√

3 cos(s)),
ζ́1(s) = 1

s2+6 , ϕ1(s) = 1
15 (1.8 + sin(s)), ζ2(s) = 4.25 + cos(s), c22 = 1

6 (
√

7 + cos(s)),
ζ́2(s) = exp(2s), ϕ2(s) =

1
10 (1.5 + sin(s)), α1 = 1√

5
, α2 = 0.7, we have

ζ1 = inf
s∈Λ

ζ1 = inf
s∈Λ

(√
7 + 2 sin(s)

)
=
√

7− 2,

ζ1 = sup
s∈Λ

ζ1 = sup
s∈Λ

(√
7 + 2 sin(s)

)
=
√

7 + 2,

ζ2 = inf
s∈Λ

ζ2 = inf
s∈Λ

(1.1 + cos(s)) = 0.1,

ζ2 = sup
s∈Λ

ζ2 = sup
s∈Λ

(1.1 + cos(s)) = 2.1,

ϕ1 = sup
s∈Λ

ϕ1 = sup
s∈Λ

(
1

15
(4 + sin(s))

)
=

1
3

,

ϕ1 = inf
s∈Λ

ϕ1 = inf
s∈Λ

(
1
15

(4 + sin(s))
)
=

1
5

,

ϕ2 = sup
s∈Λ

ϕ2 = sup
s∈Λ

(
1

10
(3 + sin(s))

)
=

2
5

,

ϕ2 = inf
s∈Λ

ϕ2 = inf
s∈Λ

(
1
10

(3 + sin(s))
)
=

1
5

,

c11 = sup
s∈Λ

c11 = sup
s∈Λ

(
1
5
(8 + 5 sin(s))

)
=

13
5

,

c11 = inf
s∈Λ

c11 = inf
s∈Λ

(
1
5
(8 + 5 sin(s))

)
=

3
5

,

c12 = sup
s∈Λ

c12 = sup
s∈Λ

(
1
9
(1.9 +

√
3 cos(s))

)
=

1.9 +
√

3
9

,

c12 = inf
s∈Λ

c12 = inf
s∈Λ

(
1
9
(1.9 +

√
3 cos(s))

)
=

1.9−
√

3
9

,
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c22 = sup
s∈Λ

c22 = sup
s∈Λ

(
1
6
(
√

11 + 4 cos(s))
)
=

√
11 + 4

6
,

c22 = inf
s∈Λ

c22 = inf
s∈Λ

(
1
6
(
√

11 + 4 cos(s))
)
=

√
11− 4

6
.

Obviously, ζ1(s), ζ2(s), ζ́1(s), ζ́2(s), c11, c12, c22, ϕ1(s), ϕ2(s) are all asymptotically λ-periodic
functions with periodic λ = 2π and (A1) holds for all s ∈ Λ as follows

ζ́1(s) =
1

s2 + 1
≤ exp(s), if µ1 = 0.25 > 0,

ζ́1(s) = exp(2s) ≤ exp(3s), if µ2 = 0.50 > 0.

Tables 2–4 show the numerical results of all variables and (A1)-(A4).

Table 2. Numerical results of (A1)-(A4) of the Gilpin–Ayala predator-prey system with harvesting terms (24)
whenever γ = 0.13.

s
γ = 0.13γ = 0.13γ = 0.13

ζ̀1(s) eµ1s ζ̀2(s) eµ2s (A2) (A3) (A4)-1 (A4)-2 ≥ Eγ

−1.00 0.1429 0.6703 0.1353 0.4724 0.4042 0.4559 0.7870 1.8612 6.3003× 10+10

−0.90 0.1468 0.6977 0.1653 0.5092 0.4270 0.4665 0.9468 0.2805 3.2441× 10+10

−0.80 0.1506 0.7261 0.2019 0.5488 0.4506 0.4742 1.0912 1.2166 1.5212× 10+10

−0.70 0.1541 0.7558 0.2466 0.5916 0.4782 0.4818 1.2124 2.6493 63.5932× 10+8

−0.60 0.1572 0.7866 0.3012 0.6376 0.5106 0.4895 1.3123 4.0233 23.0184× 10+8

−0.50 0.1600 0.8187 0.3679 0.6873 0.5495 0.4971 1.3926 5.3440 6.9238× 10+8

−0.40 0.1623 0.8521 0.4493 0.7408 0.5967 0.5048 1.4552 6.6164 1.6291× 10+8

−0.30 0.1642 0.8869 0.5488 0.7985 0.6553 0.5124 1.5015 7.8452 27.2936× 10+6

−0.20 0.1656 0.9231 0.6703 0.8607 0.7299 0.5201 1.5330 9.0347 2.7867× 10+6

−0.10 0.1664 0.9608 0.8187 0.9277 0.8281 0.5277 1.5509 10.1892 13.1477× 10+4

0.00 0.1667 1.0000 1.0000 1.0000 0.9628 0.5354 1.5567 11.3123 19.3259× 10+2

Table 3. Numerical results of (A1)–(A4) of the Gilpin–Ayala competition predator-prey system with harvesting
terms (24) whenever γ = 0.13.

s
γ = 0.50γ = 0.50γ = 0.50

ζ̀1(s) eµ1s ζ̀2(s) eµ2s (A2) (A3) (A4)-1 (A4)-2 ≥ Eγ

−1.00 0.1429 0.6703 0.1353 0.4724 0.4042 0.4559 0.7870 1.8612 21.5243× 10+6

−0.90 0.1468 0.6977 0.1653 0.5092 0.4270 0.4665 0.9468 0.2805 8.9914× 10+6

−0.80 0.1506 0.7261 0.2019 0.5488 0.4506 0.4742 1.0912 1.2166 3.4485× 10+6

−0.70 0.1541 0.7558 0.2466 0.5916 0.4782 0.4818 1.2124 2.6493 1.2008× 10+6

−0.60 0.1572 0.7866 0.3012 0.6376 0.5106 0.4895 1.3123 4.0233 37.5030× 10+4

−0.50 0.1600 0.8187 0.3679 0.6873 0.5495 0.4971 1.3926 5.3440 10.3696× 10+4

−0.40 0.1623 0.8521 0.4493 0.7408 0.5967 0.5048 1.4552 6.6164 2.5060× 10+4

−0.30 0.1642 0.8869 0.5488 0.7985 0.6553 0.5124 1.5015 7.8452 52.2701× 10+2

−0.20 0.1656 0.9231 0.6703 0.8607 0.7299 0.5201 1.5330 9.0347 9.2586× 10+2

−0.10 0.1664 0.9608 0.8187 0.9277 0.8281 0.5277 1.5509 10.1892 1.3395× 10+2

0.00 0.1667 1.0000 1.0000 1.0000 0.9628 0.5354 1.5567 11.3123 13.8332

Table 4. Numerical results of (A1)–(A4) of the Gilpin–Ayala competition predator-prey system with harvesting
terms (24) whenever γ = 0.13.

s
γ = 0.94γ = 0.94γ = 0.94

ζ̀1(s) eµ1s ζ̀2(s) eµ2s (A2) (A3) (A4)-1 (A4)-2 ≥ Eγ

−1.00 0.1429 0.6703 0.1353 0.4724 0.4042 0.4559 0.7870 1.8612 1.1229
−0.90 0.1468 0.6977 0.1653 0.5092 0.4270 0.4665 0.9468 0.2805 54.3416× 10−2

−0.80 0.1506 0.7261 0.2019 0.5488 0.4506 0.4742 1.0912 1.2166 29.4215× 10−2

−0.70 0.1541 0.7558 0.2466 0.5916 0.4782 0.4818 1.2124 2.6493 17.8922× 10−2

−0.60 0.1572 0.7866 0.3012 0.6376 0.5106 0.4895 1.3123 4.0233 12.1087× 10−2

−0.50 0.1600 0.8187 0.3679 0.6873 0.5495 0.4971 1.3926 5.3440 9.1835× 10−2

−0.40 0.1623 0.8521 0.4493 0.7408 0.5967 0.5048 1.4552 6.6164 8.3030× 10−2

−0.30 0.1642 0.8869 0.5488 0.7985 0.6553 0.5124 1.5015 7.8452 8.4919× 10−2

−0.20 0.1656 0.9231 0.6703 0.8607 0.7299 0.5201 1.5330 9.0347 8.6983× 10−2

−0.10 0.1664 0.9608 0.8187 0.9277 0.8281 0.5277 1.5509 10.1892 9.3835× 10−2

0.00 0.1667 1.0000 1.0000 1.0000 0.9628 0.5354 1.5567 11.3123 12.4923× 10−2
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4. Conclusions

Time plays an important role in the study of any phenomena (ecology, biology, etc.)
because it makes dynamic behavior more realistic. For this reason, in our research paper,
we took into account the time for all the coefficients. In this paper, we have derived a
classical nonlinear fractional prey-predator Gilpin–Ayala model (6) with distributed delays
and control terms. The model is an important and well-known differential equation. The
study of the dynamic behavior and properties of this model can provide a theoretical
basis for governance and protection. First, using some inequality techniques, we obtain a
priori estimates of the boundedness region of the solution. Then, sufficient criteria for the
existence of asymptotic λ-periodic solutions are obtained by using the Banach fixed-point
theorem. We showed that by means of control, one can control the existence and stability
of our model. The results in the model can be considered with Λ-fractional differential
equations [25]. We simulate the correctness of our results through a numerical example.
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