Optical Solitons of the Generalized Nonlinear Schrödinger Equation with Kerr Nonlinearity and Dispersion of Unrestricted Order
Abstract
:1. Introduction
2. Application of the Painlev é Test to Equation (1)
3. Theorem of Existence for the Optical Soliton of Equation (1) with Unrestricted Dispersion
4. Optical Solitons of the Twelfth-Order Equation (1)
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Biswas, A.; Ekici, M.; Dakova, A.; Khan, S.; Moshokoa, S.P.; Alshehri, H.M.; Belic, M.R. Highly dispersive optical soliton perturbation with Kudryashov’s sextic-power law nonlinear refractive index by semi-inverse variation. Results Phys. 2021, 27, 104539. [Google Scholar] [CrossRef]
- Biswas, A.; Sonmezoglu, A.; Ekici, M.; Alshomrani, A.S.; Belic, M.R. Highly dispersive singular optical solitons with Kerr law nonlinearity by Jacobi’s elliptic ds function expansion. Optik 2019, 192, 162954. [Google Scholar] [CrossRef]
- Biswas, A.; Ekici, M.; Sonmezoglu, A.; Belic, M.R. Highly dispersive optical solitons in absence of self-phase modulation by Jacobi’s elliptic function expansion. Optik 2019, 189, 109–120. [Google Scholar] [CrossRef]
- Elsherbeny, A.M.; El-Barkouky, R.; Seadawy, A.R.; Ahmed, H.M.; El-Hassani, R.M.I.; Arnous, A.H. Highly dispersive optical soliton perturbation of Kudryashov’s arbitrary form having sextic-power law refractive index. Int. J. Mod. Phys. B 2021, 35, 2150247. [Google Scholar] [CrossRef]
- Gonzalez-Gaxiola, O.; Biswas, A.; Alshomrani, A.S. Highly dispersive optical solitons having Kerr law of refractive index with Laplace-Adomian decomposition. Rev. Mex. Fis. 2020, 66, 291–296. [Google Scholar] [CrossRef]
- Gonzalez-Gaxiola, O.; Biswas, A.; Asma, M.; Alzahrani, A.K. Highly dispersive optical solitons with non-local law of refractive index by Laplace-Adomian decomposition. Opt. Quantum Electron. 2021, 53, 55. [Google Scholar] [CrossRef]
- Gonzalez-Gaxiola, O.; Biswas, A.; Alzahrani, A.K.; Belic, M.R. Highly dispersive optical solitons with a polynomial law of refractive index by Laplace-Adomian decomposition. J. Comput. Electron. 2021, 20, 1216–1223. [Google Scholar] [CrossRef]
- Kohl, R.W.; Biswas, A.; Ekici, M.; Yildirim, Y.; Triki, H.; Alshomrani, A.S.; Belic, M.R. Highly dispersive optical soliton perturbation with quadratic-cubic refractive index by semi-inverse variational principle. Optik 2020, 206, 163621. [Google Scholar] [CrossRef]
- Kohl, R.W.; Biswas, A.; Ekici, M.; Zhou, Q.; Khan, S.; Alshomrani, A.S.; Belic, M.R. Highly dispersive optical soliton perturbation with Kerr law by semi-inverse variational principle. Optik 2019, 199, 163226. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Implicit Solitary Waves for One of the Generalized Nonlinear Schrödinger Equations. Mathematics 2021, 9, 3024. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Highly Dispersive Optical Solitons of an Equation with Arbitrary Refractive Index. Regul. Chaotic Dyn. 2020, 25, 537–543. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Highly dispersive optical solitons of the generalized nonlinear eighth-order Schrodinger equation. Optik 2020, 206, 164335. [Google Scholar] [CrossRef]
- Rabie, W.B.; Seadawy, A.R.; Ahmed, H.M. Highly dispersive Optical solitons to the generalized third-order nonlinear Schrödinger dynamical equation with applications. Optik 2021, 241, 167109. [Google Scholar] [CrossRef]
- Wang, G.; Kara, A.H.; Biswas, A.; Guggilla, P.; Alzahrani, A.K.; Belic, M.R. Highly dispersive optical solitons in polarization-preserving fibers with Kerr law nonlinearity by Lie symmetry, Physics Letters. Sect. A Gen. At. Solid State Phys. 2022, 421, 127768. [Google Scholar]
- Zayed, E.M.E.; Alngar, M.E.M.; El-Horbaty, M.M.; Biswas, A.; Ekici, M.; Zhou, Q.; Khan, S.; Mallawi, F.; Belic, M.R. Highly dispersive optical solitons in the nonlinear Schrödinger’s equation having polynomial law of the refractive index change. Indian J. Phys. 2021, 95, 109–119. [Google Scholar] [CrossRef]
- Zayed, E.M.E.; Al-Nowehy, A.-G.; Alngar, M.E.M.; Biswas, A.; Asma, M.; Ekici, M.; Alzahrani, A.K.; Belic, M.R. Highly dispersive optical solitons in birefringent fibers with four nonlinear forms using Kudryashov’s approach. J. Opt. 2021, 50, 120–131. [Google Scholar] [CrossRef]
- Zayed, E.M.E.; Gepreel, K.A.; El-Horbaty, M.; Biswas, A.; Yildirim, Y.; Alshehri, H.M. Highly dispersive optical solitons with complex ginzburg-landau equation having six nonlinear forms. Mathematics 2021, 9, 3270. [Google Scholar] [CrossRef]
- Agrawal, G.P. Nonlinear Fiber Optics; Academic Press: Cambridge, MA, USA, 1989. [Google Scholar]
- Kivshar, Y.S.; Agrawal, G.P. Optical Solitons. From Fibers to Photonic Crystals; Academic Press: Cambridge, MA, USA, 2003. [Google Scholar]
- Kivshar, Y.S.; Malomed, B.A. Dynamics of solitons in nearly integrable systems. Rev. Mod. Phys. 1989, 63, 763–915. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Method for finding highly dispersive optical solitons of nonlinear differential equations. Optik 2020, 206, 163550. [Google Scholar] [CrossRef]
- Arnous, A.H.; Biswas, A.; Yildirim, Y.; Zhou, Q.; Liu, W.J.; Alshomrani, A.S.; Alshehri, H.M. Cubic-quartic optical soliton perturbation with complex Ginzburg-Landau equation by the enhanced Kudryashov’s method. Chaos Solitons Fractals 2022, 155, 11748. [Google Scholar] [CrossRef]
- Ekici, M. Stationary optical solitons with Kudryashov’s quintuple power law nonlinearity by extended Jacobi’s elliptic function expansion. J. Nonlinear Opt. Phys. Mater. 2022, 2022, 2350008. [Google Scholar] [CrossRef]
- Ozisik, M.; Secer, A.; Bayram, M.; Aydin, H. An encyclopedia of Kudryashov’s integrability approaches applicable to optoelectronic devices. Optik 2022, 265, 169499. [Google Scholar] [CrossRef]
- Sain, S.; Ghose-Choudhury, A.; Garai, S. Solitary wave solutions for the KdV-type equations in plasma: A new approach with the Kudryashov function. Eur. Phys. J. Plus 2021, 136, 226. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Highly dispersive solitary wave solutions of perturbed nonlinear Schrödinger equations. Appl. Math. Comput. 2020, 371, 124972. [Google Scholar] [CrossRef]
- Hashemi, M.S.; Bahrami, F.; Najafi, R. Symmetrry analysis of steady—State fractional—Convection—Diffusion equation. Optik 2017, 138, 240–249. [Google Scholar] [CrossRef]
- Xia, F.-L.; Jarad, F.; Hashemi, M.S.; Riaz, M.B. A reduction technique to solve the generalized nonlinear dispersive mK(m,n) equation with new local derivative. Results Phys. 2022, 38, 105512. [Google Scholar] [CrossRef]
- Chu, Y.-M.; Inc, M.; Hashemi, M.S.; Eshaghi, S. Analytical treatment of regularized Prabhakar fractional differential equations by invariant subspaces. Comput. Appl. Math. 2022, 41, 271. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kudryashov, N.A. Optical Solitons of the Generalized Nonlinear Schrödinger Equation with Kerr Nonlinearity and Dispersion of Unrestricted Order. Mathematics 2022, 10, 3409. https://doi.org/10.3390/math10183409
Kudryashov NA. Optical Solitons of the Generalized Nonlinear Schrödinger Equation with Kerr Nonlinearity and Dispersion of Unrestricted Order. Mathematics. 2022; 10(18):3409. https://doi.org/10.3390/math10183409
Chicago/Turabian StyleKudryashov, Nikolay A. 2022. "Optical Solitons of the Generalized Nonlinear Schrödinger Equation with Kerr Nonlinearity and Dispersion of Unrestricted Order" Mathematics 10, no. 18: 3409. https://doi.org/10.3390/math10183409
APA StyleKudryashov, N. A. (2022). Optical Solitons of the Generalized Nonlinear Schrödinger Equation with Kerr Nonlinearity and Dispersion of Unrestricted Order. Mathematics, 10(18), 3409. https://doi.org/10.3390/math10183409