Faber Polynomial Coefficient Estimates of Bi-Close-to-Convex Functions Associated with Generalized Hypergeometric Functions
Abstract
:1. Introduction
- (i)
- f is called to be a starlike function of the order ifWe denote this subclass with .
- (ii)
- f is called to be a convex function of the order ifWe denote this subclass with .
- (iii)
- f is called to be a close-to-convex function of the order if
2. Main Results
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hussain, S.; Khan, S.; Khan, B. Faber Polynomial coefficients estimates of bi-univalent functions associated with generalized hypergeometric functions. Palest. J. Math. 2018, 8, 353–360. [Google Scholar]
- El-Deeb, S.M.; Bulboacă, T.; El-Matary, B.M. Maclaurin coefficient estimates of bi-univalent functions connected with the q-derivative. Mathematics 2020, 8, 418. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef]
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Brannan, D.A.; Clunie, J.G. Aspects of Contemporary Complex Analysis. In Proceedings of the NATO Advanced Study Institute, Durham, UK, 1–20 July 1979; Academic Press: New York, NY, USA; London, UK, 1980; pp. 79–95. [Google Scholar]
- Netanyahu, E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z|<1. Arch. Ration. Mech. Anal. 1969, 32, 100–112. [Google Scholar]
- Brannan, D.A.; Taha, T.S. On some classes of bi-unvalent functions. In Mathematical Analysis and Its Applications; Mazhar, S.M., Hamoui, A., Faour, N.S., Eds.; KFAS Proceedings Series, 3; Pergamon Press (Elsevier Science Limited): Oxford, UK, 1988; pp. 53–60, see also Studia Univ. Babeş-Bolyai Math. 1986, 31, 70–77. [Google Scholar]
- Brannan, D.A.; Clunie, J.; Kirwan, W.E. Coefficient estimates for a class of star-like functions. Can. J. Math. 1970, 22, 476–485. [Google Scholar] [CrossRef]
- Aldweby, H.; Darus, M. On a subclass of bi-univalent functions associated with the q-derivative operator. J. Math. Comput. Sci. 2019, 19, 58–64. [Google Scholar] [CrossRef]
- Caglar, M.; Deniz, E. Initial coefficients for a subclass of bi-univalent functions defined by Sălăgean differential operator. Commun. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2017, 66, 85–91. [Google Scholar]
- Srivastava, H.M.; Murugusundaramoorthy, G.; El-Deeb, S.M. Faber polynomial coefficient estimates of bi-close-to-convex functions connected with the Borel distribution of the Mittag-Leffler type. J. Nonlinear Var. Anal. 2021, 5, 103–118. [Google Scholar]
- Wang, B.; Srivastava, R.; Liu, J.-L. A certain subclass of multivalent analytic functions defined by the q-difference operator related to the Janowski functions. Mathematics 2021, 9, 1706. [Google Scholar] [CrossRef]
- Faber, G. Über polynomische Entwickelungen. Math. Ann. 1903, 57, 389–408. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Eker, S.S.; Ali, R.M. Coefficient bounds for a certain class of analytic and bi-univalent functions. Filomat 2015, 29, 1839–1845. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Eker, S.S.; Hamidi, S.G.; Jahangiri, J.M. Faber polynomial coefficient estimates for bi-univalent functions defined by the Tremblay fractional derivative operator. Bull. Iran. Math. Soc. 2018, 44, 149–157. [Google Scholar] [CrossRef]
- Srivastava, H.M.; El-Deeb, S.M. The Faber polynomial expansion method and the Taylor-Maclaurin coefficient estimates of bi-close-to-convex functions connected with the q-convolution. AIMS Math. 2020, 5, 7087–7106. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Motamednezhad, A.; Adegan, E.A. Faber polynomial coefficient estimates for bi-univalent functions defined by using differential subordination and a certain fractional derivative operator. Mathematics 2020, 8, 172. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Motamednezhad, A.; Salehian, S. Coefficients of a comprehensive subclass of meromorphic bi-univalent functions associated with the Faber polynomial expansion. Axioms 2021, 10, 27. [Google Scholar] [CrossRef]
- Todorov, P.G. On the Faber polynomials of the univalent functions of class Σ. J. Math. Anal. Appl. 1991, 162, 268–276. [Google Scholar] [CrossRef]
- Hamidi, S.G.; Jahangiri, J.M. Faber polynomial coefficients of bi-subordinate functions. Comptes Rendus Math. 2016, 354, 365–370. [Google Scholar] [CrossRef]
- Páll-Szabó, Á.O.; Oros, G.I. Coefficient related studies for new classes of bi-univalent functions. Mathematics 2020, 8, 1110. [Google Scholar] [CrossRef]
- Cotîrlǎ, L.I. New classes of analytic and bi-univalent functions. AIMS Math. 2021, 6, 10642–10651. [Google Scholar] [CrossRef]
- Yousef, F.; Amourah, A.; Frasin, B.A.; Bulboacǎ, T. An avant-Garde construction for subclasses of analytic bi-univalent functions. Axioms 2022, 11, 267. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhai, J.; Srivastava, R.; Liu, J.-L. Faber Polynomial Coefficient Estimates of Bi-Close-to-Convex Functions Associated with Generalized Hypergeometric Functions. Mathematics 2022, 10, 3073. https://doi.org/10.3390/math10173073
Zhai J, Srivastava R, Liu J-L. Faber Polynomial Coefficient Estimates of Bi-Close-to-Convex Functions Associated with Generalized Hypergeometric Functions. Mathematics. 2022; 10(17):3073. https://doi.org/10.3390/math10173073
Chicago/Turabian StyleZhai, Jie, Rekha Srivastava, and Jin-Lin Liu. 2022. "Faber Polynomial Coefficient Estimates of Bi-Close-to-Convex Functions Associated with Generalized Hypergeometric Functions" Mathematics 10, no. 17: 3073. https://doi.org/10.3390/math10173073
APA StyleZhai, J., Srivastava, R., & Liu, J.-L. (2022). Faber Polynomial Coefficient Estimates of Bi-Close-to-Convex Functions Associated with Generalized Hypergeometric Functions. Mathematics, 10(17), 3073. https://doi.org/10.3390/math10173073