Blow-Up Time of Solutions for a Parabolic Equation with Exponential Nonlinearity
Abstract
:1. Introduction
- (i)
- (ii)
2. Proof of Theorem 1
2.1. Proof of the Upper Bound of Blow-Up Time in Theorem 1
2.2. Proof of the Lower Bound of Blow-Up Time in Theorem 1
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lam, J.F.; Lippman, B.; Trappert, F. Sel trapped lased beams in plasma. Phys. Fluid 1997, 20, 1176–1179. [Google Scholar] [CrossRef]
- Adachi, S.; Tanaka, K. Trudinger type inequalities in and their best exponent. Proc. Am. Math. Soc. 1999, 128, 2051–2057. [Google Scholar] [CrossRef]
- Ruf, B. A sharp Moser-Trudinger type inequality for unbounded domains in . J. Funct. Anal. 2004, 219, 304–367. [Google Scholar]
- Li, T.T.; Mimura, M.; Nishiura, Y.; Ye, Q.X. Reaction-diffusion equations and their applications and computations aspects. In Proceedings of the China-Japan Symposium, Shanghai, China, 30 October–4 November 1994; World Scientific: Singapore, 1997. [Google Scholar]
- Weissler, F.B. Local existence and nonexistence for a semilinear parabolic equation in . Indiana Univ. Math. J. 1980, 29, 79–102. [Google Scholar] [CrossRef]
- Weissler, F.B. Existence and nonexistence of global solutions for a semilinear heat equation. Isr. J. Math. 1981, 38, 29–40. [Google Scholar] [CrossRef]
- Messaoudi, S.A. A note on blow up of solutions of a quasilinear heat equation with vanishing initial energy. J. Math. Anal. Appl. 2002, 273, 243–247. [Google Scholar] [CrossRef]
- Liu, G.W.; Chen, H. Global and blow-up of solutions for a quasilinear parabolic system with viscoelastic and source term. Math. Methods Appl. Sci. 2014, 37, 148–156. [Google Scholar] [CrossRef]
- Liu, W.J.; Wang, M.X. Blow-up of the solution for a p-Laplacian equation with positive initial energy. Acta. Appl. Math. 2008, 103, 141–146. [Google Scholar] [CrossRef]
- Tian, S.Y. Bounds for blow-up time in a semilinear parabolic problem with viscoelastic term. Comp. Math. Appl. 2017, 74, 736–743. [Google Scholar] [CrossRef]
- Zhou, J. Blow-up and lifespan of solutions to a nonlocal parabolic equation at arbitrary initial energy level. Appl. Math. Lett. 2018, 78, 118–125. [Google Scholar] [CrossRef]
- Han, Y.; Gao, W.; Sun, Z.; Li, H. Upper and lower bounds of blow-up time to a parabolic type Kirchhoff equation with arbitrary initial energy. Comput. Math. Appl. 2018, 76, 2477–2483. [Google Scholar] [CrossRef]
- Ahmadian, S.; Darvishi, M.T. A new fractional Biswas-Milovic model with its periodic soliton solutions. Optik 2016, 127, 7694–7703. [Google Scholar] [CrossRef]
- Zaidan, L.I.; Darvishi, M.T. Numerical simulation for fractional nonliear (1+1)-dimensional Biswas-Milovic eqution. Optik 2017, 136, 390–402. [Google Scholar] [CrossRef]
- Palencia, J.L.D.; Rahman, S.U.; Redondo, A.N. Heterogeneous diffusion and nonlinear advection in a one-dimension FIsher-KPP problem. Entropy 2022, 24, 915. [Google Scholar] [CrossRef]
- Ahamd, S.; Ullah, A.; Akgül, A.; Jarad, F. A hybrid analytical techniquel for solving nonlinear fraction order PDEs of power law kernel: Application to KdV and Forberg-Witham equations. AIMS Math. 2022, 7, 9389–9404. [Google Scholar] [CrossRef]
- Gazzola, F.; Squassina, M. Global solutions and finite time blow up for damped semilinear wave equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 2006, 23, 185–207. [Google Scholar] [CrossRef]
- Wang, Y. A sufficient condition for finite time nlow up of the nonlinear Klein-Gordon equations with arbitrary positive initial energy. Proc. AMS 2008, 136, 3477–3482. [Google Scholar] [CrossRef]
- Kafini, M. A blow-up result in a system of nonlinear viscoelastic wave equations with arbitrary positive initial energy. Indag. Math. 2013, 24, 602–612. [Google Scholar] [CrossRef]
- Wang, Y. Arbitrary initial energy blow up for fourth-order viscous damped wave equation with exponential-type growth nonlinearity. Appl. Math. Lett. 2021, 121, 107455. [Google Scholar] [CrossRef]
- Peng, X. Lower bounds for the blow-up time to a nonlinear viscoelastic wave equation with strong damping. Appl. Math. Lett. 2018, 76, 66–73. [Google Scholar] [CrossRef]
- Ruf, B.; Sani, F. Ground states for elliptic equations in with exponential critical growth. In Geometric Properties for Parabolic and Elliptic PDE’s; Springer: Milan, Italy, 2013; pp. 251–267. [Google Scholar]
- Ishiwata, M.; Ruf, B.; Sani, F.; Terraneo, E. Asymptotics for a parabolic equation with critical exponential nonlinearity. J. Evol. Equ. 2021, 21, 1677–1716. [Google Scholar] [CrossRef]
- Ibrahim, S.; Jrad, R.; Majdoub, M.; Saanouni, T. Local well posedness of a 2D semilinear heat equation. Bull. Belg. Math. Soc. Simon Stevin 2014, 21, 535–551. [Google Scholar] [CrossRef]
- Saanouni, T. A note on the inhomogeneous nonlinear heat equation in two space dimensions. Mediterr. J. Math. 2016, 13, 3651–3672. [Google Scholar] [CrossRef]
- Ioku, N.; Ruf, B.; Terraneo, E. Existence, nonexistence, and uniqueness for a heat equation with exponential nonlinearity in . Math. Phys. Anal. Geom. 2015, 18, 29. [Google Scholar] [CrossRef]
- Li, M.R.; Tsau, L.Y. Existence and nonexistence of global solutions of some system of semilinear wave equations. Nonlinear Anal. 2003, 54, 1397–1415. [Google Scholar] [CrossRef]
- Souplet, P. Geometry of unbounded domains, poincare inequalities and stability in semilinear parabolic equations. Commun. Partial Differ. Equ. 1999, 24, 545–551. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Qian, J. Blow-Up Time of Solutions for a Parabolic Equation with Exponential Nonlinearity. Mathematics 2022, 10, 2887. https://doi.org/10.3390/math10162887
Wang Y, Qian J. Blow-Up Time of Solutions for a Parabolic Equation with Exponential Nonlinearity. Mathematics. 2022; 10(16):2887. https://doi.org/10.3390/math10162887
Chicago/Turabian StyleWang, Yanjin, and Jianzhen Qian. 2022. "Blow-Up Time of Solutions for a Parabolic Equation with Exponential Nonlinearity" Mathematics 10, no. 16: 2887. https://doi.org/10.3390/math10162887
APA StyleWang, Y., & Qian, J. (2022). Blow-Up Time of Solutions for a Parabolic Equation with Exponential Nonlinearity. Mathematics, 10(16), 2887. https://doi.org/10.3390/math10162887