On the Property of Linear Autonomy for Symmetries of Fractional Differential Equations and Systems
Abstract
:1. Introduction
2. Notations and Preliminaries
3. Systems with the Riemann–Liouville Fractional Derivatives
4. Systems with the Caputo Fractional Derivatives
5. Examples
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ovsyannikov, L.V. Group Analysis of Differential Equations; Academic Press: New York, NY, USA, 1982. [Google Scholar]
- Olver, P. Applications of Lie Groups to Differential Equations; Springer: New York, NY, USA, 1986. [Google Scholar]
- Bluman, G.; Kumei, S. Symmetries and Differential Equations; Springer: Berlin, Germany, 1989. [Google Scholar]
- Ibragimov, N.H. Elementary Lie Group Analysis and Ordinary Differential Equations; Wiley: Chichester, UK, 1999. [Google Scholar]
- Anderson, R.L.; Ibragimov, N.H. Lie–Bäcklund Transformations in Applications; SIAM: Philadelphia, PA, USA, 1979. [Google Scholar]
- Krasil’shchik, I.S.; Kersten, P.H.M. Symmetries and Recursion Operators for Classical and Supersymmetric Differential Equations; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Baikov, V.A.; Gazizov, R.K.; Ibragimov, N.K. Perturbation methods in group analysis. J. Soviet Math. 1991, 55, 1450–1490. [Google Scholar] [CrossRef]
- Ibragimov, N.H.; Kovalev, V.F. Approximate and Renormgroup Symmetries; Springer: Berlin, Germany, 2009. [Google Scholar]
- Akhatov, I.S.; Gazizov, R.K.; Ibragimov, N.K. Nonlocal symmetries. Heuristic approach. J. Soviet Math. 1991, 55, 1401–1449. [Google Scholar] [CrossRef]
- CRC Handbook of Lie Group Analysis of Differential Equations. Volume 3: New Trends in Theoretical Development and Computational Methods; Ibragimov, N.H. (Ed.) CRC Press Inc.: Boca Raton, FL, USA, 1996. [Google Scholar]
- Grigoriev, Y.N.; Ibragimov, N.K.; Kovalev, V.F.; Meleshko, S.V. Symmetries of Integro-Differential Equations: With Applications in Mechanics and Plasma Physics; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar]
- Dorodnitsyn, V. Applications of Lie Groups to Difference Equations; CRC Press Inc.: Boca Raton, FL, USA, 2011. [Google Scholar]
- Oberlack, M.; Waclawczyk, M. On the extension of Lie group analysis to functional differential equations. Arch. Mech. 2006, 58, 597–618. [Google Scholar]
- Samko, S.; Kilbas, A.; Marichev, O. Fractional Integrals and Derivatives. Theory and Applications; Gordon & Breach Sci. Publishers: London, UK, 1993. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Diethelm, K. The Analysis of Fractional Differential Equations. An Application-Oriented Exposition Using Differential Operators of Caputo Type; Springer: Heidelberg, Germany, 2010. [Google Scholar]
- Zhou, Y.; Wang, J.; Zhang, L. Basic Theory of Fractional Differential Equations; World Scientific: London, UK, 2016. [Google Scholar]
- Buckwar, E.; Luchko, Y. Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations. J. Math. Anal. Appl. 1998, 227, 81–97. [Google Scholar] [CrossRef] [Green Version]
- Gazizov, R.K.; Kasatkin, A.A.; Lukashchuk, S.Y. Continuous transformation groups of fractional differential equations. Vestnik UGATU 2007, 9, 125–135. (In Russian) [Google Scholar]
- Gazizov, R.K.; Kasatkin, A.A.; Lukashchuk, S.Y. Symmetry properties of fractional diffusion equations. Phys. Scr. 2009, T136, 014016. [Google Scholar] [CrossRef]
- Lukashchuk, S.Y. Constructing conservation laws for fractional-order integro-differential equations. Theor. Math. Phys. 2015, 184, 1049–1066. [Google Scholar] [CrossRef]
- Gazizov, R.K.; Kasatkin, A.A.; Lukashchuk, S.Y. Symmetries and group invariant solutions of fractional ordinary differential equations. In Handbook of Fractional Calculus with Applications. Volume 2 Fractional Differential Equations; Kochubei, A., Luchko, Y., Eds.; De Gruyter: Berlin, Germany, 2019; pp. 65–90. [Google Scholar]
- Gazizov, R.K.; Kasatkin, A.A.; Lukashchuk, S.Y. Symmetries, conservation laws and group invariant solutions of fractional PDEs. In Handbook of Fractional Calculus with Applications. Volume 2 Fractional Differential Equations; Kochubei, A., Luchko, Y., Eds.; De Gruyter: Berlin, Germany, 2019; pp. 353–382. [Google Scholar]
- Hashemi, M.S.; Baleanu, D. Lie Symmetry Analysis of Fractional Differential Equation; Chapman and Hall/CRC: New York, NY, USA, 2020. [Google Scholar]
- Gazizov, R.K.; Kasatkin, A.A.; Lukashchuk, S.Y. Fractional differential equations: Change of variables and nonlocal symmetries. Ufa Math. J. 2012, 4, 54–67. [Google Scholar]
- Zhang, Z.-Y.; Lin, Z.-X. Local symmetry structure and potential symmetries of time-fractional partial differential equations. Stud. Appl. Math. 2021, 147, 363–389. [Google Scholar] [CrossRef]
- Gazizov, R.K.; Lukashchuk, S.Y. Approximations of fractional differential equations and approximate symmetries. IFAC PapersOnLine 2017, 50, 14022–14027. [Google Scholar] [CrossRef]
- Lukashchuk, S.Y.; Saburova, R.D. Approximate symmetry group classification for a nonlinear fractional filtration equation of diffusion-wave type. Nonlinear Dyn. 2018, 93, 295–305. [Google Scholar] [CrossRef]
- Lukashchuk, S.Y. Approximate conservation laws for fractional differential equations. Commun. Nonlinear. Sci. Numer. Simul. 2019, 68, 147–159. [Google Scholar] [CrossRef]
- Gazizov, R.K.; Lukashchuk, S.Y. Higher-Order Symmetries of a Time-Fractional Anomalous Diffusion Equation. Mathematics 2021, 9, 216. [Google Scholar] [CrossRef]
- Sahadevan, R.; Bakkyaraj, T. Invariant analysis of time fractional generalized Burgers and Korteweg–de Vries equations. J. Math. Anal. Appl. 2012, 393, 341–347. [Google Scholar] [CrossRef] [Green Version]
- Hashemi, M.S. Group analysis and exact solutions of the time fractional Fokker–Planck equation. Phys. A Stat. Mech. Appl. 2015, 417, 141–149. [Google Scholar] [CrossRef]
- Rui, W.; Zhang, X. Lie symmetries and conservation laws for the time fractional Derrida–Lebowitz–Speer–Spohn equation. Commun. Nonlinear. Sci. Numer. Simul. 2016, 34, 38–44. [Google Scholar] [CrossRef]
- Yaşar, E.; Yildirim, Y.; Khalique, C.M. Lie symmetry analysis, conservation laws and exact solutions of the seventh-order time fractional Sawada-Kotera-Ito equation. Results Phys. 2016, 6, 322–328. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Han, D. Symmetry analysis and conservation laws of the time fractional Kaup–Kupershmidt equation from capillary gravity waves. Math. Model. Nat. Phenom. 2018, 13, 24. [Google Scholar] [CrossRef]
- Inc, M.; Yusuf, A.; Aliyu, A.I.; Baleanu, D. Time-fractional Cahn–Allen and time-fractional Klein–Gordon equations: Lie symmetry analysis, explicit solutions and convergence analysis. Phys. A Stat. Mech. Appl. 2018, 493, 94–106. [Google Scholar] [CrossRef]
- Lashkarian, E.; Hejazi, S.R.; Habibi, N.; Motamednezhad, A. Symmetry properties, conservation laws, reduction and numerical approximations of time-fractional cylindrical-Burgers equation. Commun. Nonlinear Sci. Numer. Simul. 2019, 67, 176–191. [Google Scholar] [CrossRef]
- Li, R.; Li, L. Exact Solutions and Conservation Laws of the Time-Fractional Gardner Equation with Time-Dependent Coefficients. Symmetry 2021, 13, 2434. [Google Scholar] [CrossRef]
- Rashidi, S.; Hejazi, S.R.; Mohammadizadeh, F. Group formalism of Lie transformations, conservation laws, exact and numerical solutions of non-linear time-fractional Black–Scholes equation. J. Comput. Appl. Math. 2022, 2022 403, 403. [Google Scholar] [CrossRef]
- Gong, T.; Feng, W.; Zhao, S. Symmetry Analysis and Conservation Laws for a Time-Fractional Generalized Porous Media Equation. Mathematics 2022, 10, 687. [Google Scholar] [CrossRef]
- Pan, M.; Zheng, L.; Liu, F.; Zhang, X. Lie group analysis and similarity solution for fractional Blasius flow. Commun. Nonlinear Sci. Numer. Simul. 2016, 37, 90–101. [Google Scholar] [CrossRef]
- Sahoo, S.; Saha Ray, S. Analysis of Lie symmetries with conservation laws for the (3 + 1) dimensional time-fractional mKdV-ZK equation in ion-acoustic waves. Nonlinear Dyn. 2017, 90, 1105–1113. [Google Scholar] [CrossRef]
- Sahadevan, R.; Prakash, P. On Lie symmetry analysis and invariant subspace methods of coupled time fractional partial differential equations. Chaos Solit. Fractals 2017, 104, 107–120. [Google Scholar] [CrossRef]
- Singla, K.; Gupta, R.K. Generalized Lie symmetry approach for fractional order systems of differential equations III. J. Math. Phys. 2017, 58, 061501. [Google Scholar] [CrossRef]
- Dorjgotov, K.; Ochiai, H.; Zunderiya, U. Lie symmetry analysis of a class of time fractional nonlinear evolution systems. Appl. Math. Comput. 2018, 329, 105–117. [Google Scholar] [CrossRef] [Green Version]
- Lashkarian, E.; Hejazi, S.R.; Dastranj, E. Conservation laws of (3 + α)-dimensional time-fractional diffusion equation. Comput. Math. Appl. 2018, 75, 740–754. [Google Scholar] [CrossRef]
- Saberi, E.; Hejazi, S.R. Lie symmetry analysis, conservation laws and exact solutions of the time-fractional generalized Hirota–Satsuma coupled KdV system. Phys. A Stat. Mech. Appl. 2018, 492, 296–307. [Google Scholar] [CrossRef]
- Saha Ray, S.; Sahoo, S. Invariant analysis and conservation laws of (2 + 1) dimensional time-fractional ZK-BBM equation in gravity water waves. Comput. Math. Appl. 2018, 75, 2271–2279. [Google Scholar] [CrossRef]
- Sahoo, S.; Saha Ray, S. On the conservation laws and invariant analysis for time-fractional coupled Fitzhugh–Nagumo equations using the Lie symmetry analysis. Eur. Phys. J. Plus. 2019, 134, 83. [Google Scholar] [CrossRef]
- Sahoo, S.; Saha Ray, S.; Abdou, M.A.M.; Inc, M.; Chu, Y.-M. New Soliton Solutions of Fractional Jaulent-Miodek System with Symmetry Analysis. Symmetry 2020, 12, 1001. [Google Scholar] [CrossRef]
- Gülşen, S.; Yao, S.-W.; Inc, M. Lie Symmetry Analysis, Conservation Laws, Power Series Solutions, and Convergence Analysis of Time Fractional Generalized Drinfeld-Sokolov Systems. Symmetry 2021, 13, 874. [Google Scholar] [CrossRef]
- Zhang, Z.-Y.; Zheng, J. Symmetry structure of multi-dimensional time-fractional partial differential equations. Nonlinearity 2021, 34, 5186–5212. [Google Scholar] [CrossRef]
- Ovsyannikov, L.V. On the property of X-autonomy. Dokl. Math. 1994, 47, 581–584. [Google Scholar]
- Garifullin, R.N.; Gudkova, E.V.; Habibullin, I.T. Method for searching higher symmetries for quad-graph equations. J. Phys. A Math. Theor. 2011, 44, 325202. [Google Scholar] [CrossRef]
- Garifullin, R.N.; Yamilov, R.I.; Levi, D. Classification of five-point differential–difference equations. J. Phys. A Math. Theor. 2017, 50, 125201. [Google Scholar] [CrossRef] [Green Version]
- Habibullin, I.T.; Khakimova, A.R. On the recursion operators for integrable equations. J. Phys. A Math. Theor. 2018, 51, 425202. [Google Scholar] [CrossRef] [Green Version]
- Chirkunov, Y.A. Linear autonomy conditions for the basic Lie algebra of a system of linear differential equations. Dokl. Math. 2009, 79, 415–417. [Google Scholar] [CrossRef]
- Gazizov, R.K.; Kasatkin, A.A.; Lukashchuk, S.Y. Linearly autonomous symmetries of the ordinary fractional differential equations. In Proceedings of the 2014 International Conference on Fractional Differentiation and Its Applications (ICFDA’2014), Catania, Italy, 23–25 June 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1–6. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lukashchuk, S.Y. On the Property of Linear Autonomy for Symmetries of Fractional Differential Equations and Systems. Mathematics 2022, 10, 2319. https://doi.org/10.3390/math10132319
Lukashchuk SY. On the Property of Linear Autonomy for Symmetries of Fractional Differential Equations and Systems. Mathematics. 2022; 10(13):2319. https://doi.org/10.3390/math10132319
Chicago/Turabian StyleLukashchuk, Stanislav Yu. 2022. "On the Property of Linear Autonomy for Symmetries of Fractional Differential Equations and Systems" Mathematics 10, no. 13: 2319. https://doi.org/10.3390/math10132319
APA StyleLukashchuk, S. Y. (2022). On the Property of Linear Autonomy for Symmetries of Fractional Differential Equations and Systems. Mathematics, 10(13), 2319. https://doi.org/10.3390/math10132319