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Abstract: The problem of finding Lie point symmetries for a certain class of multi-dimensional
nonlinear partial fractional differential equations and their systems is studied. It is assumed that
considered equations involve fractional derivatives with respect to only one independent variable,
and each equation contains a single fractional derivative. The most significant examples of such
equations are time-fractional models of processes with memory of power-law type. Two different
types of fractional derivatives, namely Riemann–Liouville and Caputo, are used in this study. It is
proved that any Lie point symmetry group admitted by equations or systems belonging to considered
class consists of only linearly-autonomous point symmetries. Representations for the coordinates
of corresponding infinitesimal group generators, as well as simplified determining equations are
given in explicit form. The obtained results significantly facilitate finding Lie point symmetries for
multi-dimensional time-fractional differential equations and their systems. Three physical examples
illustrate this point.
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1. Introduction

The classical Lie group analysis [1–4] is a powerful mathematical technique for find-
ing exact solutions and studying symmetry properties of nonlinear ordinary and partial
differential equations. Over the last four decades, several new directions in symmetry
analysis have been introduced, such as Lie–Bäcklund symmetries [5] and higher-order
symmetries [6], approximate symmetries [7], renormgroup symmetries [8], non-local sym-
metries [9], and some others [10]. Based on the invariance principle, various methods
of modern group analysis have been proposed for investigating symmetry properties of
integro-differential equations [11], difference equations [12], and equations with functional
derivatives [13].

Recently, it is shown that fractional differential equations (FDEs) [14–18] can also be
studied by using the theory of transformation groups. In [19], invariant solutions corre-
sponding to the one-parameter Lie group of scaling transformations have been constructed
for the fractional diffusion-wave equation. This is one of the first papers in this research
area. The problem of group prolongation to fractional derivatives is firstly studied in [20],
and the corresponding prolongation formula for infinitesimal group generator has been
obtained there in an explicit form. In [21], the Lie point symmetry group classification
problem for FDEs has been solved for the first time. A constructive algorithm for finding
conservation laws for partial FDEs by using their point symmetries have been proposed
in [22]. A systematic description of recent results in Lie group analysis of ordinary and
partial FDEs can be found in [23–25]. In addition, some methods of modern group analysis
have been extended to FDEs. So, first examples of nonlocal symmetries for FDEs have been
constructed in [26]. A theoretical framework of potential symmetries for the time-fractional
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PDEs has been established in [27]. An approach to finding approximate symmetries for
FDEs in which the order of fractional differentiation has a small deviation from the nearest
integer has been proposed in [28,29], and an algorithm for constructing approximate con-
servation laws for such equations has been presented in [30]. Moreover, in [31] it is shown
that higher-order symmetries and corresponding recursion operators can be calculated for
linear partial FDEs.

At present, numerous symmetries, invariant solutions, and conservation laws have
been obtained for wide classes of FDEs describing various anomalous processes and
phenomena (see, e.g., [32–41] and references therein). Nevertheless, finding symmetries
of FDEs is a more complex problem than that for integer-order differential equations.
Therefore, nowadays, symmetry properties of multi-dimensional FDEs and systems of
FDEs are much less investigated. There is a relatively small number of papers devoted to
these topics (we mention here only some recent papers [42–53], see also brief overview in
the last section of [24]). However, there is a practically significant class of multi-dimensional
FDEs that consists of equations with a single fractional derivative (usually, time-fractional
derivatives are used in such equations). In this paper, it is shown that symmetries of such
FDEs have a definite structure and therefore can be found more easily.

In [54], Ovsyannikov introduced a notion of x-autonomous Lie group of transforma-
tions. The property of x-autonomy means that all independent variables are transformed
independently of dependent variables. Numerous integer-order partial differential equa-
tions and systems of such equations have only the symmetry groups that possess the
property of x-autonomy. In particular, in [54] the necessary and sufficient conditions are
established for a system of quasilinear first-order partial differential equations to admit
an only x-autonomy transformation group. Notions of autonomous point transforma-
tions and autonomous symmetries are also used in the higher and generalized symmetry
approaches for investigating integrable discrete and continuous models [55–57]. If, addi-
tionally, transformations of all dependent variables are linear with respect to these variables
then such x-autonomous transformation group is called a linearly autonomous transforma-
tion group [58]. The property of linear autonomy for symmetry groups of FDEs is firstly
discussed in [59] (see also [23,24]). In [27,53], it was proved that local symmetries of systems
of multi-dimensional FDEs with the Riemann–Liouville fractional derivatives of orders
0 < αµ < 1 have the structure that corresponds to the property of linear autonomy. In this
paper, systems of multi-dimensional FDEs with the Riemann–Liouville and the Caputo
fractional derivatives of arbitrary orders αµ ∈ R+\N are considered, and a new approach is
proposed for proving that such systems may have only linearly autonomous symmetries.

This paper is organized as follows. Section 2 contains necessary notations and defini-
tions. In Section 3, the theorem is proved that the system of FDEs, each of which involves
a single fractional derivative of the Riemann–Liouville type, may has only linearly au-
tonomous symmetries, and corresponding simplified system of determining equations
is presented. Additionally, several specific cases of the systems of considered type are
discussed. In Section 4, the similar results are presented for the systems of FDEs with the
Caputo fractional derivatives, as well as for the systems with both the Riemann–Liouville
and Caputo derivatives. The applicability of obtained theorems is illustrated in Section 5
by several examples of nonlinear FDEs.

2. Notations and Preliminaries

Let {x0, x1, . . . , xn} be the set of n + 1 independent variables, and let {u1, u2, . . . , um}
be the set of m dependent variables that are functions of x0, . . . , xn. For convenience, we in-
troduce the vectors x = (x1, . . . , xn) and u = (u1, . . . , um) (note that x0 is not included in x).
We will consider systems of m fractional differential equations

0D
αµ

x0 (u
µ) = Fµ(x0, x, u, u(1), . . . , u(r)), µ = 1, . . . , m, (1)
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where 0D
αµ

x0 (uµ) is a fractional derivative of order αµ ∈ R+\N. In (1), we use the notations
of differential algebra (see, e.g., [4]):

u(1) = {u
µ
i1
}, u(2) = {u

µ
i1i2
}, . . . , u(r) = {u

µ
i1i2 ...ir},

where i1, . . . , ir = 0, . . . , n, µ = 1, . . . , m, and

uµ
i1
= Di1(u

µ), uµ
i1i2

= Di2(u
µ
i1
) = Di2 Di1(u

µ), . . . ,

uµ
i1i2 ...ir = Dir (u

µ
i1i2 ...ir−1

) = Dir Dir−1 . . . Di1(u
µ), . . . .

Here and in what follows, Di ≡ Dxi denotes the operator of total differentiation with
respect to xi:

Di =
∂

∂xi + uµ
i

∂

∂uµ + uµ
ii1

∂

∂uµ
i1

+ uµ
ii1i2

∂

∂uµ
i1i2

+ · · · ,

and summation over repeated indices is implied.
In this paper, the Riemann–Liouville and Caputo left-sided partial fractional deriva-

tives (see, e.g., [16]) will be used in (1) as the fractional derivative 0D
αµ

x0 (uµ).
The left-sided Riemann–Liouville fractional derivative is defined by

RL
0 D

αµ

x0 (u
µ)(x0, x) =

1
Γ(Nµ + 1− αµ)

∂Nµ+1

∂(x0)Nµ+1

∫ x0

0

uµ(s, x)
(x0 − s)αµ−Nµ

ds, (2)

and the left-sided Caputo fractional derivative reads

C
0 D

αµ

x0 (u
µ)(x0, x) =

1
Γ(Nµ + 1− αµ)

∫ x0

0

1
(x0 − s)αµ−Nµ

∂Nµ+1uµ(s, x)
∂sNµ+1 ds, (3)

where Nµ = [αµ], and Γ(z) is the gamma function.
The purpose of this paper is to study general properties of the Lie point symmetries

for the system (1). The infinitesimal generator of the corresponding Lie point symmetry
group is given by

X = ξ i(x0, x, u)
∂

∂xi + ηµ(x0, x, u)
∂

∂uµ , (4)

where i = 0, . . . , n, µ = 1, . . . , m. As it is usual in Lie group analysis, we will assume that
all coordinates ξ i and ηµ belong to C∞ class with respect to all their variables.

The necessary condition for X being a symmetry of (1) leads to the following system
of determining equations [24]:

X(αµ)0D
αµ

x0 (u
µ)− X(r)Fµ(x0, x, u, u(1), . . . , u(r)) = 0, (5)

whenever u satisfies (1). Here

X(αµ) = ξ i ∂

∂xi + ηµ ∂

∂uµ + ζ
µ

(αµ)

∂

∂ 0D
αµ

x0 (uµ)
,

X(r) = ξ i ∂

∂xi + ηµ ∂

∂uµ + ζ
µ
i

∂

∂uµ
i
+ . . . + ζ

µ
i1 ...ir

∂

∂uµ
i1 ...ir

are the so-called αµth- and rth-order prolongations of the generator X defined by (4).
The functions ζµ are given by the prolongation formulae (see [23])

ζ
µ

(αµ)
= 0D

αµ

x0 (W
µ) + ξ0Dx0

(
0D

αµ

x0 (u
µ)
)
+ ξ j

0D
αµ

x0 (u
µ
j ), (6)

ζ
µ
i1 ...is = Di1 ...is(W

µ) + ξ0Di1 ...is(u
µ
0 ) + ξ jDi1 ...is(u

µ
j ), s = 1, . . . , r, (7)
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where Wµ = ηµ − ξ0uµ
0 − ξ juµ

j and j = 1, . . . , n. In [26], it was proved that the following
additional condition should also be fulfilled:

ξ0(x0, x, u)|x0=0 = 0. (8)

Thus, the coordinates of the generator (4) can be found as a solution of the system (5)
coupled with the condition (8).

The generator X of a Lie point symmetry group admitted by a FDE is called a linearly
autonomous symmetry (see [58]) if ξ i

uµ = 0, η
µ

uνuλ = 0 for all i = 0, . . . , n and µ, ν, λ = 1, . . . , m.
It can be written in the form

X = ξ i(x0, x)
∂

∂xi +
[
η

µ

(0)(x0, x) + η
µ

(1)ν(x0, x)uν
] ∂

∂uµ . (9)

The corresponding symmetry group is called a linearly autonomous symmetry group. Further,
we prove that the systems (1) with the Riemann–Liouville and Caputo fractional derivatives
may have only linearly autonomous symmetries.

3. Systems with the Riemann–Liouville Fractional Derivatives

Let us start from the consideration of the system (1) with the Riemann–Liouville
fractional derivatives. The following theorem holds.

Theorem 1. Let 0D
αµ

x0 be the Riemann–Liouville fractional differential operator RL
0 D

αµ

x0 defined
by (2). Then the Lie point symmetry group admitted by the system (1) consists of only linearly
autonomous symmetries (9) with

ξ0 = φ(x)(x0)2 + ψ(x)x0, ξ j = θ j(x), η
µ

(1)µ = (αµ − 1)φ(x)x0 + ϕµ(x),

η
µ

(1)ν =


lµν

∑
p=0

ω
µ
pν(x)(x0)p, αµ = αν + lµν,

0, αµ 6= αν + lµν,

lµν ∈ N∪ {0}, ν 6= µ,
(10)

where j = 1, . . . , n, µ, ν = 1, . . . , m. The functions φ(x), ψ(x), θ j(x), ϕµ(x), ω
µ
pν(x), η

µ

(0)(x0, x)
are to be found from the system of determining equations

RL
0 D

αµ

x0 (η
µ

(0)) +
[
ϕµ − αµψ− (1 + αµ)φx0]Fµ − X(r)Fµ

+ ∑m
ν=1
ν 6=µ

∑
lµν

p=0 ∑
p
k=0 (

p
k)

Γ(αµ+1)(x0)p−k

Γ(αµ−k+1) ω
µ
pνD

lµν−k
x0 (Fν) = 0,

(11)

where (p
k) is a binomial coefficient.

Proof. A proposed approach for proving process is based on the following formal repre-
sentation. We rewrite the functions ηµ(x0, x, u) in the form

ηµ(x0, x, u) = η
µ

(0)(x0, x) + η
µ

(1)ν(x0, x, u)uν, µ, ν = 1, . . . , m.

Note that this equality does not correspond to the property of linear autonomy since
the functions η

µ

(1)ν(x0, x, u) depend on u. Thus, it is not assumed here that the functions

ηµ(x0, x, u) are linear in uν.
By using (6) and the equality Dx0

(
RL

0 D
αµ

x0

)
= RL

0 D
αµ+1
x0 (see, e.g., [14,16]), the first term

in the left hand side of (5) can be written as

X(αµ)
RL

0 D
αµ

x0 (uµ) = ζ
µ

(αµ)

= RL
0 D

αµ

x0

(
η

µ

(0) + η
µ

(1)νuν − ξ0uµ
0 − ξ juµ

j

)
+ ξ0 RL

0 D
αµ+1
x0 (uµ) + ξ j RL

0 D
αµ

x0 (u
µ
j ),

(12)
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where uµ
0 = ∂uµ/∂x0.

Next, we use the equality

ξ0uµ
0 = Dx0(ξ0uµ)− Dx0(ξ0)uµ.

Since ξ0 ∈ C∞ and ξ0|x0=0 = 0, the condition (ξ0uµ)|x0=0 = 0 holds. Therefore, we can use
the following property of the Riemann–Liouville fractional derivative [14,16]: if RL

0 Dα+1
x0 f

exists and f |x0=0 = 0, RL
0 Dα+1

x0 f = RL
0 Dα

x0(Dx0 f ). Thus, we have

RL
0 D

αµ

x0

(
Dx0(ξ0uµ)

)
= RL

0 D
αµ+1
x0 (ξ0uµ).

Then, we use the generalized Leibnitz rule [14]

RL
0 Dβ

x0( f g) =
∞

∑
k=0

(
β

k

)
RL

0 Dβ−k
x0 ( f ) Dk

x0(g), β > 0,

where RL
0 Dβ−k

t ( f ) for k < β is the Riemann–Lioville fractional derivative, and for k > β it
is the fractional integral

RL
0 Dβ−k

t ( f ) ≡ 0 Ik−β
t ( f ) =

1
Γ(k− β)

∫ t

0

f (τ, x)
(t− τ)β−k+1 dτ.

As a result, expression (12) takes the form

ζ
µ

(αµ)
= RL

0 D
αµ

x0 (η
µ

(0))

+
[
η

µ

(1)µ − αµDx0(ξ0)
]

RL
0 D

αµ

x0 (uµ) + ∑∞
k=1 (

αµ

k )
RL

0 D
αµ−k
x0 (uµ) Dk

x0(η
µ

(1)µ)

+∑m
ν=1
ν 6=µ

[
η

µ

(1)ν
RL

0 D
αµ

x0 (uν) + ∑∞
k=1 (

αµ

k )
RL

0 D
αµ−k
x0 (uν) Dk

x0(η
µ

(1)ν)
]

−∑∞
k=1 (

αµ

k+1)
RL

0 D
αµ−k
x0 (uµ) Dk+1

x0 (ξ0)−∑∞
k=1 (

αµ

k )
RL

0 D
αµ−k
x0 (uµ

j ) Dk
x0(ξ

j).

(13)

One can eliminate all fractional derivatives RL
0 D

αµ

x0 (uµ) from (13) by using the equa-
tions of system (1). Substituting the expression (13) into the system of determining
Equation (5) yields

RL
0 D

αµ

x0 (η
µ

(0)) +
[
η

µ

(1)µ − αµDx0(ξ0)
]

Fµ + ∑∞
k=1 (

αµ

k )
RL

0 D
αµ−k
x0 (uµ) Dk

x0(η
µ

(1)µ)

+∑m
ν=1
ν 6=µ

[
η

µ

(1)ν
RL

0 D
αµ

x0 (uν) + ∑∞
k=1 (

αµ

k )
RL

0 D
αµ−k
x0 (uν) Dk

x0(η
µ

(1)ν)
]

−∑∞
k=1 (

αµ

k+1)
RL

0 D
αµ−k
x0 (uµ) Dk+1

x0 (ξ0)−∑∞
k=1 (

αµ

k )
RL

0 D
αµ−k
x0 (uµ

j ) Dk
x0(ξ

j)

−X(r)Fµ = 0.

(14)

If αµ = αν + lµν (lµν ∈ N ∪ {0}), the fractional derivatives RL
0 D

αµ−k
x0 (uν)

(ν 6= µ, k = 0, . . . , lµν) can also be eliminated from (14) by using (1). We have

RL
0 D

αµ

x0 (u
ν) = RL

0 D
αν+lµν

x0 (uν) ≡ D
lµν

x0

(
RL

0 Dαν

x0 (u
ν)
)
= D

lµν

x0 (Fν),

and, similarly,

RL
0 D

αµ−k
x0 (uν) = RL

0 D
αν+lµν−k
x0 (uν) ≡ D

lµν−k
x0

(
RL

0 Dαν

x0 (u
ν)
)
= D

lµν−k
x0 (Fν)

for k = 1, . . . , lµν. Otherwise, all these fractional derivatives should be considered as
independent variables in the system (14).
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Note that in the system (14) all unknown functions ξ i, η
µ

(0), η
µ

(1)ν (i = 0, . . . , n, µ,

ν = 1, . . . , m) depend only on x0, x, u. Therefore, we can isolate the terms containing the
fractional derivatives and integrals, and set each of them equal to zero.

The terms containing RL
0 D

αµ−k
x0 (uµ

i ) lead to equations

Dk
x0(ξ

j) = 0, j = 1, . . . , n, k = 1, 2, . . . . (15)

For k = 1 we have
∂ξ j

∂x0 +
∂ξ j

∂uµ uµ
0 = 0,

where

∂ξ j

∂x0 = 0,
∂ξ j

∂uµ = 0

for all j = 1, . . . , n and µ = 1, . . . , m. The solution of this system can be written as

ξ j = θ j(x), j = 1, . . . , n, (16)

where θ j(x) are arbitrary functions related to x only. It is easy to see that in view of (16) all
Equation (15) are satisfied identically.

Similarly, the terms of (14) containing RL
0 D

αµ−k
x0 (uµ) lead to the infinite system of

differential equations(
αµ

k

)
Dk

x0(η
µ

(1)µ)−
(

αµ

k + 1

)
Dk+1

x0 (ξ0) = 0, k = 1, 2, . . .

or, after simplification,

(k + 1)Dk
x0(η

µ

(1)µ)− (αµ − k)Dk+1
x0 (ξ0) = 0, k = 1, 2, . . . . (17)

Considering equations corresponding to k = 1 and k = 2, we can exclude ξ0 and obtain
the equation

D2
x0(η

µ

(1)µ) = 0.

This equation can be rewritten in an equivalent form

∂2η
µ

(1)µ

∂(x0)2 + 2
∂2η

µ

(1)µ

∂x0∂uν
uν

0 +
∂2η

µ

(1)µ

∂uν∂uλ
uν

0uλ
0 +

∂η
µ

(1)µ

∂uν
uν

00 = 0,

which leads to the system

∂2η
µ

(1)µ

∂(x0)2 = 0,
∂η

µ

(1)µ

∂uν
= 0, µ, ν = 1, . . . , m.

The solution of this system is given by

η
µ

(1)µ = ϑµ(x)x0 + ϕµ(x),

where ϑµ(x) and ϕµ(x) are arbitrary functions related to x only. Substituting this solution
into (17) with k = 1, we obtain the equations

D2
x0(ξ

0) = 2(αµ − 1)−1ϑµ(x), µ = 1, . . . , m.
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Since the left-hand sides of all these equations are identical and do not depend on µ, the
following representations hold: ϑµ(x) = (αµ − 1)φ(x) (µ = 1, . . . m), where φ(x) is an
arbitrary function related to x only. Then, after expansion, we have

∂2ξ0

∂(x0)2 + 2
∂2ξ0

∂x0∂uµ uµ
0 +

∂2ξ0

∂uµ∂uν
uµ

0 uν
0 +

∂ξ0

∂uµ uµ
00 = 2φ(x)

whence
∂2ξ0

∂(x0)2 = 2φ(x),
∂ξ0

∂uµ = 0, µ = 1, . . . , m.

Integration of this system yields

ξ0 = φ(x)(x0)2 + ψ(x)x0 + ρ(x)

with arbitrary ψ(x) and ρ(x). Taking into account the condition (8), we obtain ρ(x) = 0.
Thus, we can write

ξ0 = φ(x)(x0)2 + ψ(x)x0, η
µ

(1)µ = (αµ − 1)φ(x)x0 + ϕµ(x). (18)

If αµ 6= αν + lµν, lµν ∈ N ∪ {0}, the terms containing RL
0 D

αµ

x0 (uν) (ν 6= µ) lead
to equations

η
µ

(1)ν = 0, ν 6= µ, ν, µ = 1, . . . , m. (19)

If αµ = αν + lµν, lµν ∈ N∪ {0}, the terms containing RL
0 D

αµ−k
x0 (uν) with k > lµν give

Dk
x0(η

µ

(1)ν) = 0, µ, ν = 1, . . . , m, ν 6= µ, k = lµν + 1, lµν + 2, . . . .

The solutions of these equations can be written in the form

η
µ

(1)ν =
lµν

∑
p=0

ω
µ
pν(x)(x0)p, (20)

where ω
µ
pν(x) are arbitrary functions related to x only.

Thus, we obtain all representations from (10). The system of determining Equation (11)
is obtained by substituting (10) into the remaining part of the system (14).

Now, let us consider some special cases of the system (1) which are widely encountered
in practice. For example, if a time-fractional derivative is applied to multidimensional time-
dependent vector fields (such as the flow velocity in hydrodynamics, the displacement in
solid state mechanics, the electric field strength in electrodynamics, etc.) then all fractional
derivatives in the system will have the same order. Another important case is a single
partial FDE. Such equations are frequently used for modelling scalar fields in systems with
memory and long-range interactions. In all the mentioned cases, the system of determining
Equation (11) can be significantly simplified.

Case 1. Let αµ = α = const for all µ = 1, . . . , m. Then, lµν = 0 and η
µ

(1)ν = ω
µ
ν (x) for

all ν = 1, . . . , m. The system of determining Equation (11) takes the form

RL
0 Dα

x0(η
µ

(0)) +
[

ϕµ − αψ− (1 + α)φx0
]

Fµ − X(r)Fµ +
m

∑
ν=1
ν 6=µ

ω
µ
ν Fν = 0. (21)

If 0 < α < 1, this result coincides with that presented in [53]
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Additionally, it is often the case that none of the functions Fµ (µ = 1, . . . , m) depend
on the variables uν

0 (ν = 1, . . . , m) and any their derivatives, i.e.,

∂Fµ

∂uν
0i1 ...is

= 0, s = 0, . . . , r− 1, µ, ν = 1, . . . , m. (22)

Nevertheless, the determining Equation (21) contains the variables uν
0i1 ...is because the pro-

longed generator X(r) depends on the expressions Di1 ...is(ξ
0uµ

0 ) − ξ0Di1 ...is(u
µ
0 )

(s = 1, . . . , r). Isolating the terms containing uν
0i1 ...ir−1

and setting all of them equal to
zero, we obtain the system

n

∑
j=1

(
1 +

r−1

∑
s=1

δis j

)
∂Fµ

∂uν
ji1 ...ir−1

Dj(ξ
0) = 0, (23)

where δis j is the Kronecker delta, µ, ν = 1, . . . , m, j, i1, . . . , ir−1 = 1, . . . , n and
i1 ≤ i2 ≤ . . . ≤ ir−1. The system (23) is a homogeneous linear system with respect to
Dj(ξ

0) (j = 1, . . . , n). If the rank of coefficient matrix of this system is equal to n, (23)
has only trivial solution, i.e., ξ0 = ξ0(x0). Taking into account the representation for ξ0

from (18), we found
ψ(x) = C1, φ(x) = C2, (24)

where C1 and C2 are arbitrary constants. Then, (18) takes the form

ξ0 = C1x0 + C2(x0)2, η
µ

(1)µ = ϕµ(x) + (α− 1)C2x0. (25)

Case 2. Let the system (1) consists of a single equation (i.e., µ = 1, F1 ≡ F, α1 ≡ α).
Then,

ξ0 = ψ(x)x0 + φ(x)(x0)2, ξ j = θ j(x), η(1) = ϕ(x) + (α− 1)φ(x)x0,

and the determining equation reads

RL
0 Dα

x0(η(0)) + [ϕ− αψ− (1 + α)tφ]F− X(r)F = 0.

Case 3. Theorem 1 is also applicable for a special type of systems of ordinary fractional
differential equations. Let x0 = t be a single independent variable in the system (1). Then,
Fµ = Fµ(t, u, ut, . . .) and (10) takes the form

ξ0 = C1t + C2t2, η
µ

(1)µ = (αµ − 1)C2t + Cµ
µ ,

η
µ

(1)ν =


lµν

∑
p=0

Cµ
pν tp, αµ = αν + lµν,

0, αµ 6= αν + lµν,

lµν ∈ N∪ {0}, ν 6= µ,

where µ, ν = 1, . . . , m, and C1, C2, Cµ
µ , Cµ

pν are arbitrary constants. The system of determin-
ing Equation (11) can be written as

RL
0 D

αµ

t (η
µ

(0)) +
[
Cµ

µ − αµC1 − (1 + αµ)C2t
]

Fµ − X(r)Fµ

+
m

∑
ν=1
ν 6=µ

lµν

∑
p=0

p

∑
k=0

(
p
k

)
Γ(αµ + 1)tp−k

Γ(αµ − k + 1)
Cµ

pνD
lµν−k
t (Fν) = 0.

4. Systems with the Caputo Fractional Derivatives

Now, let us consider the system (1) with the Caputo fractional derivatives.
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Theorem 2. Let 0D
αµ

x0 be the Caputo fractional differential operator C
0 D

αµ

x0 defined by (3). Then,
the Lie point symmetry group admitted by the system (1) consists of only linearly autonomous
symmetries (9) with

ξ0 = ψ(x)x0, ξ j = θ j(x), η
µ

(1)µ = ϕµ(x),

η
µ

(1)ν =

{
ω

µ
ν (x), αµ = αν + lµν,

0, αµ 6= αν + lµν,
lµν ∈ N∪ {0}, ν 6= µ,

(26)

where j = 1, . . . , n, µ, ν = 1, . . . , m. The functions ψ(x), θi(x), ϕµ(x), η
µ

(1)ν(x), η
µ

(0)(x0, x) are
to be found from the system of determining equations

C
0 D

αµ

x0 (η
µ

(0)) +
[
ϕµ − αµψ

]
Fµ − X(r)Fµ +

m

∑
ν=1
ν 6=µ

η
µ

(1)νD
lµν

x0 (Fν) = 0. (27)

Proof. It is well-known (see, e.g., [16]) that the Caputo and the Riemann–Liouville frac-
tional derivatives are connected by the relation

C
0 Dα

t (u) =
RL

0 Dα
t (u)−

N

∑
q=0

tq−α

Γ(q + 1− α)

∂qu
∂tq

∣∣∣
t=0

,

where N = [α]. By using this relation, the system (1) with the Caputo fractional deriva-
tives can be rewritten in terms of the Riemann–Liouville fractional derivatives in the
following way:

RL
0 D

αµ

x0 (u
µ)−

Nµ

∑
q=0

(x0)q−αµ Uµ
q (x)

Γ(q + 1− αµ)
= Fµ(x0, x, u, u(1), . . . , u(r)), (28)

where αµ ∈ R+\N, µ = 1, . . . , m, Nµ = [αµ], and

Uµ
q (x) =

∂quµ

∂(x0)q

∣∣∣
x0=0

, q = 0, . . . , Nµ.

Each function Uµ
q (x) should be considered as an arbitrary function in the system (28).

Its infinitesimal transformation is a particular case of the infinitesimal transformation of the
function ∂quµ

∂(x0)q considering at x0 = 0. In the Lie group analysis approach the functions Uµ
q

can be considered as new variables, and symmetry group generator (4) can be prolonged
on all these variables. The corresponding prolongation can be written as

X̂ = X + ηµ[0]
∂

∂Uµ
0
+

Nµ

∑
q=1

ζ
µ
0q[0]

∂

∂Uµ
q

,

where, for convenience, we introduce the notation f [0] = f (x0, x, u, . . .)|x0=0. In accordance
with (7), we have

ζ
µ
0q = Dq

x0(W
µ) + ξ0Dq+1

x0 (uµ) + ξ jDq
x0(u

µ
j ), j = 1, . . . , n.

The invariance principle for the system (28) leads to the following system of determin-
ing equations:

ζ
µ

(αµ)
− (x0)−αµ

Γ(1−αµ)
ηµ[0]− ξ0 ∑

Nµ

q=0
(x0)q−αµ−1

Γ(q−αµ)
Uµ

q

−∑
Nµ

q=1
(x0)q−αµ

Γ(q+1−αµ)
ζ

µ
0q[0]− X(r)Fµ = 0,

(29)
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whenever u satisfies (28).
Taking into account the representation (13) and eliminating all fractional derivatives

RL
0 D

αµ

x0 (uµ) by using the system (28), we can rewrite the system (29) in the form

RL
0 D

αµ

x0 (η
µ

(0)) +
[
η

µ

(1)µ − αµDx0(ξ0)
](

Fµ + ∑
Nµ

q=0
(x0)q−αµ Uµ

q
Γ(q+1−αµ)

)
− (x0)−αµ

Γ(1−αµ)

(
η

µ

(0)(0, x) + η
µ

(1)ν(0, x)Uν
0

)
−∑

Nµ

q=1
(x0)q−αµ

Γ(q+1−αµ)
ζ

µ
0q[0]

−ξ0 ∑
Nµ

q=0
(x0)q−αµ−1

Γ(q−αµ)
Uµ

q + ∑∞
k=1 (

αµ

k )
RL

0 D
αµ−k
x0 (uµ) Dk

x0(η
µ

(1)µ)

+∑m
ν=1
ν 6=µ

[
η

µ

(1)ν
RL

0 D
αµ

x0 (uν) + ∑∞
k=1 (

αµ

k )
RL

0 D
αµ−k
x0 (uν) Dk

x0(η
µ

(1)ν)
]

−∑∞
k=1 (

αµ

k+1)
RL

0 D
αµ−k
x0 (uµ) Dk+1

x0 (ξ0)−∑∞
k=1 (

αµ

k )
RL

0 D
αµ−k
x0 (uµ

i ) Dk
x0(ξ

i)

−X(r)Fµ = 0.

(30)

Similarly to the proof of Theorem 1, we can isolate the terms containing identical
fractional derivatives and integrals from the system (30) and set each of them equal to zero.
Later calculations give the expressions (16), (18)–(20). Then ζ

µ
0q[0] can be written as

ζ
µ
0q[0] =

∂qη
µ

(0)

∂(x0)q

∣∣∣∣∣
x0=0

+ (ϕµ − qψ)Uµ
q + (αµ − q)qφUµ

q−1 +
m

∑
ν=1
ν 6=µ

lµν

∑
p=0

Γ(q + 1)
Γ(q + 1− p)

ω
µ
pνUν

q−p.

Since all Uµ
q are arbitrary functions, we can additionally isolate from (30) the terms

containing these functions. The terms with Uµ
Nµ

lead to equations

(Nµ + 1)(x0)Nµ+1−αµ

Γ(Nµ + 1− αµ)
φ = 0, µ = 1, . . . , m,

whence
φ = 0. (31)

Calculations show that in view of (31) all terms with Uµ
q are equal to zero identically.

The terms with Uν
q (ν 6= µ) lead to the following equation:

lµν

∑
p=0

Nν

∑
q=0

ω
µ
pν

[
Γ(p + q + 1)(x0)p+qUν

q

Γ(q + 1)Γ(p + q + 1− αµ)
−

Γ(q + 1)(x0)qUν
q−p

Γ(q + p + 1)Γ(q + 1− αµ)

]
= 0.

It is easy to see that in this equation the term corresponding to p = 0 is equal to zero.
Splitting this equation with respect to Uν

p for each ν = 1, . . . , m, p = 1, . . . , lµν, and (x0)q

for each q = 0, . . . , Nν, we obtain

ω
µ
pν = 0, p = 1, . . . , lµν. (32)

Thus, ω
µ
0ν(x) ≡ ω

µ
ν (x) are the only functions that are not equal to zero.

Substituting (31) and (32) into (18) and (20), we obtain (26). The system (27) is obtained
by substituting (26) into the remaining part of the system (30).

Similarly to previous section, some special cases can be considered.
Case 1. Let αµ = α = const for all µ = 1, . . . , m. Then, lµν = 0 for all ν = 1, . . . , m,

η
µ

(1)ν = ω
µ
ν (x), and the system of determining Equation (27) takes the form

C
0 Dα

x0(η
µ

(0)) +
[
ϕµ − αψ

]
Fµ − X(r)Fµ +

m

∑
ν=1
ν 6=µ

ω
µ
ν Fν = 0. (33)
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If the equalities (22) are satisfied, similarly to (24) one can obtain ψ(x) = C1 and
ξ0 = C1x0, where C1 is an arbitrary constant.

Case 2. Let the system (1) consists of a single equation with the Caputo fractional
derivative (i.e., µ = 1, F1 ≡ F, αµ = α). Then, we have

ξ0 = ψ(x)x0, ξ i = θi(x), η(1) = ϕ(x), (34)

and
C
0 Dα

x0(η(0)) + [ϕ− αψ]F− X(r)F = 0. (35)

Case 3. Let x0 = t be a single independent variable. Then, the system (1) is a system
of ordinary FDEs with Fµ = Fµ(t, u, ut, . . .). In this case, we have

ξ = C1t, η
µ

(1)µ = Cµ
µ ,

η
µ

(1)ν =

{
Cµ

ν , αµ = αν + lµν,
0, αµ 6= αν + lµν,

lµν ∈ N∪ {0}, ν 6= µ,

where µ, ν = 1, . . . , m, and C1, Cµ
ν are arbitrary constants. The system of determining

Equation (27) takes the form

C
0 D

αµ

t (η
µ

(0)) +
[
Cµ

µ − αµC1

]
Fµ − X(r)Fµ +

m

∑
ν=1
ν 6=µ

η
µ

(1)νD
lµν

t (Fν) = 0. (36)

Finally, we consider the system (1) involving both the Riemann–Liouville and Caputo
fractional derivatives.

Theorem 3. If in the system (1) 0D
αµ

x0 = RL
0 D

αµ

x0 for µ = 1, . . . , m0, and 0D
αµ

x0 = C
0 D

αµ

x0 for
µ = m0 + 1, . . . , m, where 1 ≤ m0 ≤ m− 1, then the Lie point symmetry group of this system
consists of only linearly-autonomous symmetries (9) with

ξ0 = ψ(x)x0, ξ j = θ j(x), η
µ

(1)µ = ϕµ(x), µ = 1, . . . , m0,

η
µ

(1)ν =


lµν

∑
p=0

ω
µ
pν(x)(x0)p, αµ = αν + lµν, lµν ∈ N∪ {0}, µ = 1, . . . , m,

0, αµ 6= αν + lµν, ν 6= µ, ν = 1, . . . , m0,

η
µ

(1)ν =

{
ω

µ
0ν(x), αµ = αν + lµν, lµν ∈ N∪ {0}, µ = m0 + 1, . . . , m,

0, αµ 6= αν + lµν, ν 6= µ, ν = m0 + 1, . . . , m,

η
µ

(1)ν = 0,
µ = 1, . . . , m0, and µ = m0 + 1, . . . , m,
ν = m0 + 1, . . . , m; ν = 1, . . . , m0.

Here, j = 1, . . . , n and unknown functions η
µ

(0)(x0, x), ψ(x), θi(x), ϕµ(x), ω
µ
pν(x) are to be found

from the system of Equation (11) and (27), such that µ = 1, . . . , m0 in (11) and µ = m0 + 1, . . . , m
in (27).

In this theorem, we assume that all Riemann–Liouville fractional derivatives in the sys-
tem (1) cannot be represented in terms of the Caputo fractional derivatives, i.e., derivatives

∂quµ

∂(x0)q

∣∣∣∣∣
x0=0

do not exist for all q = 0, . . . , Nµ, µ = 1, . . . , m0. Then, the proof of Theorem 3 is based on
combination of proofs of Theorems 1 and 2.
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In a special case of αµ = α (µ = 1, . . . , m) the system of determining equations consists
of the Equation (21) for µ = 1, . . . , m0 and Equation (33) for µ = m0 + 1, . . . , m.

A comparison of Theorems 2 and 3 with Theorem 1 leads to the important conclusion
that symmetry groups of FDEs with the Riemann–Liouville fractional derivatives can be
more various than those for FDEs with the Caputo fractional derivatives. For example, the
projective group with the generator

X = (x0)2 ∂

∂x0 + (αµ − 1)x0uµ ∂

∂uµ ,

that is of importance for finding blow-up invariant solutions and constructing non-trivial
conservation laws, can be admitted by FDEs only with the Riemann–Liouville fractional
derivatives. The main reason of such differences between the equations with different
types of fractional derivatives is that the Caputo derivative C

0 Dα
x0 u does not tend to DN

x0 u as
α→ N, N = [α], whereas for the Riemann–Liouville derivative we have RL

0 Dα
x0 u→ DN

x0 u as
α→ N. Note that C

0 Dα
x0 u→ DN+1

x0 u and RL
0 Dα

x0 u→ DN+1
x0 u as α→ N + 1. As a result, any

FDE RL
0 Dα

x0 u = f with the Riemann–Liouville fractional derivative provides a continuous
connection between the neighbouring integer-order differential equations DN

x0 u = f and
DN+1

x0 u = f , and inherit certain symmetry properties of both these equations.

5. Examples

To illustrate the applicability of theorems presented in previous sections, let us consider
several examples. In all of them, the time variable t will be used as independent variable x0.

Example 1. Let us consider a 3D anomalous diffusion model with a nonlinear source term and
time-fractional derivative of the Caputo type:

C
0 Dα

t u = uxx + uyy + uzz + uσ, σ 6= 0, 1. (37)

This equation can be considered as a time-fractional generalization of the basic 3D blow-up model. It
follows from Theorem 2 and representations (34) that any symmetry of the Equation (37) should
have the form

X = C1t
∂

∂t
+ θ1(x, y, z)

∂

∂x
+ θ2(x, y, z)

∂

∂y
+ θ3(x, y, z)

∂

∂z
+
[
η0(t, x, y, z) + ϕ(x, y, z)u

] ∂

∂u
,

where C1 is an arbitrary constant. The determining Equation (35) takes the form

C
0 Dα

t (η
0) + (ϕ− αC1)(uxx + uyy + uzz + uσ)

− ζxx − ζyy − ζzz − σuσ−1(η0 + ϕu) = 0,
(38)

where

ζxx = η0
xx + ϕxxu + (2ϕx − θ1

xx)ux − θ2
xxuy − θ3

xxuz

+ [ϕ + (α− 1)C2 − 2θ1
x]uxx − 2θ2

xuxy − 2θ3
xuxz,

ζyy = η0
yy + ϕyyu− θ1

yyux + (2ϕy − θ2
yy)uy − θ3

yyuz

− 2θ1
yuxy + [ϕ + (α− 1)C2 − 2θ2

y]uyy − 2θ3
yuyz,

ζzz = η0
zz + ϕzzu− θ1

zzux − θ2
zzuy + (2ϕz − θ3

zz)uz

− 2θ1
z uxz − 2θ2

z uyz + [ϕ + (α− 1)C2 − 2θ3
z ]uzz.
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Isolating in (38) the terms containing first and second order partial derivatives of u with
respect to x, y, z, as well as the term free of these variables, and setting each term equal to zero, we
obtain the following system of equations:

θ1
x =

α

2
C1, θ2

y =
α

2
C1, θ3

z =
α

2
C1,

θ1
y + θ2

x = 0, θ1
z + θ3

x = 0, θ2
z + θ3

y = 0,

θ1
yy + θ1

zz = 2ϕx, θ2
xx + θ2

zz = 2ϕy, θ3
xx + θ3

yy = 2ϕz,

C
0 Dα

t (η
0) + (ϕ− αC1)uσ = η0

xx + η0
yy + η0

zz + (ϕxx + ϕyy + ϕzz)u + σuσ−1η0 + σuσ ϕ.

The solution of this system for σ 6= 0, 1 is given by

θ1 =
α

2
C1x + C5y + C6z + C2, θ2 =

α

2
C1y− C5x + C7z + C3,

θ3 =
α

2
C1z− C6x− C7y + C4, η0 = 0, ϕ =

α

1− σ
C1

with seven arbitrary constants Ci. Thus, the Equation (37) has seven linearly independent symmetries:

X1 =
2
α

t
∂

∂t
+ x

∂

∂x
+ y

∂

∂y
+ z

∂

∂z
+

2
1− σ

u
∂

∂u
, X2 =

∂

∂x
, X3 =

∂

∂y
,

X4 =
∂

∂z
, X5 = y

∂

∂x
− x

∂

∂y
, X6 = z

∂

∂x
− x

∂

∂z
, X7 = z

∂

∂y
− y

∂

∂z
.

Example 2. As an example of the system with the Riemann–Liouville fractional derivatives let us
consider the system of nonlinear fractional equations for modeling one-dimensional fluid flow in
inhomogeneous porous medium:

RL
0 Dα

t u = (u2
x + v2

x)
σ(uxx + vxx),

RL
0 Dα

t v = (u2
x + v2

x)
σ(vxx − uxx),

(39)

with σ = α/(1− α) and α ∈ (0, 1).
In accordance with Theorem 1 and representations (25), any symmetry of the system (39)

should have the form

X = τ(t)
∂

∂t
+ θ(x)

∂

∂x
+ η1(t, x, u, v)

∂

∂u
+ η2(t, x, u, v)

∂

∂v

with

τ(t) = C1t + C2t2,

η1(t, x, u, v) = η1
(0)(t, x) + ϕ1(x)u + (α− 1)C2tu + ω1(x)v,

η2(t, x, u, v) = η2
(0)(t, x) + ϕ2(x)v + (α− 1)C2tv + ω2(x)u,

where C1 and C2 are arbitrary constants. The system of determining Equation (21) takes the form

RL
0 Dα

t (η
1
(0)) + (ϕ1 − αC1 − (1 + α)tC2)(u2

x + v2
x)

σ(uxx + vxx) + ω1(u2
x + v2

x)
σ(vxx − uxx)

− σ(u2
x + v2

x)
σ−1(2uxζ1

1 + 2vxζ2
1)(uxx + vxx)− (u2

x + v2
x)

σ(ζ1
11 + ζ2

11) = 0,

RL
0 Dα

t (η
2
(0)) + (ϕ2 − αC1 − (1 + α)tC2)(u2

x + v2
x)

σ(vxx − uxx) + ω2(u2
x + v2

x)
σ(uxx + vxx)

− σ(u2
x + v2

x)
σ−1(2uxζ1

1 + 2vxζ2
1)(vxx − uxx)− (u2

x + v2
x)

σ(ζ2
11 − ζ1

11) = 0.
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Here

ζ1
1 = η1

(0)x + ϕ′1u + (ϕ1 + (α− 1)C2t)ux + ω′1v + ω1vx − θ′ux,

ζ2
1 = η2

(0)x + ϕ′2v + (ϕ2 + (α− 1)C2t)vx + ω′2u + ω2ux − θ′vx,

ζ1
11 = η1

(0)xx + ϕ′′1 u + ω′′1 v + (2ϕ′1 − θ′′)ux + 2ω′1vx + (ϕ1 + (α− 1)C2t− 2θ′)uxx + ω1vxx,

ζ2
11 = η2

(0)xx + ω′′2 u + ϕ′′2 v + 2ω′2ux + (2ϕ′2 − θ′′)vx + ω2uxx + (ϕ2 + (α− 1)C2t− 2θ′)vxx.

The solution of this system with σ = α/(1− α) is given by

θ =
α(1− α)

2
C1x + αC4x + C3, ϕ1 = (α− 1)C2t + C4, ϕ2 = (α− 1)C2t + C4,

ω1 = C5, ω2 = −C5, η1
(0) = C6tα−1, η2

(0) = C7tα−1

with seven arbitrary constants Ci. Hence, the system (39) has seven linearly independent Lie
point symmetries

X1 = t
∂

∂t
+

α(1− α)

2
x

∂

∂x
, X2 = t2 ∂

∂t
+ (α− 1)tu

∂

∂u
+ (α− 1)tv

∂

∂v
, X3 =

∂

∂x
,

X4 = αx
∂

∂x
+ u

∂

∂u
+ v

∂

∂v
, X5 = v

∂

∂u
− u

∂

∂v
, X6 = tα−1 ∂

∂u
, X7 = tα−1 ∂

∂v
.

Example 3. As an example of the system involving both the Riemann–Liouville and the Caputo
fractional derivatives, we consider a fractional generalization of one-dimensional nonlinear system
of coupled thermoelastic equations with temperature-dependent material properties:

RL
0 Dα

t ϑ = (ϑβϑx)x − ϑσutx,
C
0 Dα+1

t u = uxx − ϑσϑx,
(40)

with α ∈ (0, 1) and β, σ 6= 0. In (40) u is the displacement and ϑ is the temperature difference.
In view of Theorem 3 one can conclude that any symmetry of this system should have the form

X = ψ(x)t
∂

∂t
+ θ(x)

∂

∂x
+ (η1

(0)(t, x) + ϕ1(x)ϑ)
∂

∂ϑ
+ (η2

0(t, x) + ϕ2(x)u)
∂

∂u
.

The corresponding system of determining equations can be written in the form

RL
0 Dα

t (η
1
(0)) + [ϕ1 − αψ]

[
(ϑβϑx)x − ϑσutx

]
− ϑβζ1

11 − 2βϑβ−1ϑxζ1
1 + ϑσζ2

01

−
(

η1
(0)(t, x) + ϕ1(x)ϑ

)[
β(β− 1)ϑβ−2ϑ2

x + βϑβ−1ϑxx − σϑσ−1utx

]
= 0,

C
0 Dα+1

t (η2
(0)) + [ϕ2 − (α + 1)ψ][uxx − ϑσϑx]− ζ2

11

+
(

η1
(0)(t, x) + ϕ1(x)ϑ

)
σϑσ−1ϑx + ϑσζ1

1 = 0,

where

ζ1
1 = η1

(0)x + ϕ′1ϑ + (ϕ1 − θ′)ϑx − tψ′ϑt,

ζ1
11 = η1

(0)xx + ϕ′′1 ϑ + (2ϕ′1 − θ′′)ϑx + (ϕ1 − 2θ′)ϑxx − tψ′′ϑt − 2tψ′ϑtx,

ζ2
01 = η2

(0)tx + (ϕ′2 − ψ′)ut + (ϕ2 − ψ− θ′)utx − tψ′utt,

ζ2
11 = η2

(0)xx + ϕ′′2 u + (2ϕ′2 − θ′′)ux + (ϕ2 − 2θ′)uxx − tψ′′ut − 2tψ′utx.
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The solution of this system with respect to the functions ψ(x), θ(x), ϕ1(x), ϕ2(x), η1
(0)(t, x) and

η2
(0)(t, x) leads to the following result. The system (40) with arbitrary σ 6= 0 and β 6= 0 has four

linearly independent infinitesimal symmetries

X1 =
∂

∂x
, X2 =

∂

∂u
, X3 = t

∂

∂u
, X4 = x

∂

∂u
,

and in the specific case of σ = (1− α)β/2 there is an additional symmetry

X5 = t
∂

∂t
+

1 + α

2
x

∂

∂x
+

1
β

ϑ
∂

∂ϑ
+

(
1 +

1
β

)
u

∂

∂u
.

6. Conclusions

The presented theorems significantly facilitate the finding of Lie point symmetry
groups for certain classes of multi-dimensional FDEs with the Riemann–Liouville and
Caputo fractional derivatives, as well as for systems of such equations. The obtained
simplified determining equations can be solved using well-known algorithms of classical
Lie group analysis of integer-order differential equations. Moreover, numerous computer
algebra packages can be used for this purpose. It is sufficiently obvious that more wide
classes of FDEs can admit only linearly autonomous Lie point symmetry groups. Finding
such classes is an important problem of modern Lie group analysis.
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35. Yaşar, E.; Yildirim, Y.; Khalique, C.M. Lie symmetry analysis, conservation laws and exact solutions of the seventh-order time
fractional Sawada-Kotera-Ito equation. Results Phys. 2016, 6, 322–328. [CrossRef]

36. Zhao Z.; Han, D. Symmetry analysis and conservation laws of the time fractional Kaup–Kupershmidt equation from capillary
gravity waves. Math. Model. Nat. Phenom. 2018, 13, 24. [CrossRef]

37. Inc, M.; Yusuf, A.; Aliyu, A.I.; Baleanu, D. Time-fractional Cahn–Allen and time-fractional Klein–Gordon equations: Lie symmetry
analysis, explicit solutions and convergence analysis. Phys. A Stat. Mech. Appl. 2018, 493, 94–106. [CrossRef]

38. Lashkarian, E.; Hejazi, S.R.; Habibi, N.; Motamednezhad, A. Symmetry properties, conservation laws, reduction and numerical
approximations of time-fractional cylindrical-Burgers equation. Commun. Nonlinear Sci. Numer. Simul. 2019, 67, 176–191.
[CrossRef]

39. Li, R.; Li, L. Exact Solutions and Conservation Laws of the Time-Fractional Gardner Equation with Time-Dependent Coefficients.
Symmetry 2021, 13, 2434. [CrossRef]

40. Rashidi, S.; Hejazi S.R.; Mohammadizadeh F. Group formalism of Lie transformations, conservation laws, exact and numerical
solutions of non-linear time-fractional Black–Scholes equation. J. Comput. Appl. Math. 2022 403, 403. [CrossRef]

41. Gong, T.; Feng, W.; Zhao, S. Symmetry Analysis and Conservation Laws for a Time-Fractional Generalized Porous Media
Equation. Mathematics 2022, 10, 687. [CrossRef]

42. Pan, M.; Zheng, L.; Liu, F.; Zhang, X. Lie group analysis and similarity solution for fractional Blasius flow. Commun. Nonlinear Sci.
Numer. Simul. 2016, 37, 90–101. [CrossRef]

43. Sahoo, S.; Saha Ray, S. Analysis of Lie symmetries with conservation laws for the (3 + 1) dimensional time-fractional mKdV-ZK
equation in ion-acoustic waves. Nonlinear Dyn. 2017, 90, 1105–1113. [CrossRef]

44. Sahadevan, R.; Prakash, P. On Lie symmetry analysis and invariant subspace methods of coupled time fractional partial differential
equations. Chaos Solit. Fractals 2017, 104, 107–120. [CrossRef]

http://dx.doi.org/10.1006/jmaa.1998.6078
http://dx.doi.org/10.1088/0031-8949/2009/T136/014016
http://dx.doi.org/10.1007/s11232-015-0317-8
http://dx.doi.org/10.1111/sapm.12374
http://dx.doi.org/10.1016/j.ifacol.2017.08.2426
http://dx.doi.org/10.1007/s11071-018-4192-3
http://dx.doi.org/10.1016/j.cnsns.2018.08.011
http://dx.doi.org/10.3390/math9030216
http://dx.doi.org/10.1016/j.jmaa.2012.04.006
http://dx.doi.org/10.1016/j.physa.2014.09.043
http://dx.doi.org/10.1016/j.cnsns.2015.10.004
http://dx.doi.org/10.1016/j.rinp.2016.06.003
http://dx.doi.org/10.1051/mmnp/2018025
http://dx.doi.org/10.1016/j.physa.2017.10.010
http://dx.doi.org/10.1016/j.cnsns.2018.06.025
http://dx.doi.org/10.3390/sym13122434
http://dx.doi.org/10.1016/j.cam.2021.113863
http://dx.doi.org/10.3390/math10050687
http://dx.doi.org/10.1016/j.cnsns.2016.01.010
http://dx.doi.org/10.1007/s11071-017-3712-x
http://dx.doi.org/10.1016/j.chaos.2017.07.019


Mathematics 2022, 10, 2319 17 of 17

45. Singla, K.; Gupta, R.K. Generalized Lie symmetry approach for fractional order systems of differential equations III. J. Math. Phys.
2017, 58, 061501. [CrossRef]

46. Dorjgotov, K.; Ochiai, H.; Zunderiya, U. Lie symmetry analysis of a class of time fractional nonlinear evolution systems. Appl.
Math. Comput. 2018, 329, 105–117. [CrossRef]

47. Lashkarian, E.; Hejazi, S.R.; Dastranj, E. Conservation laws of (3 + α)-dimensional time-fractional diffusion equation. Comput.
Math. Appl. 2018, 75, 740–754. [CrossRef]

48. Saberi, E.; Hejazi, S.R. Lie symmetry analysis, conservation laws and exact solutions of the time-fractional generalized Hirota–
Satsuma coupled KdV system. Phys. A Stat. Mech. Appl. 2018, 492, 296–307. [CrossRef]

49. Saha Ray, S.; Sahoo, S. Invariant analysis and conservation laws of (2 + 1) dimensional time-fractional ZK-BBM equation in
gravity water waves. Comput. Math. Appl. 2018, 75, 2271–2279. [CrossRef]

50. Sahoo, S.; Saha Ray, S. On the conservation laws and invariant analysis for time-fractional coupled Fitzhugh–Nagumo equations
using the Lie symmetry analysis. Eur. Phys. J. Plus. 2019, 134, 83. [CrossRef]

51. Sahoo, S.; Saha Ray, S.; Abdou, M.A.M.; Inc, M.; Chu, Y.-M. New Soliton Solutions of Fractional Jaulent-Miodek System with
Symmetry Analysis. Symmetry 2020, 12, 1001. [CrossRef]
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