Next Article in Journal
Tissue Specific Labeling in Proteomics
Next Article in Special Issue
A Combination of Histological, Physiological, and Proteomic Approaches Shed Light on Seed Desiccation Tolerance of the Basal Angiosperm Amborella trichopoda
Previous Article in Journal
Retrospective Proteomic Screening of 100 Breast Cancer Tissues
Article Menu

Export Article

Open AccessArticle

Exogenous Auxin Elicits Changes in the Arabidopsis thaliana Root Proteome in a Time-Dependent Manner

Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
Author to whom correspondence should be addressed.
Proteomes 2017, 5(3), 16;
Received: 26 April 2017 / Revised: 27 June 2017 / Accepted: 4 July 2017 / Published: 10 July 2017
(This article belongs to the Special Issue Plant Proteomics 2017)
PDF [1299 KB, uploaded 10 July 2017]


Auxin is involved in many aspects of root development and physiology, including the formation of lateral roots. Improving our understanding of how the auxin response is mediated at the protein level over time can aid in developing a more complete molecular framework of the process. This study evaluates the effects of exogenous auxin treatment on the Arabidopsis root proteome after exposure of young seedlings to auxin for 8, 12, and 24 h, a timeframe permitting the initiation and full maturation of individual lateral roots. Root protein extracts were processed to peptides, fractionated using off-line strong-cation exchange, and analyzed using ultra-performance liquid chromatography and data independent acquisition-based mass spectrometry. Protein abundances were then tabulated using label-free techniques and evaluated for significant changes. Approximately 2000 proteins were identified during the time course experiment, with the number of differences between the treated and control roots increasing over the 24 h time period, with more proteins found at higher abundance with exposure to auxin than at reduced abundance. Although the proteins identified and changing in levels at each time point represented similar biological processes, each time point represented a distinct snapshot of the response. Auxin coordinately regulates many physiological events in roots and does so by influencing the accumulation and loss of distinct proteins in a time-dependent manner. Data are available via ProteomeXchange with the identifier PXD001400. View Full-Text
Keywords: auxin; label-free; root; time course auxin; label-free; root; time course

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material


Share & Cite This Article

MDPI and ACS Style

Slade, W.O.; Ray, W.K.; Hildreth, S.B.; Winkel, B.S.J.; Helm, R.F. Exogenous Auxin Elicits Changes in the Arabidopsis thaliana Root Proteome in a Time-Dependent Manner. Proteomes 2017, 5, 16.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Proteomes EISSN 2227-7382 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top