From Digital Natives to AI Natives: Emerging Competencies and Media and Information Literacy in Higher Education
Abstract
1. Introduction
2. From Media and Information Literacy (MIL) to MIL-IA for University Education
3. Research Methodology
3.1. Units of Analysis
3.2. Corpus Composition
3.3. Corpus Analysis Using the ALCESTE Methodology
3.4. Detection of Typologies of Competencies
3.5. Discursive Integration and Interpretation of Typologies
3.6. Relationship Between Competencies, Risks, and MIL-AI
4. Results
4.1. Perceived Competencies
4.2. System of Relationships Between Competencies and IML Dimensions
5. Discussion of the Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmad, T., Aliaga Lazarte, E. A., & Mirjalili, S. (2022). A systematic literature review on fake news in the COVID-19 pandemic: Can AI propose a solution? Applied Sciences, 12(24), 12727. [Google Scholar] [CrossRef]
- Akhmetov, I., Pak, A., Ualiyeva, I., & Gelbukh, A. (2020). Highly language-independent word lemmatization using a machine-learning classifier. Computación Y Sistemas, 24(3), 1353–1364. [Google Scholar] [CrossRef]
- Barad, K. (2003). Posthumanist performativity: Toward an understanding of how matter comes to matter. Signs, 28(3), 801–831. [Google Scholar] [CrossRef]
- Begby, E. (2024). From belief polarization to echo chambers: A rationalizing account. Episteme, 21(2), 519–539. [Google Scholar] [CrossRef]
- Bender, S. M. (2024). Awareness of artificial intelligence as an essential digital literacy: ChatGPT and gen-AI in the classroom. Changing English, 31(2), 161–174. [Google Scholar] [CrossRef]
- Braidotti, R. (2016). Posthuman critical theory. In Critical posthumanism and planetary futures (pp. 13–32). Springer India. [Google Scholar] [CrossRef]
- Braidotti, R. (2017). Four theses on posthuman feminism. Available online: https://dspace.library.uu.nl/bitstream/handle/1874/386623/361._Four_Theses_on_Posthuman_Feminism.pdf?sequence=1 (accessed on 29 June 2025).
- Braidotti, R. (2019). Posthuman knowledge. Polity Press. [Google Scholar]
- Butler, J. (2015). Performative agency. The Limits of Performativity. [Google Scholar]
- Camargo, B. V., & Justo, A. M. (2013). IRAMUTEQ: Um software gratuito para análise de dados textuais. Temas em Psicologia, 21(2), 513–518. [Google Scholar] [CrossRef]
- Carli, R., & Calvaresi, D. (2023). Reinterpreting vulnerability to tackle deception in principles-based XAI for human-computer interaction. In Lecture notes in computer science (pp. 249–269). Springer Nature Switzerland. [Google Scholar] [CrossRef]
- Chan, C. K. Y., & Lee, K. K. W. (2023). The AI generation gap: Are Gen Z students more interested in adopting generative AI such as ChatGPT in teaching and learning than their Gen X and millennial generation teachers? Smart Learning Environments, 10(1), 1–23. [Google Scholar] [CrossRef]
- Coeckelbergh, M. (2023). Democracy, epistemic agency, and AI: Political epistemology in times of artificial intelligence. AI and Ethics, 3(4), 1341–1350. [Google Scholar] [CrossRef] [PubMed]
- Couraceiro, P., Foà, C., & Pinto-Martinho, A. (2025). Challenges and needs in algorithmic literacy for journalists: Uncovering the reality of Portuguese newsrooms. Journalism Practice, 1–32. [Google Scholar] [CrossRef]
- Cox, A. (2024). Algorithmic literacy, AI literacy and responsible generative AI literacy. Journal of Web Librarianship, 18(3), 93–110. [Google Scholar] [CrossRef]
- Davies, B., & Harré, R. (1990). Positioning: The discursive production of selves. Journal for The Theory of Social Behaviour, 20, 43–63. [Google Scholar] [CrossRef]
- Eriksen, T. H. (2001). Tyranny of the moment: Fast and slow time in the information age. Available online: https://www.hyllanderiksen.net/s/Tyranny-of-the-moment.pdf (accessed on 29 June 2025).
- Fridman, M., Krøvel, R., & Palumbo, F. (2025). How (not to) run an AI project in investigative journalism. Journalism Practice, 19(6), 1362–1379. [Google Scholar] [CrossRef]
- Gee, J. P. (2014). An introduction to discourse analysis: Theory and method (4th ed.). Routledge. [Google Scholar] [CrossRef]
- Ghodoosi, B., West, T., Li, Q., Torrisi-Steele, G., & Dey, S. (2023). A systematic literature review of data literacy education. Journal of Business & Finance Librarianship, 28(2), 112–127. [Google Scholar] [CrossRef]
- Grotlüschen, A., Dutz, G., & Skowranek, K. (2024). Writing with artificial intelligence? Ad-hoc-survey findings raise awareness for critical literacy at the International Literacy Day. International Journal of Lifelong Education, 43(4), 371–384. [Google Scholar] [CrossRef]
- Gunn, H. K. (2021). Filter bubbles, echo chambers, online communities. In The Routledge handbook of political epistemology (pp. 192–202). Routledge. [Google Scholar] [CrossRef]
- Haraway, D. J. (2022). A cyborg manifesto: An ironic dream of a common language for women in the integrated circuit. In The transgender studies reader remix. Routledge. [Google Scholar]
- Harré, R. (1991). The discursive production of Selves. Theory & Psychology, 1(1), 51–63. [Google Scholar] [CrossRef]
- Harré, R. (2015). Positioning theory. In The Wiley handbook of theoretical and philosophical psychology (pp. 263–276). John Wiley & Sons, Ltd. [Google Scholar] [CrossRef]
- Harré, R., Moghaddam, F. M., Cairnie, T. P., Rothbart, D., & Sabat, S. R. (2009). Recent advances in positioning theory. Theory & Psychology, 19(1), 5–31. [Google Scholar] [CrossRef]
- Heil, J., Heil, J., Ifenthaler, D., Ifenthaler, D., Cooper, M., Cooper, M., Conti, R., Penna, M. P., & Penna, M. P. (2025). Students’ perceived impact of GenAI tools on learning and assessment in higher education: The role of individual AI competence. Smart Learning Environments, 12(1), 37. [Google Scholar] [CrossRef]
- Hristovska, A. (2023). Fostering media literacy in the age of AI: Examining the impact on digital citizenship and ethical decision-making. KAIROS: Media and Communications Review, 2(2), 39–59. [Google Scholar] [CrossRef]
- Juelskjær, M., & Schwennesen, N. (2012). Intra-active entanglements—An interview with Karen Barad. Kvinder, Koen Og Forskning. [Google Scholar] [CrossRef]
- Karousos, N., Vorvilas, G., Pantazi, D., & Verykios, V. (2024). A hybrid text summarization technique of student open-ended responses to online educational surveys. Electronics, 13(18), 3722. [Google Scholar] [CrossRef]
- Kemp, S. (2025, February 5). Digital 2025: Global overview report. DataReportal–global digital insights. Available online: https://datareportal.com/reports/digital-2025-global-overview-report (accessed on 30 June 2025).
- Kenny, K. (2019). Judith butler and performativity. In Management, organizations and contemporary social theory (pp. 244–255). Routledge. [Google Scholar] [CrossRef]
- Kerdvibulvech, C., & Jiang, X. (2025). Generative AI in human-computer interaction: Enhancing user interaction, emotional recognition, and ethical considerations. In Lecture notes in computer science (pp. 62–71). Springer Nature Switzerland. [Google Scholar] [CrossRef]
- Kim, J., Yu, S., Detrick, R., & Li, N. (2025). Exploring students’ perspectives on Generative AI-assisted academic writing. Education and Information Technologies, 30(1), 1265–1300. [Google Scholar] [CrossRef]
- Kleinman, A., & Barad, K. (2012). Intra-actions. Mousse Magazine, 34(13), 76–81. [Google Scholar]
- Krause, S., Panchal, B. H., & Ubhe, N. (2025). Evolution of learning: Assessing the transformative impact of Generative AI on higher education. Frontiers of Digital Education, 2(2), 1–15. [Google Scholar] [CrossRef]
- Lebart, L., Salem, A., & Berry, L. (2010). Exploring textual data. Springer. [Google Scholar] [CrossRef]
- Malik, S. Z., Iqbal, K., Sharif, M., Shah, Y. A., Khalil, A., Irfan, M. A., & Rosak-Szyrocka, J. (2024). Attention-aware with stacked embedding for sentiment analysis of student feedback through deep learning techniques. PeerJ Computer Science, 10, e2283. [Google Scholar] [CrossRef]
- Marushchak, A., Petrov, S., & Khoperiya, A. (2024). Countering AI-powered disinformation through national regulation: Learning from the case of Ukraine. Frontiers in Artificial Intelligence, 7, 1474034. [Google Scholar] [CrossRef] [PubMed]
- McLuhan, M., & Fiore, Q. (1967). The medium is the massage: An inventory of effects. Bantam Books. [Google Scholar]
- Mochizuki, Y., Bruillard, E., & Bryan, A. (2025). The ethics of AI or techno-solutionism? UNESCO’s policy guidance on AI in education. British Journal of Sociology of Education, 1–22. [Google Scholar] [CrossRef]
- Munroe, W. (2024). Echo chambers, polarization, and “Post-truth”: In search of a connection. Philosophical Psychology, 37(8), 2647–2678. [Google Scholar] [CrossRef]
- Natale, S. (2021). Deceitful media: Artificial intelligence and social life after the turing test. Available online: https://iris.unito.it/bitstream/2318/1768312/2/Natale_Introduction_Author%20draft.pdf (accessed on 29 June 2025).
- Ndungu, M. W. (2024). Integrating basic artificial intelligence literacy into media and information literacy programs in higher education: A framework for librarians and educators. Journal of Information Literacy, 18(2), 122–139. [Google Scholar] [CrossRef]
- Pariser, E. (2017). El filtro burbuja: Cómo la web decide lo que leemos y lo que pensamos. Available online: https://www.elboomeran.com/upload/ficheros/obras/documentofiltro.pdf (accessed on 29 June 2025).
- Patton, M. Q. (2014). Qualitative research & evaluation methods: Integrating theory and practice. SAGE. [Google Scholar]
- Ranieri, M., Cuomo, S., & Biagini, G. (2024). Co-designing media education strategies: A workshop on AI and information literacy. Available online: https://flore.unifi.it/handle/2158/1428972 (accessed on 29 June 2025).
- Ratinaud, P., & Marchand, P. (2012). Application de la méthode ALCESTE à de “gros” corpus et stabilité des “mondes lexicaux”: Analyse du “CableGate” avec IRaMuTeQ. 11èmes Journées internationales d’Analyse statistique des Données Textuelles, 2012, Liège, Belgium. 835–844. Available online: https://hal.science/hal-03695856 (accessed on 6 July 2025).
- Reinert, M. (1990). Alceste une méthodologie d’analyse des données textuelles et une application: Aurelia De Gerard De Nerval. Bulletin de Methodologie Sociologique: BMS, 26(1), 24–54. [Google Scholar] [CrossRef]
- Reinert, M. (2000). La tresse du sens et la méthode «Alceste». Application aux «Rêveries du promeneur solitaire». Jurnal Agrosains Dan Teknologi. Available online: https://scholar.archive.org/work/jqyswcorqjfalld7tharhdr76e/access/wayback/http://lexicometrica.univ-paris3.fr/jadt/jadt2000/pdf/31/31.pdf (accessed on 6 July 2025).
- Reinert, M. (2003). Le rôle de la répétition dans la représentation du sens et son approche statistique par la mÉthode ALCESTE. Semiotica, 2003(147), 389–420. [Google Scholar] [CrossRef]
- Rodriguez-Bazan, H., Sidorov, G., & Escamilla-Ambrosio, P. J. (2023). Android ransomware analysis using convolutional neural network and fuzzy hashing features. IEEE Access: Practical Innovations, Open Solutions, 11, 121724–121738. [Google Scholar] [CrossRef]
- Rohman, D. F. Y., Kumar, D. R., Ganeshan, D. S., Kumar, D. D., Veena, D., & G, D. V. K. (2025). The influence of artificial intelligence on information integrity: A media literacy approach for young people. International Journal of Environmental Sciences, 11(6s), 1022–1034. [Google Scholar] [CrossRef]
- Rosas-Meléndez, S. A., Chans, G. M., López-Velázquez, P. M., Álvarez-Siordia, F. M., & Camacho-Zuñiga, C. (2025). TeacherTec: The potentials and limitations of AI in educational chatbots from Mexican undergraduates’ perspective. In Lecture notes on data engineering and communications technologies (pp. 191–206). Springer Nature Singapore. [Google Scholar] [CrossRef]
- Saliu, H. (2024). Navigating media literacy in the AI era: Analyzing gaps in two classic media literacy books. Journal of Applied Learning & Teaching (JALT), 7(2), 1–12. [Google Scholar]
- Sanchez-Acedo, A., Carbonell-Alcocer, A., Gertrudix, M., & Rubio-Tamayo, J. L. (2024). The challenges of media and information literacy in the artificial intelligence ecology: Deepfakes and misinformation. Available online: https://burjcdigital.urjc.es/items/a6a758f9-06cd-49e0-8012-ed2ad463eb74 (accessed on 6 July 2025).
- Selim, A. S. M. (2024). The transformative impact of AI-powered tools on academic writing: Perspectives of EFL university students. International Journal of English Linguistics, 14(1), 14. [Google Scholar] [CrossRef]
- Shata, A., & Hartley, K. (2025). Artificial intelligence and communication technologies in academia: Faculty perceptions and the adoption of generative AI. International Journal of Educational Technology in Higher Education, 22(1), 14. [Google Scholar] [CrossRef]
- Sriprakash, A., Williamson, B., Facer, K., Pykett, J., & Valladares Celis, C. (2025). Sociodigital futures of education: Reparations, sovereignty, care, and democratisation. Oxford Review of Education, 51(4), 561–578. [Google Scholar] [CrossRef]
- Stewart, O. G., & Rodgers, D. J. (2025). A critical AI media literacy framework: Understanding layered bias and empowerment in artificial intelligence. Learning, Media and Technology. advance online publication. [Google Scholar] [CrossRef]
- Špiranec, S., Kos, D., & George, M. (2019). Searching for critical dimensions in data literacy. Available online: https://informationr.net/ir/24-4/colis/colis1922.html (accessed on 6 July 2025).
- Tiernan, P., Costello, E., Donlon, E., Parysz, M., & Scriney, M. (2023). Information and media literacy in the age of AI: Options for the future. Education Sciences, 13(9), 906. [Google Scholar] [CrossRef]
- Trejo-Quintana, J., & Sayad, A. (2024). The pillars of media and information literacy in times of artificial intelligence. Journal of Latin American Communication Research, 12(2), 34–42. [Google Scholar] [CrossRef]
- Uddin, M. N., Hafiz, M. F. B., Hossain, S., & Islam, S. M. M. (2022). Drug sentiment analysis using machine learning classifiers. International Journal of Advanced Computer Science and Applications: IJACSA, 13(1), 92–100. [Google Scholar] [CrossRef]
- Umbrello, S., & Natale, S. (2024). Reframing deception for human-centered AI. International Journal of Social Robotics, 16(11–12), 2223–2241. [Google Scholar] [CrossRef]
- UNESCO. (2019). Beijing consensus on artificial intelligence and education. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000368303 (accessed on 6 July 2025).
- UNESCO. (2021). AI and education: Guidance for policy-makers. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000376709 (accessed on 6 July 2025).
- UNESCO. (2023). Guidance for generative AI in education and research. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000386693 (accessed on 6 July 2025).
- Van Audenhove, L., Vermeire, L., Van den Broeck, W., & Demeulenaere, A. (2024). Data literacy in the new EU DigComp 2.2 framework: How DigComp defines competences on artificial intelligence, Internet of Things and data. Information and Learning Sciences, 125(5–6), 406–436. [Google Scholar] [CrossRef]
- Ye, Y., & Mahizer, H. (2025). Lesson learnt and prospects of media and information literacy education in universities: An integrative review. International Journal of Media and Information Literacy, 10(1), 107–120. [Google Scholar] [CrossRef]
- Yusuf, A., Pervin, N., & Román-González, M. (2024). Generative AI and the future of higher education: A threat to academic integrity or reformation? Evidence from multicultural perspectives. International Journal of Educational Technology in Higher Education, 21(1), 1–29. [Google Scholar] [CrossRef]
Lemma | χ2 | Standardized Error | p |
---|---|---|---|
Question | 43.15 | 20 | 0.000 |
Access | 22.51 | 9 | 0.000 |
Information | 21.88 | 66 | 0.000 |
Formulate | 20.77 | 6 | 0.000 |
Writing | 19.36 | 24 | 0.000 |
Way | 17.38 | 43 | 0.000 |
Synthesize | 17.27 | 5 | 0.000 |
Professional | 16.14 | 6 | 0.000 |
Fast | 13.79 | 27 | 0.000 |
Lemma | χ2 | Standardized Error | p |
---|---|---|---|
Explanation | 48.28 | 24 | 0.000 |
Organize | 35.82 | 34 | 0.000 |
Time | 32.31 | 47 | 0.000 |
Summary | 29.26 | 16 | 0.000 |
Study | 53.04 | 38 | 0.000 |
Doubts | 13.56 | 24 | 0.000 |
Resolve | 14.8 | 21 | 0.000 |
Personalized | 20.33 | 9 | 0.000 |
Efficient | 22.63 | 28 | 0.000 |
Lemma | χ2 | Standardized Error | p |
---|---|---|---|
Presentations | 37.28 | 20 | 0.000 |
Guide | 17.08 | 8 | 0.000 |
Serves | 31.11 | 8 | 0.000 |
Homework | 17.08 | 8 | 0.000 |
Summary | 13.09 | 4 | 0.000 |
Tool | 15.74 | 17 | 0.000 |
Projects | 11.72 | 10 | 0.000 |
Learning | 12.03 | 11 | 0.000 |
Activities | 7.88 | 15 | 0.000 |
Lemma | χ2 | Standardized Error | p |
---|---|---|---|
Use | 23.84 | 22 | 0.000 |
Time | 20.92 | 15 | 0.000 |
Quickly | 20.92 | 15 | 0.000 |
Help | 20.89 | 10 | 0.000 |
Power | 19.90 | 8 | 0.000 |
Capacity | 19.41 | 6 | 0.000 |
Research | 18.70 | 35 | 0.000 |
Topic | 16.75 | 11 | 0.000 |
Question | 15.36 | 127 | 0.000 |
Process | 14.56 | 5 | 0.019 |
Instructions | 14.56 | 5 | 0.019 |
Guide me | 14.56 | 5 | 0.019 |
Analyze | 13.78 | 10 | 0.019 |
Competences | Risks Without MIL-AI | MIL-IA Competencies | Indicators |
---|---|---|---|
AI-assisted writing | Loss of own voice, sophisticated plagiarism, and expressive dependence | Critical discernment | Hybridization awareness: recognizing what each agent contributes. |
Academic Integrity | Evaluating the authenticity of information to mitigate impersonation. Ethics of information transparency. Preservation of discursive identities. | ||
Autonomous and participatory learning management | Fragmentation of attention, illusion of learning, intolerance of uncertainty. | Critical discernment | Augmented metacognition distinguishes between deep and shallow learning. |
Cognitive autonomy | Dependency assessment to recognize when too much is being delegated to the AI. Preservation of capabilities by de-intermediating all skills. | ||
Qualitative management | Critical Healing: Do not accept every AI response as an irrefutable truth. | ||
Facilitating AI-assisted scholarly production | Quantity over quality as the norm, performance anxiety, and devaluation of effort. | Critical discernment | Temporal discernment to recognize when speed is the enemy of quality. |
Cognitive autonomy | Resisting productivity pressures. Valuing the process: Recognizing the value of effort and cognitive struggle. | ||
Qualitative management | Evaluating the depth of texts beyond their quantity. | ||
Investigative metareflection | Availability bias, delegation of judgment, loss of serendipity, and loss of exhaustiveness. | Critical discernment | Understanding algorithmic biases in information search. |
Academic Integrity | Methodological validation through the verification of the processes suggested by AI. | ||
Cognitive autonomy | Lateral thinking to find what AI does not suggest | ||
Qualitative management | Diversification of sources to avoid depending on AI syntheses |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ponce Rojo, A.; Fontaines-Ruiz, T.; Bracho, A.S.; Cánquiz Rincón, L. From Digital Natives to AI Natives: Emerging Competencies and Media and Information Literacy in Higher Education. Educ. Sci. 2025, 15, 1134. https://doi.org/10.3390/educsci15091134
Ponce Rojo A, Fontaines-Ruiz T, Bracho AS, Cánquiz Rincón L. From Digital Natives to AI Natives: Emerging Competencies and Media and Information Literacy in Higher Education. Education Sciences. 2025; 15(9):1134. https://doi.org/10.3390/educsci15091134
Chicago/Turabian StylePonce Rojo, Antonio, Tomás Fontaines-Ruiz, Amelia Sánchez Bracho, and Liliana Cánquiz Rincón. 2025. "From Digital Natives to AI Natives: Emerging Competencies and Media and Information Literacy in Higher Education" Education Sciences 15, no. 9: 1134. https://doi.org/10.3390/educsci15091134
APA StylePonce Rojo, A., Fontaines-Ruiz, T., Bracho, A. S., & Cánquiz Rincón, L. (2025). From Digital Natives to AI Natives: Emerging Competencies and Media and Information Literacy in Higher Education. Education Sciences, 15(9), 1134. https://doi.org/10.3390/educsci15091134