Computational Thinking in Primary and Pre-School Children: A Systematic Review of the Literature
Abstract
1. Introduction
2. Concepts of Computational Thinking
3. Research Questions
4. Materials and Methods
- Relevance to Primary and Pre-school Students: The studies had to specifically address primary and pre-school education contexts.
- Inclusion of Quantitative Characteristics: The studies were required to incorporate quantitative data, that is, to provide specific quantitative measurements in a well-defined sample of students.
5. Results
5.1. Chronological Progression of Studies Related to the Computational Thinking of Students
5.2. Countries Where Studies Were Conducted
5.3. Sample Size and Demographics of the Studies
5.4. Tools-Software Used in the Studies
- CT assessment tools;
- Block-based coding;
- Various Plugged and Unplugged activities/hybrid methods.
- Block-based coding;
- Text-based coding;
- Robotics;
- Web-based platforms/spreadsheets;
- Plugged and Unplugged activities/hybrid methods.
6. Conclusions
- Those that aimed to capture and measure computational thinking (CT) in a sample from a population. Such a study was (Kourti et al., 2023).
- Those that aimed to measure CT and compare it between groups, for example, between children of different educational levels or between boys and girls.
- Those that aimed to develop and standardize a diagnostic test for measuring CT.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CT | Computational Thinking |
ICT | Information and Communication Technologies |
ISTE | International Society for Technology in Education and the |
CSTA | Computer Science Teachers Association |
References
- Achmad, W. (2021). Citizen and netizen society: The meaning of social change from a technology point of view. Jurnal Mantik, 5(3), 1564–1570. [Google Scholar]
- Aishworiya, R., Cai, S., Chen, H., Phua, D. Y., Broekman, B. F. P., Daniel, L. M., Chong, Y. S., Shek, L. P., Yap, F., Chan, S.-Y., Meaney, M. J., & Law, E. (2019). Television viewing and child cognition in a longitudinal birth cohort in Singapore: The role of maternal factors. BMC Pediatrics, 19(1), 286. [Google Scholar] [CrossRef] [PubMed]
- Alam, A. (2022, March 25–26). Educational robotics and computer programming in early childhood education: A conceptual framework for assessing elementary school students’ computational thinking for designing powerful educational scenarios. 2022 International Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN), Villupuram, India. [Google Scholar]
- Alexandru, C. V., Merchante, J. J., Panichella, S., Proksch, S., Gall, H., & Robles, G. (2018, November 7–8). On the usage of pythonic idioms. 2018 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software (pp. 1–11), Boston, MA, USA. [Google Scholar] [CrossRef]
- Alumona, T. L., Oranugo, C. O., & Eze, C. E. (2019). GSM based smart security system using arduino. IJARCCE, 8(10), 32–42. [Google Scholar] [CrossRef]
- Ananiadou, K., & Claro, M. (2009). 21st century skills and competences for new millennium learners in OECD countries (OECD education working papers, no. 41). OECD Publishing (NJ1). [Google Scholar]
- Anastasaki, E., & Vassilakis, K. (2022). Experimental commands development for LEGO WeDo 2.0 in Python language for STEAM robotics advanced classes. Advances in Mobile Learning Educational Research, 2(2), 443–454. [Google Scholar] [CrossRef]
- Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-Smith, J., & Zagami, J. (2016). A K-6 computational thinking curriculum framework: Implications for teacher knowledge. Journal of Educational Technology & Society, 19(3), 47–57. [Google Scholar]
- Anistyasari, Y., & Kurniawan, A. (2018, October 12–14). Exploring computational thinking to improve energy-efficient programming skills. MATEC Web of Conferences, Shanghai, China. [Google Scholar]
- Araujo, M. A. L., Chacón-Castro, M., Goitia, J. M. G., & Arias-Flores, H. (2024). Wedo 2.0 and lego education for the logical development of elementary school children. International Conference on Information Technology & Systems. [Google Scholar]
- Bain, S. K., & Jaspers, K. E. (2010). Test review: Review of kaufman brief intelligence test, second edition: Kaufman, A. S., & Kaufman, N. L. (2004). Kaufman brief intelligence test, second edition. Bloomington, MN: Pearson, Inc. Journal of Psychoeducational Assessment, 28(2), 167–174. [Google Scholar] [CrossRef]
- Bakala, E., Gerosa, A., Hourcade, J. P., & Tejera, G. (2021). Preschool children, robots, and computational thinking: A systematic review. International Journal of Child-Computer Interaction, 29, 100337. [Google Scholar] [CrossRef]
- Balid, W., Abdulwahed, M., & Alrouh, I. (2013). Constructivist multi-access lab approach in teaching FPGA systems design with labview. International Journal of Engineering Pedagogy (IJEP), 3(S3), 39–46. [Google Scholar] [CrossRef]
- Banzi, M., & Shiloh, M. (2022). Getting started with Arduino: The open source electronics prototyping platform. Maker Media, Inc. [Google Scholar]
- Barcelos, T. S., Muñoz-Soto, R., Villarroel, R., Merino, E., & Silveira, I. F. (2018). Mathematics learning through computational thinking activities: A systematic literature review. Journal of Universal Computer Science, 24(7), 815–845. [Google Scholar]
- Barr, D., Harrison, J., & Conery, L. (2011). Computational thinking: A digital age skill for everyone. Learning & Leading with Technology, 38(6), 20–23. [Google Scholar]
- Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is involved and what is the role of the computer science education community? ACM Inroads, 2(1), 48–54. [Google Scholar]
- Bati, K. (2022). A systematic literature review regarding computational thinking and programming in early childhood education. Education and Information Technologies, 27(2), 2059–2082. [Google Scholar] [CrossRef]
- Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational thinking and tinkering: Exploration of an early childhood robotics curriculum. Computers & Education, 72, 145–157. [Google Scholar] [CrossRef]
- Bers, M. U., González-González, C., & Armas–Torres, M. B. (2019). Coding as a playground: Promoting positive learning experiences in childhood classrooms. Computers & Education, 138, 130–145. [Google Scholar] [CrossRef]
- Buitrago Flórez, F., Casallas, R., Hernández, M., Reyes, A., Restrepo, S., & Danies, G. (2017). Changing a generation’s way of thinking: Teaching computational thinking through programming. Review of Educational Research, 87(4), 834–860. [Google Scholar] [CrossRef]
- Chai, X., Sun, Y., & Gao, Y. (2023). Towards data-driving multi-view evaluation framework for scratch. Tsinghua Science and Technology, 29(2), 517–528. [Google Scholar] [CrossRef]
- Chalmers, C. (2018). Robotics and computational thinking in primary school. International Journal of Child-Computer Interaction, 17, 93–100. [Google Scholar] [CrossRef]
- Chalmeta, R., & Santos-deLeón, N. J. (2020). Sustainable supply chain in the era of industry 4.0 and big data: A systematic analysis of literature and research. Sustainability, 12(10), 4108. [Google Scholar] [CrossRef]
- Cheryan, S., Ziegler, S. A., Montoya, A. K., & Jiang, L. (2017). Why are some STEM fields more gender balanced than others? Psychological Bulletin, 143(1), 1. [Google Scholar] [CrossRef]
- Cho, E.-J., Seong, Y.-O., & Seo, Y. G. (2022). A study on software education using physical computing to increase computational thinking in elementary school students. Journal of Digital Contents Society, 23(10), 1959–1968. [Google Scholar] [CrossRef]
- Choi, J., Lee, Y., & Lee, E. (2017). Puzzle based algorithm learning for cultivating computational thinking. Wireless Personal Communications, 93, 131–145. [Google Scholar]
- code.org. (n.d.). CODE. Available online: https://code.org/ (accessed on 21 November 2023).
- Datzko, C. (2021, November 3–5). A multi-dimensional approach to categorize bebras tasks. Rethinking Computing Education: 14th International Conference on Informatics in Schools: Situation, Evolution, and Perspectives, ISSEP 2021. Informatics in Schools (Proceedings 14), Virtual Event. [Google Scholar]
- D’Elia, L., Satz, P., Uchiyama, C. L., & White, T. (1996). Color trails test. PAR. [Google Scholar]
- Demir, Ö., & Seferoglu, S. S. (2021). A comparison of solo and pair programming in terms of flow experience, coding quality, and coding achievement. Journal of Educational Computing Research, 58(8), 1448–1466. [Google Scholar] [CrossRef]
- Denning, P. J. (2017). Remaining trouble spots with computational thinking. Communications of the ACM, 60(6), 33–39. [Google Scholar]
- Diago, P. D., González-Calero, J. A., & Yáñez, D. F. (2022). Exploring the development of mental rotation and computational skills in elementary students through educational robotics. International Journal of Child-Computer Interaction, 32, 100388. [Google Scholar] [CrossRef]
- Dilmen, K., Kert, S. B., & Uğraş, T. (2023). Children’s coding experiences in a block-based coding environment: A usability study on code. org. Education and Information Technologies, 28(9), 10839–10864. [Google Scholar] [CrossRef]
- Du, J., Wimmer, H., & Rada, R. (2016). “Hour of code”: Can it change students’ attitudes toward programming? Journal of Information Technology Education: Innovations in Practice, 15, 53. [Google Scholar] [CrossRef] [PubMed]
- Duggan, C., Irvine, A. D., Hourihane, J. O. B., Kiely, M., & Murray, D. M. (2023). ASQ-3 and BSID-iii’s concurrent validity and predictive ability of cognitive outcome at 5 years. Pediatric Research, 94(4), 1465–1471. [Google Scholar] [CrossRef] [PubMed]
- El-Abd, M. (2017). A review of embedded systems education in the arduino age: Lessons learned and future directions. International Journal of Engineering Pedagogy (IJEP), 7(2), 79. [Google Scholar] [CrossRef]
- El-Hamamsy, L., Zapata-Cáceres, M., Marcelino, P., Bruno, B., Dehler Zufferey, J., Martín-Barroso, E., & Román-González, M. (2022). Comparing the psychometric properties of two primary school Computational Thinking (CT) assessments for grades 3 and 4: The beginners’ CT test (BCTt) and the competent CT test (cCTt). Frontiers in Psychology, 13, 1082659. [Google Scholar] [CrossRef]
- Erümit, S. F., & Keles, E. (2023). Examining computer science education of Asia-Pacific countries successful in the PISA. Journal of Educational Technology and Online Learning, 6(1), 82–104. [Google Scholar] [CrossRef]
- Ezeamuzie, N. O., & Leung, J. S. (2022). Computational thinking through an empirical lens: A systematic review of literature. Journal of Educational Computing Research, 60(2), 481–511. [Google Scholar] [CrossRef]
- Fagerlund, J., Häkkinen, P., Vesisenaho, M., & Viiri, J. (2021). Computational thinking in programming with Scratch in primary schools: A systematic review. Computer Applications in Engineering Education, 29(1), 12–28. [Google Scholar] [CrossRef]
- Fatourou, E., Zygouris, N. C., Loukopoulos, T., & Stamoulis, G. I. (2018). Teaching concurrent programming concepts using scratch in primary school: Methodology and evaluation. International Journal of Engineering Pedagogy (IJEP), 8(4), 89–105. [Google Scholar] [CrossRef]
- Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the field. Educational Researcher, 42(1), 38–43. [Google Scholar] [CrossRef]
- Gusenbauer, M., & Haddaway, N. R. (2020). Which academic search systems are suitable for systematic reviews or meta-analyses? Evaluating retrieval qualities of Google Scholar, PubMed, and 26 other resources. Research Synthesis Methods, 11(2), 181–217. [Google Scholar] [CrossRef]
- Herrero-Álvarez, R., Miranda, G., León, C., & Segredo, E. (2023). Engaging primary and secondary school students in computer science through computational thinking training. IEEE Transactions on Emerging Topics in Computing, 11(1), 56–69. [Google Scholar] [CrossRef]
- Howland, K., Good, J., & Nicholson, K. (2009, September 20–24). Language-based support for computational thinking. 2009 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), Corvallis, OR, USA. [Google Scholar]
- Hu, C. (2011, June 27–29). Computational thinking: What it might mean and what we might do about it. 16th Annual Joint Conference on Innovation and Technology in Computer Science Education, Darmstadt, Germany. [Google Scholar]
- International Challenge on Informatics and Computational Thinking. (n.d.). Bebras task examples. Available online: https://www.bebras.org/task-examples (accessed on 21 November 2023).
- International Society for Technology in Education. (2020). Computational thinking teacher resources. Available online: https://cdn.iste.org/www-root/2020-10/ISTE_CT_Teacher_Resources_2ed.pdf (accessed on 21 November 2023).
- Ioannidou, A., Bennett, V., Repenning, A., Koh, K. H., & Basawapatna, A. (2011). Computational thinking patterns. Online Submission. [Google Scholar]
- Kakavas, P., & Ugolini, F. C. (2019). Computational thinking in primary education: A systematic literature review. Research on Education and Media, 11(2), 64–94. [Google Scholar] [CrossRef]
- Kaufman, A. S., & Kaufman, N. L. (1990). Kaufman brief intelligence test. Pearson, Inc. [Google Scholar]
- Khan, N. A., Walk, A. M., Edwards, C. G., Jones, A. R., Cannavale, C. N., Thompson, S. V., Reeser, G. E., & Holscher, H. D. (2018). Macular xanthophylls are related to intellectual ability among adults with overweight and obesity. Nutrients, 10(4), 396. [Google Scholar] [CrossRef]
- Khotambekovna, E. M. (2021). Systematic analysis of education. Journal of Pedagogical Inventions and Practices, 3, 31–35. [Google Scholar]
- Konstantopoulos, K., Vogazianos, P., Thodi, C., & Nikopoulou-Smyrni, P. (2015). A normative study of the Children’s Color Trails Test (CCTT) in the Cypriot population. Child Neuropsychology, 21(6), 751–758. [Google Scholar] [CrossRef] [PubMed]
- Kourti, Z., Michalakopoulos, C.-A., Bagos, P. G., & Paraskevopoulou-Kollia, E.-A. (2023). Computational thinking in preschool age: A case study in Greece. Education Sciences, 13(2), 157. [Google Scholar] [CrossRef]
- Lee, J., & Jang, J. (2020). A study on path analysis between elementary school students’ computational thinking components. Journal of The Korean Association of Information Education, 24(2), 139–146. [Google Scholar] [CrossRef]
- Lewis Presser, A. E., Young, J. M., Rosenfeld, D., Clements, L. J., Kook, J. F., Sherwood, H., & Cerrone, M. (2023). Data collection and analysis for preschoolers: An engaging context for integrating mathematics and computational thinking with digital tools. Early Childhood Research Quarterly, 65, 42–56. [Google Scholar] [CrossRef]
- Li, Y., Schoenfeld, A. H., diSessa, A. A., Graesser, A. C., Benson, L. C., English, L. D., & Duschl, R. A. (2020). Computational thinking is more about thinking than computing (Vol. 3, pp. 1–18). Springer. [Google Scholar]
- Linda Talib, A., Maysam Raad, Y., Najwa Abdulmunem Jasim, A., & Ban Hassan, M. (2024). The impact of artificial intelligence on computational thinking in education at university. International Journal of Engineering Pedagogy (IJEP), 14(5), 192–203. [Google Scholar] [CrossRef]
- Lodi, M., & Martini, S. (2021). Computational thinking, between papert and wing. Science & Education, 30(4), 883–908. [Google Scholar] [CrossRef]
- Looi, C.-K., & David Hung, W. (2005). ICT-in-education policies and implementation in Singapore and other Asian countries. In Upon what does the turtle stand? (pp. 27–39) Springer. [Google Scholar]
- Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through programming: What is next for K-12? Computers in Human Behavior, 41, 51–61. [Google Scholar] [CrossRef]
- Makeblock. (n.d.). mBot: Kid’s first robot kit for coding and STEM learning. Available online: https://www.makeblock.com/pages/mbot-robot-kit (accessed on 21 November 2023).
- Micro:bit Educational Foundation. (n.d.). BBC micro:bit. Available online: https://microbit.org/ (accessed on 21 November 2023).
- Minić, S., & Deretić, N. (2023). Experience with using BBC micro: Bit in teaching. Obrazovanje i Vaspitanje, 18(20), 33–44. [Google Scholar] [CrossRef]
- Montiel, H., & Gomez-Zermeño, M. G. (2021). Educational challenges for computational thinking in k–12 education: A systematic literature review of “scratch” as an innovative programming tool. Computers, 10(6), 69. [Google Scholar] [CrossRef]
- Montuori, C., Gambarota, F., Altoé, G., & Arfé, B. (2024). The cognitive effects of computational thinking: A systematic review and meta-analytic study. Computers & Education, 210, 104961. [Google Scholar] [CrossRef]
- Moreno-León, J., & Robles, G. (2015, November 9–11). Dr. Scratch: A web tool to automatically evaluate scratch projects. WiPSCE ’15, Proceedings of the Workshop in Primary and Secondary Computing Education, London, UK. [Google Scholar]
- Moreno-León, J., Robles, G., & Román-González, M. (2015a). Dr. Scratch: Análisis automático de proyectos Scratch para evaluar y fomentar el pensamiento computacional. Revista de Educación a Distancia (RED), 46. [Google Scholar] [CrossRef]
- Moreno-León, J., Robles, G., & Román-González, M. (2015b). Dr. Scratch: Automatic analysis of scratch projects to assess and foster computational thinking. RED. Revista de Educación a Distancia, 46, 1–23. [Google Scholar]
- Morrison, M. (2009). Models, measurement and computer simulation: The changing face of experimentation. Philosophical Studies, 143(1), 33–57. [Google Scholar] [CrossRef]
- Noh, J., & Lee, J. (2020). Effects of robotics programming on the computational thinking and creativity of elementary school students. Educational Technology Research and Development, 68(1), 463–484. [Google Scholar] [CrossRef]
- Nordby, S. K., Bjerke, A. H., & Mifsud, L. (2022). Computational thinking in the primary mathematics classroom: A systematic review. Digital Experiences in Mathematics Education, 8(1), 27–49. [Google Scholar] [CrossRef]
- Nouri, J., Zhang, L., Mannila, L., & Norén, E. (2020). Development of computational thinking, digital competence and 21st century skills when learning programming in K-9. Education Inquiry, 11(1), 1–17. [Google Scholar] [CrossRef]
- Ntourou, V., Kalogiannakis, M., & Psycharis, S. (2021). A study of the impact of Arduino and Visual Programming in self-efficacy, motivation, computational thinking and 5th grade students’ perceptions on Electricity. Eurasia Journal of Mathematics, Science and Technology Education, 17(5), em1960. [Google Scholar] [CrossRef]
- Nuraisa, D., Saleh, H., & Raharjo, S. (2021). Profile of students’computational thinking based on self-regulated learning in completing bebras tasks. Prima: Jurnal Pendidikan Matematika, 5(2), 40–50. [Google Scholar]
- Ocampo, L. M., Corrales-Álvarez, M., Cardona-Torres, S. A., & Zapata-Cáceres, M. (2024). Systematic review of instruments to assess computational thinking in early years of schooling. Education Sciences, 14(10), 1124. [Google Scholar] [CrossRef]
- Ogegbo, A. A., & Ramnarain, U. (2022). A systematic review of computational thinking in science classrooms. Studies in Science Education, 58(2), 203–230. [Google Scholar] [CrossRef]
- Ozo EDU Inc. (n.d.). Ozobot. Available online: https://ozobot.com/ (accessed on 21 November 2023).
- Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., & Chou, R. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books. [Google Scholar]
- Papert, S. (1996). An exploration in the space of mathematics educations. International Journal of Computers for Mathematical Learning, 1(1), 95–123. [Google Scholar] [CrossRef]
- Parisi, R., Iskandar, I. Y., Kontopantelis, E., Augustin, M., Griffiths, C. E., & Ashcroft, D. M. (2020). National, regional, and worldwide epidemiology of psoriasis: Systematic analysis and modelling study. BMJ, 369, m1590. [Google Scholar] [CrossRef] [PubMed]
- Patton, E. W., Tissenbaum, M. B., & Harunani, F. (2019). MIT app inventor: Objectives, design, and development. In Computational thinking education (pp. 31–49). Springer. [Google Scholar] [CrossRef]
- Pila, S., Aladé, F., Sheehan, K. J., Lauricella, A. R., & Wartella, E. A. (2019). Learning to code via tablet applications: An evaluation of Daisy the Dinosaur and Kodable as learning tools for young children. Computers & Education, 128, 52–62. [Google Scholar] [CrossRef]
- Pitts, C. H., & Mervis, C. Β. (2016). Performance on the kaufman brief intelligence test-2 by children with williams syndrome. American Journal on Intellectual and Developmental Disabilities, 121(1), 33–47. [Google Scholar] [CrossRef]
- Prat, C. S., Madhyastha, T. M., Mottarella, M. J., & Kuo, C.-H. (2020). Relating natural language aptitude to individual differences in learning programming languages. Scientific Reports, 10(1), 3817. [Google Scholar] [CrossRef] [PubMed]
- Prommun, P., Kantathanawat, T., Pimdee, P., & Sukkamart, T. (2022). An integrated design-based learning management model to promote Thai undergraduate computational thinking skills and programming proficiency. International Journal of Engineering Pedagogy (IJEP), 12(1), 75–94. [Google Scholar] [CrossRef]
- Relkin, E., de Ruiter, L. E., & Bers, M. U. (2021). Learning to code and the acquisition of computational thinking by young children. Computers & Education, 169, 104222. [Google Scholar] [CrossRef]
- Resnawati, R., Fadjryani, Najar, A. M., Puspita, J. W., Mardi, A. B., & Abu, M. (2024). Pelatihan dan pendampingan pemrograman python dalam meningkatkan kompetensi siswa SMKN 5 Palu. Journal of Pharmaceutical and Scientific Devotion, 2(2), 6–12. [Google Scholar] [CrossRef]
- Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., Millner, A., Rosenbaum, E., Silver, J. S., Silverman, B., & Silverman, B. (2009). Scratch: Programming for all. Communications of the ACM, 52(11), 60–67. [Google Scholar]
- Rethlefsen, M. L., & Page, M. J. (2022). PRISMA 2020 and PRISMA-S: Common questions on tracking records and the flow diagram. Journal of the Medical Library Association: JMLA, 110(2), 253. [Google Scholar] [CrossRef] [PubMed]
- Rich, P., & Browning, S. F. (2022). Using Dr. Scratch as a formative feedback tool to assess computational thinking. In Research anthology on computational thinking, programming, and robotics in the classroom (pp. 550–572). IGI Global. [Google Scholar]
- Rijke, W. J., Bollen, L., Eysink, T. H., & Tolboom, J. L. (2018). Computational thinking in primary school: An examination of abstraction and decomposition in different age groups. Informatics in Education, 17(1), 77–92. [Google Scholar] [CrossRef]
- Rijo-García, S., Segredo, E., & León, C. (2022). Computational thinking and user interfaces: A systematic review. IEEE Transactions on Education, 65(4), 647–656. [Google Scholar] [CrossRef]
- Román-González, M., Pérez-González, J.-C., & Jiménez-Fernández, C. (2017). Which cognitive abilities underlie computational thinking? Criterion validity of the computational thinking test. Computers in Human Behavior, 72, 678–691. [Google Scholar] [CrossRef]
- Román-González, M., Pérez-González, J.-C., Moreno-León, J., & Robles, G. (2016, November 2–4). Does computational thinking correlate with personality? the non-cognitive side of computational thinking. Fourth International Conference on Technological Ecosystems for Enhancing Multiculturality, Salamanca, Spain. [Google Scholar]
- Romero, M., Lepage, A., & Lille, B. (2017). Computational thinking development through creative programming in higher education. International Journal of Educational Technology in Higher Education, 14, 42. [Google Scholar] [CrossRef]
- Saqr, M., Ng, K., Oyelere, S. s., & Tedre, M. (2021). People, ideas, milestones: A scientometric study of computational thinking. ACM Transactions on Computing Education, 21(3), 20. [Google Scholar] [CrossRef]
- Selby, C., & Woollard, J. (2013). Computational thinking: The developing definition. Available online: https://eprints.soton.ac.uk/356481 (accessed on 21 November 2023).
- Serrano, A. D. l. H., Niño, L. V. M., Álvarez-Murillo, A., Tardío, M. Á. M., Cañada, F. C., & Juánez, J. C. (2024). Analysis of gender issues in computational thinking approach in science and mathematics learning in higher education. European Journal of Investigation in Health Psychology and Education, 14(11), 2865–2882. [Google Scholar] [CrossRef]
- Sherman, E. M. S., Tan, J. E., & Hrabok, M. (2023). Kaufman brief intelligence test (KBIT-2). In A compendium of neuropsychological tests: Fundamentals of neuropsychological assessment and test reviews for clinical practice (Vol. 4, p. 73). University Press. [Google Scholar]
- Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research Review, 22, 142–158. [Google Scholar] [CrossRef]
- Siemieniuk, R. A., Bartoszko, J. J., Zeraatkar, D., Kum, E., Qasim, A., Martinez, J. P. D., Izcovich, A., Lamontagne, F., Han, M. A., Agarwal, A., Agoritsas, T., Azab, M., Bravo, G., Chu, D. K., Couban, R., Devji, T., Escamilla, Z., Foroutan, F., Gao, Y., … Han, M. A. (2020). Drug treatments for COVID-19: Living systematic review and network meta-analysis. BMJ, 370, m2980. [Google Scholar] [CrossRef]
- Silapachote, P., & Srisuphab, A. (2017). Engineering courses on computational thinking through solving problems in artificial intelligence. International Journal of Engineering Pedagogy (IJEP), 7(3), 34–49. [Google Scholar] [CrossRef]
- Singh, R., Gehlot, A., & Singh, B. (2019). Introduction to arduino and arduino ide and toolbox_arduino_v3. In Arduino and SCILAB based projects (pp. 1–6). Bentham Science Publishers. [Google Scholar] [CrossRef]
- Su, J., & Yang, W. (2023). A systematic review of integrating computational thinking in early childhood education. Computers and Education Open, 4, 100122. [Google Scholar] [CrossRef]
- Subramaniam, S., Maat, S. M., & Mahmud, M. S. (2022). Computational thinking in mathematics education: A systematic review. Cypriot Journal of Educational Sciences, 17(6), 2029–2044. [Google Scholar] [CrossRef]
- Tallou, K. (2022). Marine plastic pollution in kindergarten as a means of engaging toddlers with STEM education and educational robotics. Advances in Mobile Learning Educational Research, 2(2), 401–410. [Google Scholar] [CrossRef]
- Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X. (2020). Assessing computational thinking: A systematic review of empirical studies. Computers & Education, 148, 103798. [Google Scholar] [CrossRef]
- Taslibeyaz, E., Kursun, E., & Karaman, S. (2020). How to develop computational thinking: A systematic review of empirical studies. Informatics in Education, 19(4), 701–719. [Google Scholar] [CrossRef]
- Tengler, K., Kastner-Hauler, O., Sabitzer, B., & Lavicza, Z. (2021). The effect of robotics-based storytelling activities on primary school students’ computational thinking. Education Sciences, 12(1), 10. [Google Scholar] [CrossRef]
- The LEGO Group. (2025). LEGO® education WeDo 2.0 core set. Available online: https://www.lego.com/en-gr/product/lego-education-wedo-2-0-core-set-45300 (accessed on 21 November 2023).
- Tikva, C., & Tambouris, E. (2021). Mapping computational thinking through programming in K-12 education: A conceptual model based on a systematic literature Review. Computers & Education, 162, 104083. [Google Scholar] [CrossRef]
- Triantafyllou, S. A., Sapounidis, T., & Farhaoui, Y. (2024). Gamification and computational thinking in education: A systematic literature review. Salud, Ciencia y Tecnologia-Serie de Conferencias, 3, 659. [Google Scholar] [CrossRef]
- Troiano, G. M., Snodgrass, S., Argımak, E., Robles, G., Smith, G., Cassidy, M., Tucker-Raymond, E., Puttick, G., & Harteveld, C. (2019, June 12–15). Is my game OK Dr. Scratch? Exploring programming and computational thinking development via metrics in student-designed serious games for STEM. 18th ACM International Conference on Interaction Design and Children, Boise, ID, USA. [Google Scholar]
- Tsarava, K., Moeller, K., Pinkwart, N., Butz, M., Trautwein, U., & Ninaus, M. (2017, October 5–6). Training computational thinking: Game-based unplugged and plugged-in activities in primary school. European Conference on Games Based Learning (pp. 687–695), Graz, Austria. [Google Scholar]
- Türker, P. M., & Pala, F. K. (2020). The effect of algorithm education on students’ computer programming self-efficacy perceptions and computational thinking skills. International Journal of Computer Science Education in Schools, 3(3), 19–32. [Google Scholar] [CrossRef]
- Van Rossum, G., & Drake, F. L., Jr. (1995). Python tutorial (Vol. 620). Centrum voor Wiskunde en Informatica Amsterdam. [Google Scholar]
- Vitagliano, A., Cicinelli, E., Laganà, A. S., Favilli, A., Vitale, S. G., Noventa, M., Damiani, G. R., Dellino, M., Nicolì, P., D’Amato, A., Bettocchi, S., Matteo, M., & D’Amato, A. (2024). Endometrial scratching: The light at the end of the tunnel. Human Reproduction Update, 30(2), 238–239. [Google Scholar] [CrossRef]
- Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A. (2015). Computational thinking in compulsory education: Towards an agenda for research and practice. Education and Information Technologies, 20, 715–728. [Google Scholar] [CrossRef]
- Voskoglou, M. G., & Buckley, S. (2012). Problem solving and computational thinking in a learning environment. arXiv, arXiv:1212.0750. [Google Scholar] [CrossRef]
- Vourletsis, I., & Politis, P. (2019). Origin, conceptual development and future perspectives of computational thinking: A systematic literature review. Education Sciences, 2018(4), 72–92. [Google Scholar] [CrossRef]
- Vourletsis, I., & Politis, P. (2024). Greek translation, cultural adaptation, and psychometric validation of beginners computational thinking test (BCTt). Education and Information Technologies, 30, 2211–2235. [Google Scholar] [CrossRef]
- Wallet, P. (2014). Information and Communication Technology (ICT) in education in Asia: A comparative analysis of ICT integration and e-readiness in schools across Asia. Available online: https://policycommons.net/artifacts/8200342/information-and-communication-technology-ict-in-education-in-asia/9110580/ (accessed on 21 November 2023).
- Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35. [Google Scholar]
- Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1881), 3717–3725. [Google Scholar] [CrossRef]
- Wolber, D., Abelson, H., Spertus, E., & Looney, L. (2011). App inventor. O’Reilly Media, Inc. [Google Scholar]
- Xie, B., Shabir, I., & Abelson, H. (2015, October 27). Measuring the usability and capability of app inventor to create mobile applications. 3rd International Workshop on Programming for Mobile and Touch, Pittsburgh, PA, USA. [Google Scholar] [CrossRef]
- Yuen, A., & Hew, T. (2018). Information and communication technology in educational policies in the Asian region. In Handbook of information technology in primary and secondary education (pp. 1–20). Springer. [Google Scholar]
- Zapata-Cáceres, M., Martín-Barroso, E., & Román-González, M. (2020, April 27–30). Computational thinking test for beginners: Design and content validation. 2020 IEEE Global Engineering Education Conference (EDUCON), Porto, Portugal. [Google Scholar]
- Zaranis, N., Papadakis, S., & Kalogiannakis, M. (2019). Evaluation of educational technologies for the promotion of computational thinking in preschool education [Aksiologisi ton ekpaideutikon texnologion gia tin proothisi tis ypologistikis skepsis stin prosxoliki ekpaideusi. ekpaideusi kai dia viou mathisi, ereuna kai texnologiki anaptiksi kainotomia kai oikonomia]. Education, Lifelong Learning, Research and Technological Development, Innovation and Economy, 2, 77–86. [Google Scholar] [CrossRef]
- Zeeshan, K., Hämäläinen, T., & Neittaanmäki, P. (2024). Computational Thinking and AI Coding for Kids to Develop Digital Literacy. International Journal of Education, 12(3), 55–74. [Google Scholar] [CrossRef]
- Zhang, L., & Nouri, J. (2019). A systematic review of learning computational thinking through Scratch in K-9. Computers & Education, 141, 103607. [Google Scholar] [CrossRef]
- Zhang, S., & Wong, G. K. W. (2023). Development and validation of a computational thinking test for lower primary school students. Educational Technology Research and Development, 71(4), 1595–1630. [Google Scholar] [CrossRef]
- Zhang, S., Wong, G. K. W., & Pan, G. (2021, December 5–8). Computational thinking test for lower primary students: Design principles, content validation, and pilot testing. 2021 IEEE International Conference on Engineering, Technology & Education (TALE), Wuhan, China. [Google Scholar]
- Георгиева, Д., & Georgieva-Trifonova, T. (2023). Developing mathematical competencies through makeblock mbot programming in computer modelling education. Tem Journal, 12, 2437–2447. [Google Scholar] [CrossRef]
Category | Tools | Total |
---|---|---|
CT assessment tools | cCTt (2), CTt-RG (2), BCTt (1), CTS (1), CTtLP (1), Sword (1), CT tool by Korea Education and Research Information Service (1), CT tool by researchers (1), CTA-CES (1), KBIT (1), TechCheck-2 (1), TechCheck-K (1), The Code-Free CT Assessment (1) | 15 (71.42%) |
Block-based coding | Scratch/Dr. Scratch (3) | 3 (14.28%) |
Plugged and Unplugged activities/Hybrid methods | Bebras Tasks (2), AlgoPaint Unplugged Computational Thinking Assessment (1), Plugged and Unplugged activities (1), Questionnaire (1) | 5 (23.8%) |
Category | Tools | Total |
---|---|---|
Block-based coding | Scratch/ScratchJr/Scratch4SL (32), App Inventor (3), Entry (3), Kodu Game Lab (2), mBlock (2), A progammable learning enviroment created by the researchers (1), BAC (1), Block based environment (1), BlockPy (1), Choregraphe (1), DuinoBlocks4Kids (DB4K) kit (1), OwlSpace (1), | 49 (49.49%) |
Text-based coding | Arduino (4), Python (2) | 6 (6.06%) |
Robotics | LEGO-WeDo 2.0 (5), mBot Arduino robot (4), Bee—Bot (3), Micro:bit (3), Ozobot (3), Code and Go Robot Mouse Activity Set (2), Makey Makey (2), NAO (2), Zowi robot and Zowi BQ Robot programming Platform (2), Code-a-Pillar (1), Cubetto (1), Funboard (1), Hamster robot (1), Handmade robots from low cost materials (1), Jimu robot (1), KIBO-15 (1), Lego EV3 (1), LeGO-WeDo 1.0 (1), LittleBits (1), Matatalab (1), Thymio robots and mission R2T21 (modified version) (1), uKit Explore (1) | 39 (39.39%) |
Web-based platforms/ Spreadsheets | Code.org (5), Bebras (2), Machine learning for kids (2), MS Excel (2), Tinkercad (2), AI for Oceans (1), AI-assisted Learning Tools (1), CodeMonkey (1), EasyLogic 3D (1), Google Sheets (1), Google Slides (1), IBM Watson (1), Moodle-G (1), Online web sketch (1), OpenSimulator (1), Wordpress (1) | 24 (24.24%) |
Plugged and Unplugged activities/Hybrid methods | Plugged and Unplugged activities (12), Unknown tools-software (3), AutoThinking (1), Coding Ocean board game (1), Constructivist Universal Design Learning Package for Kindergarten Education to learning (1), CT learning media (1), Geometer’s Sketchpad (1), Interactive Activities (1), Labs from the National Research Council of Italy (1), Programming Sticker (1), The Fraction App (1), Unplugged Programming Learning (1), Visual Art and Unplugged Approaches (1) | 26 (26.26%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paraskevopoulou-Kollia, E.-A.; Michalakopoulos, C.-A.; Zygouris, N.C.; Bagos, P.G. Computational Thinking in Primary and Pre-School Children: A Systematic Review of the Literature. Educ. Sci. 2025, 15, 985. https://doi.org/10.3390/educsci15080985
Paraskevopoulou-Kollia E-A, Michalakopoulos C-A, Zygouris NC, Bagos PG. Computational Thinking in Primary and Pre-School Children: A Systematic Review of the Literature. Education Sciences. 2025; 15(8):985. https://doi.org/10.3390/educsci15080985
Chicago/Turabian StyleParaskevopoulou-Kollia, Efrosyni-Alkisti, Christos-Apostolos Michalakopoulos, Nikolaos C. Zygouris, and Pantelis G. Bagos. 2025. "Computational Thinking in Primary and Pre-School Children: A Systematic Review of the Literature" Education Sciences 15, no. 8: 985. https://doi.org/10.3390/educsci15080985
APA StyleParaskevopoulou-Kollia, E.-A., Michalakopoulos, C.-A., Zygouris, N. C., & Bagos, P. G. (2025). Computational Thinking in Primary and Pre-School Children: A Systematic Review of the Literature. Education Sciences, 15(8), 985. https://doi.org/10.3390/educsci15080985