Development of Epistemic Meta Didactic–Mathematical Knowledge in Mathematics Teachers When Teaching Functions: A Scoping Review
Abstract
1. Introduction
The knowledge needed by teachers to: reflect on their own practice, identify and analyze the set of norms and meta-norms that regulate the teaching and learning processes of mathematics, and assess the didactic suitability in order to find potential improvements in both the design and implementation stages of such processes of study.
2. Methodology
2.1. First Phase: Document Selection Process
2.2. Second Phase: Lexicometric Analysis Using IRaMuTeQ
- Initial category 1: Historical research
- Initial category 2: Graphical representation to facilitate functions
- Initial category 3: Different meanings of function
- Initial category 4: Reflection on practice
- Initial category 5: Lack of interest in resolving conflicts between intuition and knowledge
(…) the results also suggest that this belief coexists with relatively strong beliefs that formal notation is a more important part of mathematics. In addition to the contextual nature of these beliefs, we see that calculus students and middle school teachers alike tend to consider intuitive knowledge as less valid than formal mathematical notation (p. 159).
(…) also, students’ stated epistemologies seem to differ from their epistemologies in practice. I found that no student attempted to reconcile the conflict between the answers they got from using formal mathematical knowledge and their intuitive approaches, and none seemed particularly surprised nor concerned about the reasons why they were getting different answers (p. 154).
2.3. Third Phase: Manual Analysis
3. Results
3.1. Complexity of Functions in the History of Mathematics and in the Curriculum
Epistemic suitability studies the representativeness of the different meanings of mathematical objects that appear in the instruction process. For example, in the case of teaching functions in 4th year of ESO (compulsory secondary education), the aim is to reduce teaching to the operational aspect and its algebraic representation (low suitability), or to work on different meanings of function, such as correspondence, relationship between variables, relationship between magnitudes, and their different verbal, algebraic, tabular, graphical, and iconic (high suitability) representations (p. 48).
The concept of function can be defined formally and symbolically, almost without the use of words. The concept of function admits a variety of representations, while several representations of the concept offer information about particular aspects of the concept without being able to describe it completely (p. 1411).
(…) as these outlooks are present in the histories of mathematics produced in times and space, giving rise to points of epistemological support, as we can see in the history of human culture, in general, always with possibilities of looking at and borrowing various outlooks, so that we can have a greater amplitude regarding the object we want to look at (p. 4)
As for historical elements, it is observed that the concept of function underwent modifications over time, and its understanding broadened as mathematicians’ contributions were incorporated into the definition of function. As a result, its application also expanded to new fields of study (p. 619).
I define this investigative spirit as the spirit of the researcher, which I always refer to when talking about research as a teaching and learning principle. I understand this spirit was what ignited my personal and professional development throughout my training as a teacher and as a researcher (p. 2).
They studied how mathematical experts link formulas to graphs, what formulas they can instantly visualize, and what processes they activate to identify the graph that corresponds to each formula. Mathematical expertise is related to the highest levels of graph recognition of the basic function families, and therefore provides valuable suggestions for teaching (p. 1187).
One characteristic of the concept of function is that it can be represented in various ways (e.g., tables, graphs, symbolic equations, and verbal representations). An important aspect of understanding the concept of function is the ability to use various representations and transfer them from one form to another (p. 1409).
3.2. Personal Practice of Multiple Processes Using Functions in Different Contexts
Pino-Fan et al. (2019, p. 202) (n_13) insist on the importance of contextualizing working on functions: “Some studies on proposals for teaching functions establish the need to approach them from contextualized situations.” Merighi (2020, p. 161) (n_15) specify that working in different contexts makes it easier for students to put different resources and skills to use:It may be that a shift in context prompts students to engage with different knowledge resources and ways of reasoning. There is not necessarily a need to replace students’ ideas with different ones, but rather a need to catalyze shifts in the mathematical resources they draw upon.
Problem statements are read and interpreted correctly. Conjectures and propositions are stated. Argumentation: conjectures and procedures are justified. Definitions and procedures are institutionalized. Variables and quantities are identified. It is determined whether a relationship is functional, and, if so, the type is determined. Algorithms, routines, or calculations are applied. Generalization and abstraction processes are carried out (p. 49).
They achieve a certain degree of autonomy to work with semiotic activities, and/or on converting semiotic activities. This means using more than two registers of representation in solutions, based on the interpretation of a single source of information by reasoning and inferring. They are also able to explain their interpretations and justify their results (p. 197).
Complete mathematical work: Mathematical work is complete when there is a genuine relationship between the epistemological and cognitive planes. According to the authors, this means that students are able to select the tools that are useful for tackling a problem, and then use them appropriately as instruments for solving the given task. There is a connection between the different origins and vertical planes of the mathematical working space (p. 14).
3.3. Analysis of the Tasks Designed in the Instructional Processes and Reflection on Teaching Practice
The target of community service activities in the form of Participatory Action Research (PAR) assistance is a community of high school level mathematics teachers within the Ministry of Religion. PAR is a collective, self-reflective inquiry conducted by researchers and participants, so that they can understand and improve the practices in which they participate and the situations in which they find themselves (p. 2).
[The teacher] hardly reflects on the use of representations of continuous functions in relation to the meaning of the real values the domain of this function can take on, and in the context of the situation presented, which would be relevant to consider from a teaching perspective (p. 200).
3.1. RIEF indicators. We obtained the following adaptation of epistemic suitability to facilitate the analysis of teaching processes related to functions in compulsory secondary education. 3.1.1 Errors. 3.1.2 Ambiguities. 3.1.3 Appropriate didactic option. 3.1.4. Richness of processes. 3.1.5. Meanings. 3.1.6. Representations and conversions. 3.1.7 Problem situations (p. 49).
4. Discussion and Conclusions
Suitable instructional processes for functions require teachers to be familiar with the historical evolution of functions. In other words, they need to understand the holistic meaning of the object (its richness of meanings and how to address and promote them) to have a broader and deeper understanding of the notion of function (pp. 47–48).
More specifically, tensions exist within each student’s complex set of epistemologies of mathematics that may result in them suppressing their own abilities to reason intuitively about mathematical phenomena because they do not believe that these intellectual resources are valuable when solving mathematical problems (p. 154).
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ScR | Scoping Review |
| EMDMK | Epistemic meta didactic–mathematical knowledge |
| WoS | Web of Science |
| IRaMuTeQ | R INTERFACE for Multidimensional analysis of Texts and Questionnaires |
| OSA | Onto-semiotic Approach |
| DMK | Didactic–mathematical knowledge |
| DSC | Didactic Suitability Criteria |
| DHC | Descending Hierarchical Classification |
| TS | Text segment |
| CFA | Correspondence Factor Analysis |
References
- Amaral-Rosa, M., do Rosário Lima, V. M., Breda, A., & de Lima, D. F. (2024). Comparative category analysis: Craft AC & ATD supported by IRaMuTeQ software. In J. Ribeiro, C. Brandão, M. Ntsobi, J. Kasperiuniene, & A. P. Costa (Eds.), Computer supported qualitative research, WCQR 2024, lecture notes in networks and systems (vol. 1061, pp. 271–284). Springer. [Google Scholar] [CrossRef]
- Amaya de Armas, T. R., Pino-Fan, L. R., & Medina Rivilla, A. (2016). Evaluación del conocimiento de futuros profesores de matemáticas sobre las transformaciones de las representaciones de una función. Educación Matemática, 28(3), 111–144. [Google Scholar] [CrossRef]
- Araya, D., Pino-Fan, L., Medrano, I., & Castro, W. F. (2021). Epistemic criteria for the design of tasks about limits on a real variable function. Bolema, 35(69), 179–205. [Google Scholar] [CrossRef]
- Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching what makes it special? Journal of Teacher Education, 59(5), 389–407. [Google Scholar] [CrossRef]
- Beltrán-Pellicer, P., & Giacomone, B. (2018). Desarrollando la competència de análisis y valoración de la idoneidad didáctica en un curso de postgrado mediante la discusión de una experiencia de enseñanza. REDIMAT, Journal of Research in Mathematics Education, 7(2), 111–133. [Google Scholar] [CrossRef]
- Breda, A., Pino-Fan, L. R., & Font, V. (2017). Meta didactic-mathematical knowledge of teachers: Criteria for the reflection and assessment on teaching practice. Eurasia Journal of Mathematics, Science and Technology Education, 13(6), 1893–1918. [Google Scholar] [CrossRef]
- Burgos, M., Bueno, S., Godino, J. D., & Pérez, O. (2021). Onto-semiotic complexity of the Definite Integral. Implications for teaching and learning Calculus. REDIMAT. Journal of Research in Mathematics Education, 10(1), 4–40. [Google Scholar] [CrossRef]
- Camargo, B. V., & Justo, A. M. (2013a). IRaMuTeQ: Um software gratuito para análise de dados textuais. IRaMuTeQ: Interface de R pour les analyses multidimensionnelles de textes et de questionnaires. Temas em Psicologia, 21(2), 513–518. [Google Scholar] [CrossRef]
- Camargo, B. V., & Justo, A. M. (2013b). Tutorial para uso do software de análise textual IRaMuTeQ. Available online: http://www.iramuteq.org/documentation/fichiers/tutoriel-en-portugais (accessed on 27 September 2024).
- Fallas-Soto, R. D., & Lezama, J. (2022). Argumentos variacionales en la comprensión de la concavidad en gráficas de funciones. Perfiles Educativos, 44(178), 130–148. [Google Scholar] [CrossRef]
- Font, V. (2011). Funciones. Evolución histórica de la noción de función. Algunas ideas clave que nos ofrece la evolución de la noción de función. In J. M. Goñi (Ed.), Matemáticas. Complementos de formación disciplinar (pp. 145–186). Ed Graó. [Google Scholar]
- Font, V., Breda, A., Sala-Sebastià, G., & Pino-Fan, L. (2024). Future teachers’ reflections on mathematical errors made in their teaching practice. ZDM-Mathematics Education, 13(6), 1893–1918. [Google Scholar] [CrossRef]
- Font, V., Giménez, J., Larios, V., & Zorrilla, J. F. (2012). Competencias del profesor de matemáticas de secundaria y bachillerato (eBook). Edicions Universitat Barcelona. [Google Scholar]
- Font, V., Godino, J. D., & Gallardo, J. (2013). The emergence of objects from mathematical practices. Educational Studies in Mathematics, 82(1), 97–124. [Google Scholar] [CrossRef]
- Font, V., Pino-Fan, L. R., & Breda, A. (2020). Una evolución de la mirada sobre la complejidad de los objetos matemáticos. Paradigma XLI, 107–129. [Google Scholar] [CrossRef]
- Font, V., Planas, N., & Godino, J. D. (2010). Modelo para el análisis didáctico en educación matemática. Infancia y Aprendizaje, 33(1), 89–105. [Google Scholar] [CrossRef]
- Fuertes-Prieto, M. A., Santágueda-Villanueva, M., & Lorenzo-Valentín, G. (2022). Creencias e ideas de los futuros maestros sobre el uso de la história de las matemáticas como recurso didáctico. In T. F. Blanco, C. Núñez-García, M. C. Cañadas, & J. A. González-Calero (Eds.), Investigación en educación matemática XXV (pp. 277–284). SEIEM. [Google Scholar]
- Galindo, M. K., & Breda, A. (2024). Instructional process of the derivative applied in business engineering students in Chile. Uniciencia, 38(1), 303–325. [Google Scholar] [CrossRef]
- Giacomone, B., Godino, J. D., & Beltrán-Pellicer, P. (2018). Developing the prospective mathematics teachers’ didactical suitability analysis competence. Educação e Pesquisa, 44, e172011. [Google Scholar] [CrossRef]
- Godino, J. D. (2009). Categories for analysing the knowledge of mathematics teachers. Unión, RevistaIberoamericana de Educación Matemática, 20, 13–31. Available online: https://www.ugr.es/~jgodino/eos/JDGodino%20Union_020%202009.pdf (accessed on 27 September 2024).
- Godino, J. D. (2012). Origen y aportaciones de la perspectiva ontosemiótica de investigación en Didáctica de la Matemática. In A. Estepa, A. Contreras, J. Deulofeu, M. C. Penalva, F. J. García, & L. Ordóñez (Eds.), Investigación en educación matemática XVI (pp. 49–68). Universidad de Granada. [Google Scholar]
- Godino, J. D. (2013). Indicadores de la idoneidad didáctica de procesos de enseñanza y aprendizaje de las matemáticas. Cuadernos de Investigación y Formación en Educación Matemática, 8(11), 111–132. Available online: https://revistas.ucr.ac.cr/index.php/cifem/article/view/14720 (accessed on 27 September 2024).
- Godino, J. D., Batanero, C., & Font, V. (2007). The onto-semiotic approach to research in mathematics education. ZDM—International Journal on Mathematics Education, 39(1–2), 127–135. [Google Scholar] [CrossRef]
- Godino, J. D., Batanero, C., & Font, V. (2019). The onto-semiotic approach: Implications for the prescriptive character of didactics. For the Learning of Mathematics, 39(1), 37–42. Available online: https://www.jstor.org/stable/26742011 (accessed on 27 September 2024).
- Godino, J. D., Bencomo, D., Font, V., & Wilhelmi, M. R. (2006). Análisis y valoración de la idoneidad didáctica de procesos de estudio de las matemáticas. Paradigma, 27(2), 221–252. Available online: https://ugr.es/~jgodino/funciones-semioticas/idoneidad-didactica.pdf (accessed on 27 September 2024).
- Godino, J. D., Font, V., Wilhelmi, M. R., & Castro, C. (2009). Aproximación a la dimensión normativa en didáctica de la matemática desde un enfoque ontosemiótico. Enseñanza de las Ciencias, 27(1), 59–76. Available online: https://repositorio.uam.es/bitstream/handle/10486/668515/aproximacion_godino_RELME_2007.pdf?sequence=3 (accessed on 27 September 2024). [CrossRef]
- Godino, J. D., Giacomone, B., Batanero, C., & Font, V. (2017). Enfoque ontosemiótico de los conocimientos y competencias del profesor de matemáticas. Bolema, 31(57), 90–113. [Google Scholar] [CrossRef]
- Hanke, E. (2024). On using a core idea to foster the transition to advanced mathematics—Transferring the idea of average to complex path integrals. International Journal of Mathematical Education in Science and Technology, 1–21. [Google Scholar] [CrossRef]
- Henríquez-Rivas, C., & Verdugo-Hernández, P. (2023). Diseño de tareas en la formación inicial docente de matemáticas que involucran las representaciones de una función. Educación Matemática, 35(3), 178–208. [Google Scholar] [CrossRef]
- Hidalgo Moncada, D. (2025). Análisis de la promoción del aprendizaje autorregulado en la enseñanza y aprendizaje de las matemáticas por futuros profesores de secundaria. Universitat de Barcelona. Available online: https://www.tdx.cat/handle/10803/695408 (accessed on 17 October 2025).
- Hidalgo-Moncada, D., Díez-Palomar, J., & Vanegas, Y. (2023). Prácticas de autorregulación en la propuesta didáctica de un futuro profesor de matemáticas: Un instrumento para la reflexión. Paradigma, 44(4), 112–146. [Google Scholar] [CrossRef]
- Hinojos-Ramos, J. E., Torres-Corrales, D., & Camacho-Ríos, A. (2023). The construction of the integral for the arc length of a curve based on van Heuraet and Fermat’s works. British Journal for the History of Mathematics, 38(1), 41–54. [Google Scholar] [CrossRef]
- Inglada, N., Breda, A., & Sala-Sebastià, G. (2024). Guideline to reflect on the education functions and improve their teaching. Alteridad, 19(1), 45–56. [Google Scholar] [CrossRef]
- Jannah, U. R., Nusantara, T., Sudirman, S., Yulianto, F. E., & Amiruddin, M. (2019). Student’s learning obstacles on mathematical understanding of a function: A case study in Indonesia higher education. TEM Journal, 8(4), 1409–1417. [Google Scholar] [CrossRef]
- Katalenić, A., Čižmešija, A., & Milin Šipuš, Ž. (2023). Prospective mathematics teachers’ knowledge of asymptotes and asymptotic behaviour in calculus. International Journal of Science and Mathematics Education, 21, 131–158. [Google Scholar] [CrossRef]
- Katalenić, A., Milin Šipuš, Ž., & Čižmešija, A. (2020). Asymptotes and asymptotic behaviour in graphing functions and curves: An analysis of the croatian upper secondary education within the Anthropological Theory of the didactic. International Journal of Science and Mathematics Education, 18, 1185–1205. [Google Scholar] [CrossRef]
- Lima, V. M. R., Amaral-Rosa, M., & Ramos, M. G. (2021). Software-supported discursive textual analysis: IRaMuTeQ and subcorpus analysis. New Trends in Qualitative Research, 7, 1–9. [Google Scholar] [CrossRef]
- Malaspina, U. (2017). The creation of problems as a means to enhance the articulation of skills and knowledge of the mathematics teacher. In J. M. Contreras, G. R. C. P. Arteaga, M. M. Gea, B. Giacomone, & M. M. López-Martín (Eds.), Actas del segundo congreso internacional virtual sobre el enfoque ontosemiótico del conocimiento y la instrucción matemáticos. Available online: https://enfoqueontosemiotico.ugr.es/civeos/malaspina.pdf (accessed on 27 September 2024).
- Malaspina, U., & Font, V. (2010). The role of intuition in the solving of optimization problems. Educational Studies in Mathematics, 75(1), 107–130. [Google Scholar] [CrossRef]
- Malaspina, U., Torres, C., & Rubio, N. (2019). How to stimulate in-service teachers’ didactic analysis competence by means of problem posing. In P. Liljedahl, & M. Santos-Trigo (Eds.), Mathematical problem solving (pp. 133–151). Springer. [Google Scholar] [CrossRef]
- Martins, K. N., Sarro-Gomes, L. P., & Corrêa de Paula, M. (2022). Software IRaMuTeQ: Uma ferramenta auxiliar na análisi textual discursiva. Paradigma, 43(2), 205–227. [Google Scholar] [CrossRef]
- Mendes, I. A. (2021). Historical creativities for the teaching of functions and infinitesimal calculus. International Electronic Journal of Mathematics Education, 16(2), em0629. [Google Scholar] [CrossRef]
- Merighi, C. J. (2020). Contextuality of mathematical beliefs and reasoning [Ph.D. thesis, Tufts University]. Available online: https://www.proquest.com/dissertations-theses/contextuality-mathematical-beliefs-reasoning/docview/2414416560/se-2 (accessed on 27 September 2024).
- Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge: A new framework for teacher knowledge. Teachers College Record, 108(6), 1017–1054. [Google Scholar] [CrossRef]
- Moreno, M., & Ratinaud, P. (2022). Manual para el usuario. IRaMuTeQ. Available online: http://www.iramuteq.org/documentation/fichiers/manual-usuario (accessed on 27 September 2024).
- Muin, A., & Fatma, M. (2021). Hypothetical learning trajectory design in development of mathematics learning didactic design in madrasah. Journal of Physics: Conference Series, 1836, 012070. [Google Scholar] [CrossRef]
- Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Pino-Fan, L. R., Castro, W. F., Godino, J. D., & Font, V. (2013). Idoneidad epistémica del significado de la derivada en el currículo de bachillerato. Paradigma, 34(2), 129–150. [Google Scholar]
- Pino-Fan, L. R., & Godino, J. D. (2015). Perspectiva ampliada del conocimiento didáctico-matemático del profesor. Paradigma, 36(1), 87–109. [Google Scholar]
- Pino-Fan, L. R., Godino, J. D., & Font, V. (2011). Faceta epistémica del conocimiento didáctico-matemático sobre la derivada. Educação Matemática Pesquisa, 13(1), 141–178. Available online: https://www.ugr.es/~jgodino/eos/Pino-Fan_Mat_Pesquisa%202011.pdf (accessed on 27 September 2024).
- Pino-Fan, L. R., Godino, J. D., & Font, V. (2016). Assessing key epistemic features of didactic-mathematical knowledge of prospective teachers: The case of the derivative. Journal of Mathematics Teacher Education, 21(1), 63–94. [Google Scholar] [CrossRef]
- Pino-Fan, L. R., & Parra-Urrea, Y. E. (2021). Criterios para orientar el diseño y la reflexión de clases sobre funciones. ¿Qué nos dice la literatura científica? Uno. Revista de Didáctica de las Matemáticas, 91, 45–54. [Google Scholar]
- Pino-Fan, L. R., Parra-Urrea, Y. E., & Castro-Gordillo, W. F. (2019). Significados de la función pretendidos por el currículo de matemáticas chileno. Magis. Revista Internacional de Investigación en Educación, 11(23), 201–220. [Google Scholar] [CrossRef]
- Ramos, M. G., Lima, V. M. R., & Amaral-Rosa, M. P. (2019). IRAMUTEQ software and discursive textual analysis: Interpretive possibilities. In A. Costa, L. Reis, & A. Moreira (Eds.), Computer supported qualitative research, WCQR 2018, advances in intelligent systems and computing (vol. 861, pp. 58–72). Springer. [Google Scholar] [CrossRef]
- Ratinaut, P. (2009). IRaMuTeQ (0.8 alpha 7) [R INTERFACE for multidimensional analysis of texts and questionnaires]. Université de Toulouse. Available online: http://iramuteq.org/ (accessed on 27 September 2024).
- Rodrigues, R. F., Lucas, C. O., Castro, S. L., Menezes, M. B., & Câmara dos Santos, M. (2021). Elaboração, análise e aplicação de um modelo epistemológico de referência para o ensino do conceito de função na licenciatura em matemática. Bolema: Boletim de Educação Matemática, 35(70), 614–636. [Google Scholar] [CrossRef]
- Rondero, C., & Font, V. (2015). Articulation of the mathematical complexity of the arithmetic mean. Enseñanza de las Ciencias, 33(2), 29–49. [Google Scholar] [CrossRef]
- Sánchez, A., Breda, A., Ledezma, C., Sala-Sebastià, G., Sol, T., & Font, V. (2022). ¿Qué conflictos semióticos detectan los futuros profesores en las clases de matemáticas que imparten? In Investigación en Educación Matemática XXV (pp. 530–537). Sociedad Española de Investigación en Educación Matemática, SEIEM. [Google Scholar]
- Seckel, M., & Font, V. (2020). Competencia reflexiva en formadores del profesorado en matemáticas. Magis, Revista Internacional de Investigación en Educación, 12(25), 127–144. [Google Scholar] [CrossRef]
- Shulman, L. S. (1987). Knowlendge and Teaching Fundations of the new reform. Harvard Educational Review, 57(1), 1–22. Available online: https://bit.ly/3PPkNGL (accessed on 27 September 2024). [CrossRef]
- Torres, C. (2020). Developing teachers’ didactic analysis competence by means of a problem-posing strategy and the quality of posed mathematical problems. In K. O. Villalba-Condori, F. J. G.-P. A. Adúriz-Bravo, J. Lavonen, L.-H. Wong, & T.-H. Wang (Eds.), Education and technology in sciences: First international congress (pp. 88–100). Springer. [Google Scholar]
- Tricco, A., Lillie, E., Zarin, W., O’Brien, K., Colquhoun, H., Levac, D., Moher, D., Peters, M., Horsley, T., Weeks, L., Hempel, S., Akl, E., Chang, C., McGowan, J., Stewart, L., Hartling, L., Aldcroft, A., Wilson, M., Garritty, C., … Straus, S. (2018). PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Annals of Internal Medicine, 169(7), 467–473. [Google Scholar] [CrossRef]
- Vivas Pachas, J. L. (2021). Trabajo matemático de estudiantes de humanidades en tareas sobre función exponencial [Master’s thesis, Pontificia Universidad Católica del Perú]. Available online: http://hdl.handle.net/20.500.12404/18104 (accessed on 27 September 2024).




| Components | Characteristics |
|---|---|
| Errors |
|
| Ambiguities |
|
| Richness of processes |
|
| Representativeness of the complexity of the mathematical object |
|
| No. | Database | Search Structure | No. of Results |
|---|---|---|---|
| 1 | Scopus | TITLE-ABS-KEY (function AND (“Mathematics education” OR “secondary teacher education”)) AND (LIMIT-TO (LANGUAGE, “English”) OR LIMIT-TO (LANGUAGE, “Spanish”) OR LIMIT-TO (LANGUAGE, “Portuguese”)) | 569 |
| 2 | Scopus | TITLE-ABS-KEY (function AND (“Mathematics education” OR “secondary teacher education”) AND epistemology) | 5 |
| 3 | Scopus | TITLE-ABS-KEY (function AND “secondary teacher education”) | 7 |
| 4 | Scopus | TITLE-ABS-KEY (function AND (“Mathematics education” OR “secondary teacher”)) | 657 |
| 5 | Scopus | TITLE-ABS-KEY (function AND (“secondary education” OR “secondary teacher”) AND epistem*) AND PUBYEAR > 2018 AND (LIMIT-TO (SUBJAREA, “SOCI”) OR LIMIT-TO (SUBJAREA, “MATH”) OR LIMIT-TO (SUBJAREA, “COMP”) OR LIMIT-TO (SUBJAREA, “PSYC”)) AND (EXCLUDE (DOCTYPE, “no”) OR EXCLUDE (DOCTYPE, “er”) OR EXCLUDE (DOCTYPE, “bk”)) | 5 |
| 6 | WoS | function* AND mathematic* AND ((Mathematic* NEAR education*) OR (second* NEAR teach*)) (Topic) and Spanish or English or Portuguese (Languages) | 4486 |
| 7 | WoS | function* AND mathematic* AND ((Mathematic* NEAR education*) OR (second* NEAR teach*)) (Topic) and Spanish or English or Portuguese (Languages) and 2024 or 2023 or 2022 or 2021 or 2020 or 2019 (Publication Years) | 1182 |
| 8 | WoS | function* AND mathematic* AND ((Mathematic* NEAR education*) OR (second* NEAR teach*)) AND epistemolog* (Topic) and Spanish or English or Portuguese (Languages) and 2024 or 2023 or 2022 or 2021 or 2020 or 2019 (Publication Years) | 29 |
| Code | Authors | Data Base |
|---|---|---|
| n_01 | Galindo and Breda (2024) | Scopus |
| n_02 | Muin and Fatma (2021) | Scopus |
| n_03 | Inglada et al. (2024) | WoS |
| n_04 | Henríquez-Rivas and Verdugo-Hernández (2023) | WoS |
| n_05 | Katalenić et al. (2020) | Scopus and WoS |
| n_06 | Hanke (2024) | WoS |
| n_07 | Hinojos-Ramos et al. (2023) | Scopus and WoS |
| n_08 | Fallas-Soto and Lezama (2022) | WoS |
| n_09 | Katalenić et al. (2023) | WoS |
| n_10 | Mendes (2021) | WoS |
| n_11 | Rodrigues et al. (2021) | WoS |
| n_12 | Jannah et al. (2019) | Scopus and WoS |
| n_13 | Pino-Fan et al. (2019) | WoS |
| n_14 | Vivas Pachas (2021) | WoS |
| n_15 | Merighi (2020) | WoS |
| Nº | Class 1 | Class 2 | Class 3 | Class 4 | Class 5 |
|---|---|---|---|---|---|
| 1 | didactic | university | interpretation | teacher | belief |
| 2 | historical | asymptote | function | mathematical_ working_space | reason |
| 3 | base | upper | derivative | education | epistemology |
| 4 | learn | prospective | concavity | ideal | mathematical |
| 5 | material | secondary | domain | work | student |
| 6 | history | curve | correspondence | train | instructor |
| 7 | creative | knowledge | range | disciplinary | proof |
| 8 | trajectory | behavior | growth | task | conflict |
| 9 | class | rely | geometric | future | formal |
| 10 | action | praxeologies | real | fpu2 | intuition |
| 11 | raise | coherent | graphical | limitation | finding |
| 12 | hypothetical | limit | discrete | promote | calculus |
| 13 | article | graph | minima | concept | phenomenon |
| 14 | form | expert | solve | device | shift |
| 15 | investigate | plot | population | case | sensitive |
| 16 | identify | scholarly | relationship | perspective | understanding |
| 17 | capacity | praxeology | additionally | improve | interview |
| 18 | exploration | global | engineer | intention | middle |
| 19 | teach | discourse | calculation | future teacher | evidence |
| 20 | development | comprehensive | variable | demand | stable |
| Code Group | Code |
|---|---|
| Coherence | Coherence between intuition and knowledge |
| Complexity | Different meanings |
| Multiple representations | |
| Graphical representation | |
| ICT | |
| Progress, expansion of concepts | |
| Curriculum | Curriculum |
| Vertically aligned curricula | |
| Progress, expansion of concepts | |
| Task development | Development of tasks |
| Paper | Historization |
| Research | |
| Processes | Algebra |
| Application of rules | |
| Argumentation | |
| Comparison | |
| Conjecturing | |
| Estimation | |
| Generalization | |
| Mathematical modeling | |
| Student reflection | |
| Collective student reflection | |
| Validation | |
| Reflection on practice | Guidelines for teacher reflection |
| Teacher reflection | |
| Collective teacher reflection |
| Code Group | Coherence | Complexity | Context | Curriculum | Task Development | Paper | Processes | Reflection on Practice | |
|---|---|---|---|---|---|---|---|---|---|
| Document | |||||||||
| n_01 | 3 | 11 | 5 | 1 | 1 | 2 | 4 | 0 | |
| n_02 | 2 | 1 | 1 | 0 | 3 | 2 | 0 | 5 | |
| n_03 | 0 | 3 | 3 | 0 | 0 | 2 | 5 | 4 | |
| n_04 | 1 | 5 | 2 | 1 | 4 | 3 | 4 | 2 | |
| n_05 | 4 | 6 | 0 | 0 | 1 | 1 | 6 | 1 | |
| n_06 | 3 | 4 | 0 | 5 | 3 | 4 | 1 | 0 | |
| n_07 | 2 | 1 | 1 | 0 | 2 | 1 | 1 | 3 | |
| n_08 | 2 | 4 | 2 | 0 | 2 | 3 | 8 | 2 | |
| n_09 | 4 | 9 | 1 | 2 | 2 | 2 | 10 | 1 | |
| n_10 | 2 | 4 | 3 | 3 | 3 | 10 | 4 | 4 | |
| n_11 | 2 | 6 | 3 | 3 | 5 | 1 | 7 | 4 | |
| n_12 | 5 | 10 | 2 | 2 | 1 | 3 | 2 | 0 | |
| n_13 | 0 | 10 | 1 | 5 | 0 | 1 | 1 | 0 | |
| n_14 | 2 | 6 | 0 | 0 | 2 | 4 | 1 | 6 | |
| n_15 | 5 | 4 | 1 | 0 | 0 | 0 | 6 | 0 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inglada, N.; Breda, A.; Sala-Sebastià, G.; Vanegas, Y. Development of Epistemic Meta Didactic–Mathematical Knowledge in Mathematics Teachers When Teaching Functions: A Scoping Review. Educ. Sci. 2025, 15, 1526. https://doi.org/10.3390/educsci15111526
Inglada N, Breda A, Sala-Sebastià G, Vanegas Y. Development of Epistemic Meta Didactic–Mathematical Knowledge in Mathematics Teachers When Teaching Functions: A Scoping Review. Education Sciences. 2025; 15(11):1526. https://doi.org/10.3390/educsci15111526
Chicago/Turabian StyleInglada, Neus, Adriana Breda, Gemma Sala-Sebastià, and Yuly Vanegas. 2025. "Development of Epistemic Meta Didactic–Mathematical Knowledge in Mathematics Teachers When Teaching Functions: A Scoping Review" Education Sciences 15, no. 11: 1526. https://doi.org/10.3390/educsci15111526
APA StyleInglada, N., Breda, A., Sala-Sebastià, G., & Vanegas, Y. (2025). Development of Epistemic Meta Didactic–Mathematical Knowledge in Mathematics Teachers When Teaching Functions: A Scoping Review. Education Sciences, 15(11), 1526. https://doi.org/10.3390/educsci15111526

