Initial Validation of the IMPACT Model: Technological Appropriation of ChatGPT by University Faculty
Abstract
1. Introduction
2. Theoretical Framework
2.1. Technology Acceptance Models
2.2. ChatGPT and Generative Artificial Intelligence in Educational Contexts
2.3. Determining Factors in ChatGPT Use Among University Educators
2.3.1. Perceived Usefulness
2.3.2. Ethical and Cognitive Concerns
2.3.3. Economic and Technological Barriers
2.3.4. Facilitating Conditions
2.3.5. Accuracy and Reliability
2.4. Related Work
3. Materials and Methods
4. Results
4.1. Normality
4.2. Sample Adequacy and Sphericity Analysis
4.3. Determination of the Number of Factors to Extract
4.4. Item Exclusion Criteria
4.5. Correlation Between Items
4.6. Multicollinearity
4.7. Communalities
4.8. Latent Variables and Proposed Model
- Factor 1: Functional Appropriation of ChatGPT Technology (fusion of intention to use and perceived usefulness), FACT;
- Factor 2: Ethical and Academic Concerns, EAC;
- Factor 3: Cost and Accessibility, CA;
- Factor 4: Facilitating Conditions, FC;
- Factor 5: Perceived Reliability and Trustworthiness, PRT.
4.9. Internal Consistency
5. Discussion
5.1. Main Findings
5.2. Practical Implications
5.2.1. Factorial Structure and Theoretical Foundation
5.2.2. Implications for Institutional Implementation
5.2.3. Contribution and Applicability
5.3. Methodological Strengths
5.4. Study Limitations
5.5. Future Research Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
| Item in the CHASSIS Model | Predominant Semantic Core | Interpretative Comment |
|---|---|---|
| IU_I1: I consider it important to continue using ChatGPT in my teaching and research practice. | Appraisal/Continued use | Although formulated as intention, the semantic core is perceived value, not behavioral decision. The expression ‘I consider it important’ may be more attitudinal than behavioral. |
| IU_I2: I am likely to continue using ChatGPT as a support tool in my academic and research work. | Intention/Continuity | This item explicitly expresses intention (likelihood of continued use), but it is contextualized in academic work, making the interpretation more practical than attitudinal. |
| IU_I3: I plan to continue using ChatGPT in the future. | Intention to use (pure) | This item directly expresses a projected intention, without an explicit functional context. It is the only item that can be clearly differentiated as strictly intentional. |
| PEA_I1: The use of ChatGPT has had a positive impact on my work performance. | Impact/Performance | Similarly to item 4, it frames the cause-effect relationship between use and improved performance. |
| PEA_I2: Using ChatGPT helps me perform my academic and research tasks more efficiently. | Efficiency/Functional support | Clearly linked to performance; there is no intentional component. |
| PEA_I3: ChatGPT provides me with valuable resources for my work performance. | Resources/Performance | Strongly focused on usefulness, with clear instrumental value. |
| PEA_I4: My work performance has improved thanks to ChatGPT’s support. | Improvement in performance/Attributed causality | Clearly focused on the effect of use, with no attitudinal or projective dimension. |
| PEA_I5: I believe that using ChatGPT is useful for improving my job performance | Perceived instrumental utility of ChatGPT for enhancing job effectiveness | This item expresses a belief in the practical utility of ChatGPT to enhance work effectiveness, aligning with performance expectancy constructs. It emphasizes a functional and goal-oriented use of the tool, reinforcing the notion of pragmatic appropriation within the workplace. |
| PEA_I6: ChatGPT facilitates my learning and understanding of scientific-academic topics. | Learning/Understanding | Linked to academic performance and functionality, not attitude or intention. |
| PEA_I7: I am satisfied with the overall experience of using ChatGPT in my teaching and research work. | Satisfaction/Experience | Although it has an attitudinal component, it is linked to the outcome of the use. It could be considered a bridge between subjective evaluation and perceived performance. |
References
- Abbas, M., Jam, F. A., & Khan, T. I. (2024). Is it harmful or helpful? Examining the causes and consequences of generative AI usage among university students. International Journal of Educational Technology in Higher Education, 21, 10. [Google Scholar] [CrossRef]
- Abdaljaleel, M., Barakat, M., Alsanafi, M., Salim, N. A., Abazid, H., Malaeb, D., Mohammed, A. H., Hassan, B. A. R., Wayyes, A. M., Farhan, S. S., El Khatib, S., Rahal, M., Sahban, A., Abdelaziz, D. H., Mansour, N. O., AlZayer, R., Khalil, R., Fekih-Romdhane, F., Hallit, R., … Sallam, M. (2024). A multinational study on the factors influencing university students’ attitudes and usage of ChatGPT. Scientific Reports, 14(1), 52549. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, S., Al-Maamari, W., & Al-Azki, J. (2024). Data analytics-driven innovation: UTAUT model perspectives for advancing healthcare social work. Journal of Open Innovation: Technology, Market, and Complexity, 10(4), 100411. [Google Scholar] [CrossRef]
- Abdi, A. N. M., Omar, A. M., Ahmed, M. H., & Ahmed, A. A. (2025). The predictors of behavioral intention to use ChatGPT for academic purposes: Evidence from higher education in Somalia. Cogent Education, 12(1), 2460250. [Google Scholar] [CrossRef]
- Abedi, E. A., & Ackah-Jnr, F. R. (2023). First-order barriers still matter in teachers’ use of technology: An exploratory study of multi-stakeholder perspectives of technology integration barriers. International Journal of Education and Development Using Information and Communication Technology, 19(2), 148–165. Available online: https://files.eric.ed.gov/fulltext/EJ1402796.pdf (accessed on 1 April 2025).
- Acosta-Enriquez, B. G., Arbulú Ballesteros, M. A., Arbulu Perez Vargas, C. G., Orellana Ulloa, M. N., Gutiérrez Ulloa, C. R., Pizarro Romero, J. M., Gutiérrez Jaramillo, N. D., Cuenca Orellana, H. U., Ayala Anzoátegui, D. X., & López Roca, C. (2024). Knowledge, attitudes, and perceived ethics regarding the use of ChatGPT among generation Z university students. International Journal for Educational Integrity, 20, 10. [Google Scholar] [CrossRef]
- Almogren, A. S., Al-Rahmi, W. M., & Dahri, N. A. (2024). Exploring factors influencing the acceptance of ChatGPT in higher education: A smart education perspective. Heliyon, 10(11), e31887. [Google Scholar] [CrossRef]
- Al Murshidi, G., Shulgina, G., Kapuza, A., & Costley, J. (2024). How understanding the limitations and risks of using ChatGPT can contribute to willingness to use. Smart Learning Environments, 11, 36. [Google Scholar] [CrossRef]
- Alotaibi, S. M. F. (2025). Determinants of generative artificial intelligence (GenAI) adoption among university students and its impact on academic performance: The mediating role of trust in technology. Interactive Learning Environments, 33, 1–30. [Google Scholar] [CrossRef]
- Alqahtani, T., Badreldin, H. A., Alrashed, M., Alshaya, A. I., Alghamdi, S. S., Bin Saleh, K., Alowais, S. A., Alshaya, O. A., Rahman, I., Al Yami, M. S., & Albekairy, A. M. (2023). The emergent role of artificial intelligence, natural learning processing, and large language models in higher education and research. Research in Social & Administrative Pharmacy: RSAP, 19(8), 1236–1242. [Google Scholar] [CrossRef]
- Alshammari, S. H., & Alshammari, M. H. (2024). Factors affecting the adoption and use of ChatGPT in higher education. International Journal of Information and Communication Technology Education, 20(1), 339557. [Google Scholar] [CrossRef]
- Alshammari, S. H., & Babu, E. (2025). The mediating role of satisfaction in the relationship between perceived usefulness, perceived ease of use and students’ behavioural intention to use ChatGPT. Scientific Reports, 15, 7169. [Google Scholar] [CrossRef]
- Alzahrani, A., & Alzahrani, A. (2025). Comprendiendo la adopción de ChatGPT en universidades: El impacto del TPACK y UTAUT2 en los docentes. RIED-Revista Iberoamericana de Educación a Distancia, 28(1), 37–58. [Google Scholar] [CrossRef]
- Ashfaq, M., Yun, J., Yu, S., & Loureiro, S. M. C. (2020). I, chatbot: Modeling the determinants of users’ satisfaction and continuance intention of AI-powered service agents. Telematics and Informatics, 54, 101473. [Google Scholar] [CrossRef]
- Ashraf, M. A., Alam, J., & Kalim, U. (2025). Effects of ChatGPT on students’ academic performance in Pakistan higher education classrooms. Scientific Reports, 15(1), 16434. [Google Scholar] [CrossRef]
- Baek, T. H., Kim, J., & Kim, J. H. (2024). Effect of disclosing AI-generated content on prosocial advertising evaluation. International Journal of Advertising, 43(7), 1–22. [Google Scholar] [CrossRef]
- Bai, L., Liu, X., & Su, J. (2023). ChatGPT: The cognitive effects on learning and memory. Brain and Behavior, 1(3), e30. [Google Scholar] [CrossRef]
- Balaskas, S., Tsiantos, V., Chatzifotiou, S., & Rigou, M. (2025). Determinants of ChatGPT adoption intention in higher education: Expanding on TAM with the mediating roles of trust and risk. Information, 16(2), 82. [Google Scholar] [CrossRef]
- Barakat, M., Salim, N. A., & Sallam, M. (2025). University educators perspectives on ChatGPT: A technology acceptance model-based study. Open Praxis, 17(1), 129–144. [Google Scholar] [CrossRef]
- Beaton, D. E., Bombardier, C., Guillemin, F., & Ferraz, M. B. (2000). Guidelines for the process of cross-cultural adaptation of self-report measures. Spine, 25(24), 3186–3191. [Google Scholar] [CrossRef]
- Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021, March 3–10). On the dangers of stochastic parrots: Can language models be too big? 2021 ACM Conference on Fairness, Accountability, and Transparency (FAccT ’21) (pp. 610–623), Virtual Event. [Google Scholar] [CrossRef]
- Bender, S. M. (2024). Awareness of artificial intelligence as an essential digital literacy: ChatGPT and Gen-AI in the classroom. Changing English, 31(2), 161–174. [Google Scholar] [CrossRef]
- Bhaskar, P., & Rana, S. (2024). The ChatGPT dilemma: Unravelling teachers’ perspectives on inhibiting and motivating factors for adoption of ChatGPT. Journal of Information, Communication and Ethics in Society, 22(2), 219–239. [Google Scholar] [CrossRef]
- Bhat, M., Tiwari, C., Bhaskar, P., & Khan, S. (2024). Examining ChatGPT adoption among educators in higher educational institutions using extended UTAUT model. Journal of Information, Communication and Ethics in Society, 22(3), 331–353. [Google Scholar] [CrossRef]
- Boateng, G. O., Neilands, T. B., Frongillo, E. A., Melgar-Quiñonez, H. R., & Young, S. L. (2018). Best practices for developing and validating scales for health, social, and behavioral research: A primer. Frontiers in Public Health, 6, 149. [Google Scholar] [CrossRef]
- Bolívar-Cruz, A., & Verano-Tacoronte, D. (2025). Is anxiety affecting the adoption of ChatGPT in university teaching? A gender perspective. Technology, Knowledge and Learning, 30, 2373–2392. [Google Scholar] [CrossRef]
- Booyse, D., & Scheepers, C. B. (2024). Barriers to adopting automated organisational decision-making through the use of artificial intelligence. Management Research Review, 47(1), 64–85. [Google Scholar] [CrossRef]
- Bozkurt, A. (2024). GenAI et al.: Cocreation, authorship, ownership, academic ethics and integrity in a time of generative AI. Open Praxis, 16(1), 1–10. [Google Scholar] [CrossRef]
- Brown, G. T. L., Harris, L. R., O’Quin, C., & Lane, K. E. (2015). Using multi-group confirmatory factor analysis to evaluate cross-cultural research: Identifying and understanding non-invariance. International Journal of Research & Method in Education, 40(1), 66–90. [Google Scholar] [CrossRef]
- Brown, J. D. (2009). Choosing the right type of rotation in PCA and EFA. Shiken: JALT Testing & Evaluation SIG Newsletter, 13(3), 20–25. Available online: https://teval.jalt.org/test/PDF/Brown31.pdf (accessed on 3 March 2025).
- Burdenski, T. K., Jr. (2000). Evaluating univariate, bivariate, and multivariate normality using graphical and statistical procedures. Multiple Linear Regression Viewpoints, 26(2), 15–28. Available online: https://imaging.mrc-cbu.cam.ac.uk/statswiki/FAQ/Simon?action=AttachFile&do=get&target=mahalplot.pdf (accessed on 20 March 2025).
- Cain, M. K., Zhang, Z., & Yuan, K.-H. (2017). Univariate and multivariate skewness and kurtosis for measuring nonnormality: Prevalence, influence and estimation. Behavior Research Methods, 49(5), 1716–1735. [Google Scholar] [CrossRef] [PubMed]
- Capraro, V., Lentsch, A., Acemoglu, D., Akgun, S., Akhmedova, A., Bilancini, E., Bonnefon, J.-F., Brañas-Garza, P., Butera, L., Douglas, K. M., Everett, J. A. C., Gigerenzer, G., Greenhow, C., Hashimoto, D. A., Holt-Lunstad, J., Jetten, J., Johnson, S., Kunz, W. H., Longoni, C., … Viale, R. (2024). The impact of generative artificial intelligence on socioeconomic inequalities and policy making. PNAS Nexus, 3(6), pgae191. [Google Scholar] [CrossRef]
- Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral Research, 1(2), 245–276. [Google Scholar] [CrossRef]
- Complete College America. (2025). Generating college completion: Charting a path to institutional AI adoption for student success in higher education. Complete College America. [Google Scholar]
- Cong-Lem, N., Soyoof, A., & Tsering, D. (2024). A systematic review of the limitations and associated opportunities of ChatGPT. International Journal of Human–Computer Interaction, 41(7), 3851–3866. [Google Scholar] [CrossRef]
- Costello, A. B., & Osborne, J. W. (2005). Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Practical Assessment, Research, and Evaluation, 10(1), 7. [Google Scholar] [CrossRef]
- Çer, E. (2025). Enhancing lecturer awareness of technology integration within the TPACK framework: A mixed methods study. STEM Education, 5(3), 356–382. [Google Scholar] [CrossRef]
- Dahri, N. A., Yahaya, N., Al-Rahmi, W. M., Aldraiweesh, A., Alturki, U., Almutairy, S., Shutaleva, A., & Soomro, R. B. (2024). Extended TAM based acceptance of AI-powered ChatGPT for supporting metacognitive self-regulated learning in education: A mixed-methods study. Heliyon, 10(8), e29317. [Google Scholar] [CrossRef]
- Dai, H., Sun, C., Xu, S., Farina, F., Huang, X., Wang, Y., Zhang, Q., & Shen, H. (2025). Cultural adaptation and psychometric evaluation of the fear and avoidance of memory loss scale in a Chinese context. Aging & Mental Health, 29(6), 1144–1151. [Google Scholar] [CrossRef] [PubMed]
- Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340. [Google Scholar] [CrossRef]
- Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982–1003. [Google Scholar] [CrossRef]
- DeCarlo, L. T. (1997). On the meaning and use of kurtosis. Psychological Methods, 2(3), 292. [Google Scholar] [CrossRef]
- Demir, S. (2022). Comparison of normality tests in terms of sample sizes under different skewness and kurtosis coefficients. International Journal of Assessment Tools in Education, 9(2), 397–409. [Google Scholar] [CrossRef]
- Deng, L., & Chan, W. (2017). Testing the difference between reliability coefficients alpha and omega. Educational and Psychological Measurement, 77(2), 185–203. [Google Scholar] [CrossRef]
- de Winter, J. C. F., Dodou, D., & Wieringa, P. A. (2009). Exploratory factor analysis with small sample sizes. Multivariate Behavioral Research, 44(2), 147–181. [Google Scholar] [CrossRef]
- Dong, B., Bai, J., Xu, T., & Zhou, Y. (2024, April 19–21). Large language models in education: A systematic review. 2024 6th International Conference on Computer Science and Technologies in Education (CSTE), Xi’an, China. [Google Scholar] [CrossRef]
- Dubey, S., Ghosh, R., Dubey, M. J., Chatterjee, S., Das, S., & Benito-León, J. (2024). Redefining cognitive domains in the era of ChatGPT: A comprehensive analysis of artificial intelligence’s influence and future implications. Medical Research Archives, 12(6), 5383. [Google Scholar] [CrossRef] [PubMed]
- Dunn, E. C., Masyn, K. E., Johnston, W. R., & Subramanian, S. V. (2015). Modeling contextual effects using individual-level data and without aggregation: An illustration of multilevel factor analysis (MLFA) with collective efficacy. Population Health Metrics, 13, 12. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, Y. K., Kshetri, N., Hughes, L., Slade, E. L., Jeyaraj, A., Kar, A. K., Baabdullah, A. M., Koohang, A., Raghavan, V., Ahuja, M., Albanna, H., Albashrawi, M. A., Al-Busaidi, A. S., Balakrishnan, J., Barlette, Y., Basu, S., Bose, I., Brooks, L., Buhalis, D., … Wright, R. (2023). So what if ChatGPT wrote it? Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI. International Journal of Information Management, 71, 102642. [Google Scholar] [CrossRef]
- Dwivedi, Y. K., Rana, N. P., Jeyaraj, A., Clement, M., & Williams, M. D. (2019). Re-examining the unified theory of acceptance and use of technology (UTAUT): Towards a revised theoretical model. Information Systems Frontiers, 21, 719–734. [Google Scholar] [CrossRef]
- Dysart, S., & Weckerle, C. (2015). Professional development in higher education: A model for meaningful technology integration. Journal of Information Technology Education: Innovations in Practice, 14, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Đerić, E., Frank, D., & Vuković, D. (2025). Exploring the Ethical Implications of Using Generative AI Tools in Higher Education. Informatics, 12(2), 36. [Google Scholar] [CrossRef]
- Enang, E., & Christopoulou, D. (2024). Exploring academics’ intentions to incorporate ChatGPT into their teaching practices. Journal of University Teaching and Learning Practice, 21(8), 1–29. [Google Scholar] [CrossRef]
- Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4(3), 272–299. [Google Scholar] [CrossRef]
- Fajt, B., & Schiller, E. (2025). ChatGPT in academia: University students’ attitudes towards the use of ChatGPT and plagiarism. Journal of Academic Ethics, 23(2), 1–20. [Google Scholar] [CrossRef]
- Faraon, M., Rönkkö, K., Milrad, M., & Tsui, E. (2025). International perspectives on artificial intelligence in higher education: An explorative study of students’ intention to use ChatGPT across the Nordic countries and the USA. Education and Information Technologies. [Google Scholar] [CrossRef]
- Feng, J., Yu, B., Tan, W. H., Dai, Z., & Li, Z. (2025). Key factors influencing educational technology adoption in higher education: A systematic review. PLoS Digital Health, 4(4), e0000764. [Google Scholar] [CrossRef]
- Fernandes, A., Alturas, B., & Fernandes, A. (2025). Hybrid generation: Perceptions of social networks among Generation X in Portugal. Entertainment Computing, 52, 100914. [Google Scholar] [CrossRef]
- Ferrando, P. J., & Anguiano-Carrasco, C. (2010). El análisis factorial como técnica de investigación en Psicología. Papeles del Psicólogo, 31(1), 18–33. [Google Scholar]
- Ferrando, P. J., & Lorenzo-Seva, U. (2014). El análisis factorial exploratorio de los ítems: Algunas consideraciones adicionales. Anales de Psicología, 30(3), 1170–1175. [Google Scholar] [CrossRef]
- Fischer, R., & Karl, J. A. (2019). A primer to (cross-cultural) multi-group invariance testing possibilities in R. Frontiers in Psychology, 10, 1507. [Google Scholar] [CrossRef]
- Floyd, F. J., & Widaman, K. F. (1995). Factor analysis in the development and refinement of clinical assessment instruments. Psychological Assessment, 7(3), 286–299. [Google Scholar] [CrossRef]
- Fowler, D. S. (2023). AI in higher education: Academic integrity, harmony of insights, and recommendations. Journal of Ethics in Higher Education, 3, 127–143. [Google Scholar] [CrossRef]
- Fuchs, K., & Aguilos, V. (2023). Integrating artificial intelligence in higher education: Empirical insights from students about using ChatGPT. International Journal of Information and Education Technology, 13(9), 1365–1371. [Google Scholar] [CrossRef]
- García, J. A. M., Gómez, C. G., López, A. T., & Schlosser, M. J. (2024). Applying the technology acceptance model to online self-learning: A multigroup analysis. Journal of Innovation & Knowledge, 9(4), 100571. [Google Scholar] [CrossRef]
- García-Alonso, E. M., León-Mejía, A. C., Sánchez-Cabrero, R., & Guzmán-Ordaz, R. (2024). Training and technology acceptance of ChatGPT in university students of social sciences: A netcoincidental analysis. Behavioral Sciences, 14(7), 612. [Google Scholar] [CrossRef]
- García-Peñalvo, F. J. (2024). Inteligencia artificial generativa y educación: Un análisis desde múltiples perspectivas. Education in the Knowledge Society (EKS), 25, 31942. [Google Scholar] [CrossRef]
- Garrido-Ruso, M., & Aibar-Guzmán, B. (2022). The moderating effect of contextual factors and employees’ demographic features on the relationship between CSR and work-related attitudes: A meta-analysis. Corporate Social Responsibility and Environmental Management, 29(5), 1839–1854. [Google Scholar] [CrossRef]
- George, D., & Mallery, P. (2010). SPSS for Windows step by step: A simple guide and reference (10th ed.). Pearson. [Google Scholar]
- Gerlich, M. (2025). AI tools in society: Impacts on cognitive offloading and the future of critical thinking. Societies, 15(1), 6. [Google Scholar] [CrossRef]
- Giannakos, M. N., Sharma, K., Papamitsiou, Z., & Pérez-Sanagustín, M. (2024). The promise and challenges of generative AI in education. Behaviour & Information Technology, 43(4), 213–228. [Google Scholar] [CrossRef]
- Golden, W. (2023). ChatGPT: A trusted source? Irish Journal of Technology Enhanced Learning, 7(2), 113–125. [Google Scholar] [CrossRef]
- Gorsuch, R. L. (1983). Factor analysis (2nd ed.). Lawrence Erlbaum Associates. [Google Scholar]
- Gould, S. J. (2015). Second order confirmatory factor analysis: An example. In J. M. Hawes, & G. B. Glisan (Eds.), Proceedings of the 1987 academy of marketing science (AMS) annual conference (pp. 488–490). Springer. [Google Scholar] [CrossRef]
- Grand-Guillaume-Perrenoud, J. A., Geese, F., Uhlmann, K., Blasimann, A., Wagner, F. L., Neubauer, F. B., Huwendiek, S., Hahn, S., & Schmitt, K.-U. (2023). Mixed methods instrument validation: Evaluation procedures for practitioners developed from the validation of the Swiss Instrument for Evaluating Interprofessional Collaboration. BMC Health Services Research, 23, 83. [Google Scholar] [CrossRef]
- Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate data analysis (8th ed.). Cengage Learning. [Google Scholar]
- Hakimi, T. I., Jaafar, J. A., Mohamad, M. A., & Omar, M. (2024). Unified theory of acceptance and use of technology (UTAUT) applied in higher education research: A systematic literature review and bibliometric analysis. Multidisciplinary Reviews, 7(12), 2024303. [Google Scholar] [CrossRef]
- Hancock, G. R., & An, J. (2020). A closed-form alternative for estimating ω reliability under unidimensionality. Measurement: Interdisciplinary Research and Perspectives, 18(1), 1–14. [Google Scholar] [CrossRef]
- Hayes, A. F., & Coutts, J. J. (2020). Use Omega rather than Cronbach’s Alpha for estimating reliability. But…. Communication Methods and Measures, 14(1), 1–24. [Google Scholar] [CrossRef]
- Hayton, J. C., Allen, D. G., & Scarpello, V. G. (2004). Factor retention decisions in exploratory factor analysis: A tutorial on parallel analysis. Organizational Research Methods, 7(2), 191–205. [Google Scholar] [CrossRef]
- Herodotou, C., Naydenova, G., Boroowa, A., Gilmour, A., & Rienties, B. (2020). How can predictive learning analytics and motivational interventions increase student retention and enhance administrative support in distance education? Journal of Learning Analytics, 7(2), 72–83. [Google Scholar] [CrossRef]
- Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 30(2), 179–185. [Google Scholar] [CrossRef] [PubMed]
- Howard, M. C. (2016). A review of exploratory factor analysis decisions and overview of current practices: What we are doing and how can we improve? International Journal of Human–Computer Interaction, 32(1), 51–62. [Google Scholar] [CrossRef]
- Huamani-Anco, Y. S., & Maraza-Quispe, B. (2025). Evaluation of the impact of ChatGPT on the development of research skills in secondary education students: An experimental approach. International Journal of Information and Education Technology, 15(1), 59–69. [Google Scholar] [CrossRef]
- Huber, S. E., Kiili, K., Nebel, S., Mayer, I., Stoyanov, S., & Ninaus, M. (2024). Leveraging the potential of large language models in education through playful and game-based learning. Educational Psychology Review, 36, 25. [Google Scholar] [CrossRef]
- Hughes, L., Malik, T., Dettmer, S., Al-Busaidi, A. S., & Dwivedi, Y. K. (2025). Reimagining higher education: Navigating the challenges of generative AI adoption. Information Systems Frontiers, 1–23. [Google Scholar] [CrossRef]
- Hurtado de Barrera, J. (2012). El proyecto de investigación: Comprensión holística de la metodología y la investigación (7th ed.). Ediciones Quirón. [Google Scholar]
- Ismail, H., Johaimi Ling, N. L. F., Abdul Wahab, M., Mohd Fawzy, F. F., Mohamed Shaari, S., & Jiram, W. R. A. (2025). The elderly-friendly housing neighbourhood preferred features by generations in Malaysia. Built Environment Journal, 22, 15–25. [Google Scholar] [CrossRef]
- Ismail, H., & Shaari, S. M. (2019). Housing decision: The choice between location, house and neighbourhood among Malaysian generations. MATEC Web of Conferences, 266, 01026. [Google Scholar] [CrossRef]
- Jaipal-Jamani, K., Figg, C., Collier, D., Gallagher, T., Winters, K., & Ciampa, K. (2018). Developing TPACK of university faculty through technology leadership roles. Italian Journal of Educational Technology, 26(1), 39–55. [Google Scholar] [CrossRef]
- Javaid, M., Haleem, A., Singh, R. P., Khan, S., & Khan, I. H. (2023). Unlocking the opportunities through ChatGPT tool towards ameliorating the education system. BenchCouncil Transactions on Benchmarks, Standards and Evaluations, 3(2), 100115. [Google Scholar] [CrossRef]
- Jennrich, R. I. (1973). Standard errors for obliquely rotated factor loadings. Psychometrika, 38(4), 593–604. [Google Scholar] [CrossRef]
- Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20(1), 141–151. [Google Scholar] [CrossRef]
- Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39(1), 31–36. [Google Scholar] [CrossRef]
- Kasneci, E., Sessler, K., Küchemann, S., Bannert, M., Dementieva, D., Fischer, F., Gasser, U., Groh, G., Günnemann, S., Hüllermeier, E., Krusche, S., Kutyniok, G., Michaeli, T., Nerdel, C., Pfeffer, J., Poquet, O., Sailer, M., Schmidt, A., Seidel, T., … Kasneci, G. (2023). ChatGPT for good? On opportunities and challenges of large language models for education. Learning and Individual Differences, 103, 102274. [Google Scholar] [CrossRef]
- Kim, M. K., Jhee, S. Y., & Han, S.-L. (2025). The impact of ChatGPT’s quality factors on perceived usefulness, perceived enjoyment, and continuous usage intention using the IS success model. Asia Marketing Journal, 26(4), 3. [Google Scholar] [CrossRef]
- Kim, S. J. (2024a). Research ethics and issues regarding the use of ChatGPT-like artificial intelligence platforms by authors and reviewers: A narrative review. Science Editing, 11(2), 96–106. [Google Scholar] [CrossRef]
- Kim, S. J. (2024b). Trends in research on ChatGPT and adoption-related issues discussed in articles: A narrative review. Science Editing, 11(1), 3–11. [Google Scholar] [CrossRef]
- Kong, S. C., Yang, Y., & Hou, C. (2024). Examining teachers’ behavioural intention of using generative artificial intelligence tools for teaching and learning based on the extended technology acceptance model. Computers and Education: Artificial Intelligence, 7, 100328. [Google Scholar] [CrossRef]
- Kovari, A. (2024). Ethical use of ChatGPT in education—Best practices to combat AI-induced plagiarism. Frontiers in Education, 9, 1465703. [Google Scholar] [CrossRef]
- Kwak, Y., & Pardos, Z. (2024). Bridging large language model disparities: Skill tagging of multilingual educational content. British Journal of Educational Technology, 55(5), 2039–2057. [Google Scholar] [CrossRef]
- Kyriazos, T., & Poga, M. (2023). Dealing with multicollinearity in factor analysis: The problem, detections, and solutions. Open Journal of Statistics, 13, 404–424. [Google Scholar] [CrossRef]
- Labadze, L., Grigolia, M., & Machaidze, L. (2023). Role of AI chatbots in education: Systematic literature review. International Journal of Educational Technology in Higher Education, 20, 56. [Google Scholar] [CrossRef]
- Lawasi, M. C., Rohman, V. A., & Shoreamanis, M. (2024). The use of AI in improving student’s critical thinking skills. Proceedings Series on Social Sciences & Humanities, 18, 366–370. [Google Scholar] [CrossRef]
- Lee, A. T., Ramasamy, R. K., & Subbarao, A. (2025). Understanding psychosocial barriers to healthcare technology adoption: A review of TAM (technology acceptance model) and UTAUT (unified theory of acceptance and use of technology) frameworks. Healthcare, 13(3), 250. [Google Scholar] [CrossRef]
- Lee, J., Hicke, Y., Yu, R., Brooks, C., & Kizilcec, R. (2024). The life cycle of large language models in education: A framework for understanding sources of bias. British Journal of Educational Technology, 55(5), 1982–2002. [Google Scholar] [CrossRef]
- León-Domínguez, U. (2024). Potential cognitive risks of generative transformer-based AI chatbots on higher order executive functions. Neuropsychology, 38(4), 293–308. [Google Scholar] [CrossRef]
- Limna, P., Kraiwanit, T., Jangjarat, K., Klayklung, P., & Chocksathaporn, P. (2023). The use of ChatGPT in the digital era: Perspectives on chatbot implementation. Journal of Applied Learning & Teaching, 6(1), 32. [Google Scholar] [CrossRef]
- Lloret-Segura, S., Ferreres-Traver, A., Hernández-Baeza, A., & Tomás-Marco, I. (2014). El Análisis Factorial Exploratorio de los Ítems: Una guía práctica, revisada y actualizada. Anales de Psicología, 30(3), 1151–1169. [Google Scholar] [CrossRef]
- Lorenzo-Seva, U., & Ferrando, P. J. (2021). MSA: The forgotten index for identifying inappropriate items before computing exploratory item factor analysis. Methodology, 17(4), 296–306. [Google Scholar] [CrossRef]
- Lorenzo-Seva, U., & Ferrando, P. J. (2024). Determining sample size requirements in EFA solutions: A simple empirical proposal. Multivariate Behavioral Research, 59(5), 899–912. [Google Scholar] [CrossRef]
- Ma, J., Wang, P., Li, B., Wang, T., Pang, X. S., & Wang, D. (2024). Exploring user adoption of ChatGPT: A technology acceptance model perspective. International Journal of Human–Computer Interaction, 41(2), 1431–1445. [Google Scholar] [CrossRef]
- MacCallum, R. C., Widaman, K. F., Zhang, S., & Hong, S. (1999). Sample size in factor analysis. Psychological Methods, 4(1), 84–99. [Google Scholar] [CrossRef]
- Mahama, I., Aboagye, J., & Nketiah, E. (2023). ChatGPT in academic writing: A threat to human creativity and academic integrity? Indonesian Journal of Innovation and Applied Sciences, 3(3), 423–432. [Google Scholar] [CrossRef]
- Makkonen, M., Salo, M., & Pirkkalainen, H. (2023, October 27–28). The effects of job and user characteristics on the perceived usefulness and use continuance intention of generative artificial intelligence chatbots at work. 9th International Conference on Socio-Technical Perspectives in IS (STPIS’23), Portsmouth, UK. CEUR-WS.org. Available online: https://ceur-ws.org/Vol-3598/paper9.pdf (accessed on 1 March 2025).
- Malkewitz, C. P., Schwall, P., Meesters, C., & Hardt, J. (2023). Estimating reliability: A comparison of Cronbach’s α, McDonald’s ωt and the greatest lower bound. Social Sciences & Humanities Open, 7(1), 100368. [Google Scholar] [CrossRef]
- Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika, 57(3), 519–530. [Google Scholar] [CrossRef]
- Martín-Crespo Rodríguez, P. (2024). La inteligencia artificial y la razón instrumental. Revista Paideia, 119, 75–87. Available online: https://sepfi.es/wp-content/uploads/2024/10/Paideia119_WEB_La-IA-y-la-razon-instrumental.pdf (accessed on 4 May 2025).
- Mastrogiacomi, F. (2024). Facilitating a paradigm shift for teaching and learning with AIs. Italian Journal of Educational Technology, 31(1), 69–81. [Google Scholar] [CrossRef]
- Matsunaga, M. (2010). How to factor-analyze your data right: Do’s, don’ts, and how-to’s. International Journal of Psychological Research, 3(1), 97–110. [Google Scholar] [CrossRef]
- McDonald, R. P. (2013). Test theory: A unified treatment (1st ed.). Psychology Press. [Google Scholar]
- Memon, M. A., Ting, H., Cheah, J.-H., Thurasamy, R., Chuah, F., & Cham, T. H. (2020). Sample size for survey research: Review and recommendations. Journal of Applied Structural Equation Modeling, 4(2), i–xx. [Google Scholar] [CrossRef]
- Mennella, C., Maniscalco, U., De Pietro, G., & Esposito, M. (2024). Ethical and regulatory challenges of AI technologies in healthcare: A narrative review. Heliyon, 10(4), e26297. [Google Scholar] [CrossRef]
- Menon, D., & Shilpa, K. (2023). “Chatting with ChatGPT”: Analyzing the factors influencing users’ intention to use the OpenAI’s ChatGPT using the UTAUT model. Heliyon, 9(11), e20962. [Google Scholar] [CrossRef]
- Miraz, M. H., Jin, H. H., Mahmood, M., Hasan, M. T., Sarkar, J. B., Salleh, N. M., & Chowdhury, A. Y. (2025). ChatGPT’s application in management education: In-depth critical analysis of opportunities, threats, and strategies. Multidisciplinary Reviews, 8(10), 2025338. [Google Scholar] [CrossRef]
- Mogavi, R. H., Deng, C., Kim, J. J., Zhou, P., Kwon, Y. D., Metwally, A. H. S., Tlili, A., Bassanelli, S., Bucchiarone, A., Gujar, S., Nacke, L. E., & Hui, P. (2024). ChatGPT in education: A blessing or a curse? A qualitative study exploring early adopters’ utilization and perceptions. Computers in Human Behavior: Artificial Humans, 2(1), 100027. [Google Scholar] [CrossRef]
- Mourtajji, L., & Arts-Chiss, N. (2024). Unleashing ChatGPT: Redefining technology acceptance and digital transformation in higher education. Administrative Sciences, 14(12), 325. [Google Scholar] [CrossRef]
- Mukti, B. H. (2025). Sample size determination: Principles and applications for health research. Health Sciences International Journal, 3(1), 127–143. [Google Scholar] [CrossRef]
- Mundfrom, D. J., Shaw, D. G., & Ke, T. L. (2005). Minimum sample size recommendations for conducting factor analyses. International Journal of Testing, 5(2), 159–168. [Google Scholar] [CrossRef]
- Naznin, K., Al Mahmud, A., Nguyen, M. T., & Chua, C. (2025). ChatGPT integration in higher education for personalized learning, academic writing, and coding tasks: A systematic review. Computers, 14(2), 53. [Google Scholar] [CrossRef]
- Ngo, T. T. A., Tran, T. T., An, G. K., & Nguyen, P. T. (2024). ChatGPT for educational purposes: Investigating the impact of knowledge management factors on student satisfaction and continuous usage. IEEE Transactions on Learning Technologies, 17, 1341–1352. [Google Scholar] [CrossRef]
- Nikoçeviq-Kurti, E., & Bërdynaj-Syla, L. (2024). ChatGPT integration in higher education: Impacts on teaching and professional development of university faculty. Educational Process: International Journal, 13(3), 22–39. [Google Scholar] [CrossRef]
- O’Connor, B. P. (2000). SPSS and SAS programs for determining the number of components using parallel analysis and Velicer’s MAP test. Behavior Research Methods, Instrumentation, and Computers, 32, 396–402. [Google Scholar] [CrossRef]
- Paliz Sánchez, C. D. R., Mazacón Cervantes, C. J., Mazacón Gómez, M. N., & Suárez Guamán, P. J. (2024). Bioestadística: Introducción a la estadística en ciencias de la salud (1st ed.). Binario. [Google Scholar]
- Palm, A. (2022). Innovation systems for technology diffusion: An analytical framework and two case studies. Technological Forecasting and Social Change, 182, 121821. [Google Scholar] [CrossRef]
- Panda, S., & Kaur, N. (2024). Exploring the role of generative AI in academia: Opportunities and challenges. IP Indian Journal of Library Science & Information Technology, 9(1), 12–23. [Google Scholar] [CrossRef]
- Parveen, K., Phuc, T. Q. B., Alghamdi, A. A., Hajjej, F., Obidallah, W. J., Alduraywish, Y. A., & Shafiq, M. (2024). Unraveling the dynamics of ChatGPT adoption and utilization through structural equation modeling. Scientific Reports, 14(1), 23469. [Google Scholar] [CrossRef] [PubMed]
- Pereira-González, L. M., Basantes-Andrade, A., Mora-Grijalva, M., & Galárraga-Andrade, A. (2025a). Latent dimensions in the adoption of ChatGPT at the University: CHASSIS model. Alteridad, 20(2), 184–195. [Google Scholar] [CrossRef]
- Pereira-González, L. M., Basantes-Andrade, A., Naranjo-Toro, M., & Guia-Pereira, M. (2025b). IMPACT Model [Dataset]. Open Science Framework (OSF). [Google Scholar] [CrossRef]
- Ponce Gea, A. I., & Serrano Pastor, F. J. (2022). The cultural element in the adaptation of a test: Proposals and reflections on internal and external influences. Education Sciences, 12(5), 291. [Google Scholar] [CrossRef]
- Poobalan, D., & Latip, A. R. A. (2023). Investigating the determinants of ChatGPT adoption among university students. Quantum Journal of Social Sciences and Humanities, 5(6), 51–64. [Google Scholar] [CrossRef]
- Rogers, P. (2022). Best practices for your exploratory factor analysis: A factor tutorial. Revista de Administração Contemporânea, 26(6), e210085. [Google Scholar] [CrossRef]
- Romero-Rodríguez, J., Ramírez-Montoya, M., Buenestado-Fernández, M., & Lara-Lara, F. (2023). Uso de ChatGPT en la universidad como herramienta para el pensamiento complejo: Percepción de utilidad por parte de los estudiantes. Revista de Nuevos Enfoques en Investigación Educativa, 12(2), 323–339. [Google Scholar] [CrossRef]
- Saif, N., Khan, S. U., Shaheen, I., ALotaibi, F. A., Alnfiai, M. M., & Arif, M. (2024). Chat-GPT: Validating technology acceptance model (TAM) in education sector via ubiquitous learning mechanism. Computers in Human Behavior, 154, 108097. [Google Scholar] [CrossRef]
- Salih, S., Husain, O., Hamdan, M., Abdelsalam, S., Elshafie, H., & Motwakel, A. (2025). Transforming education with AI: A systematic review of ChatGPT’s role in learning, academic practices, and institutional adoption. Results in Engineering, 25, 103837. [Google Scholar] [CrossRef]
- Sallam, M., Elsayed, W., Al-Shorbagy, M., Barakat, M., El Khatib, S., Ghach, W., Alwan, N., Hallit, S., & Malaeb, D. (2024). ChatGPT usage and attitudes are driven by perceptions of usefulness, ease of use, risks, and psycho-social impact: A study among university students in the UAE. Frontiers in Education, 9, 1414758. [Google Scholar] [CrossRef]
- Sallam, M., Salim, N. A., Barakat, M., Al-Mahzoum, K., Al-Tammemi, A. B., Malaeb, D., Hallit, R., & Hallit, S. (2023). Assessing health students’ attitudes and usage of ChatGPT in Jordan: Validation study. JMIR Medical Education, 9, e48254. [Google Scholar] [CrossRef]
- Sappaile, B. I., Abeng, A. T., & Nuridayanti, N. (2023). Exploratory factor analysis as a tool for determining indicators of a research variable: Literature review. Indonesian Journal of Educational and Neural Studies, 1(6), 387. [Google Scholar] [CrossRef]
- Saranza, C., Villamar, E., Arlan, E., Francia, J., Lopio-Alas, L., & Buca, R. (2024). Exploring the impact of usage frequency on perceived value of ChatGPT among university students: The moderating role of income. International Journal of Social Science and Human Research, 7(12), 9430–9442. [Google Scholar] [CrossRef]
- Saxena, A., & Doleck, T. (2023). A structural model of student continuance intentions in ChatGPT adoption. Eurasia Journal of Mathematics, Science and Technology Education, 19(12), em2366. [Google Scholar] [CrossRef]
- Sánchez Espejo, F. G. (2019). Tesis: Desarrollo metodológico de la investigación (1st ed.). Centrum Legalis. [Google Scholar]
- Scherer, R., Siddiq, F., & Tondeur, J. (2019). The technology acceptance model (TAM): A meta-analytic structural equation modeling approach to explaining teachers’ adoption of digital technology in education. Computers & Education, 128, 13–35. [Google Scholar] [CrossRef]
- Sebastian, G. (2023). Privacy and data protection in ChatGPT and other AI chatbots: Strategies for securing user information. International Journal of Security and Privacy in Pervasive Computing, 15(1), 1–14. [Google Scholar] [CrossRef]
- Shata, A. (2025). Opting out of AI: Exploring perceptions, reasons, and concerns behind faculty resistance to generative AI. Frontiers in Communication, 10, 1614804. [Google Scholar] [CrossRef]
- Shata, A., & Hartley, K. (2025). Artificial intelligence and communication technologies in academia: Faculty perceptions and the adoption of generative AI. International Journal of Educational Technology in Higher Education, 22, 14. [Google Scholar] [CrossRef]
- Sigüenza Orellana, J., Andrade Cordero, C., & Chitacapa Espinoza, J. (2024). Validación del cuestionario para docentes: Percepción sobre el uso de ChatGPT en la educación superior. Revista Andina de Educación, 8(1), 000816. [Google Scholar] [CrossRef]
- Soares, A., Lerigo-Sampson, M., & Barker, J. (2024). Recontextualising the unified theory of acceptance and use of technology (UTAUT) framework to higher education online marking. Journal of University Teaching and Learning Practice, 21(8), e7ft8x880. [Google Scholar] [CrossRef]
- Soper, D. S. (2025). A-priori sample size calculator for structural equation models (versión 4.0) [Computer software]. Daniel Soper. Available online: https://www.danielsoper.com/statcalc (accessed on 1 April 2025).
- Srivastava, S. J. (2024). Insights on managing generational diversity at workplace. In Proceedings of the Society of Petroleum Engineers—ADIPEC 2024 (Artículo 222297-MS). Society of Petroleum Engineers. [Google Scholar] [CrossRef]
- Stahl, B. C. (2025). Locating the ethics of ChatGPT—Ethical issues as affordances in AI ecosystems. Information, 16(2), 104. [Google Scholar] [CrossRef]
- Stasewitsch, E., Dokuka, S., & Kauffeld, S. (2022). Promoting educational innovations and change through networks between higher education teachers. Tertiary Education and Management, 28, 61–79. [Google Scholar] [CrossRef]
- Strauss, M. E., & Smith, G. T. (2009). Construct validity: Advances in theory and methodology. Annual Review of Clinical Psychology, 5, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Strielkowski, W., Grebennikova, V., Lisovskiy, A., Rakhimova, G., & Vasileva, T. (2025). AI-driven adaptive learning for sustainable educational transformation. Sustainable Development, 33(2), 1921–1947. [Google Scholar] [CrossRef]
- Strzelecki, A., Cicha, K., Rizun, M., & Rutecka, P. (2024). Acceptance and use of ChatGPT in the academic community. Education and Information Technologies, 29, 22943–22968. [Google Scholar] [CrossRef]
- Sun, Y., Sheng, D., Zhou, Z., & Wu, Y. (2024). AI hallucination: Towards a comprehensive classification of distorted information in artificial intelligence-generated content. Humanities and Social Sciences Communications, 11, 1278. [Google Scholar] [CrossRef]
- Suryavanshi, P., Kapse, M., & Sharma, V. (2025). Integrating ChatGPT into software development: Valuating acceptance and utilisation among developers. Australasian Accounting, Business and Finance Journal, 19(1), 96–117. [Google Scholar] [CrossRef]
- Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics (6th ed.). Pearson Education. [Google Scholar]
- Takahashi, C. K., Bastos de Figueiredo, J. C., & Scornavacca, E. (2024). Investigating the diffusion of innovation: A comprehensive study of successive diffusion processes through analysis of search trends, patent records, and academic publications. Technological Forecasting and Social Change, 198, 122991. [Google Scholar] [CrossRef]
- Thompson, B., & Daniel, L. G. (1996). Factor analytic evidence for the construct validity of scores: A historical overview and some guidelines. Educational and Psychological Measurement, 56(2), 197–208. [Google Scholar] [CrossRef]
- Toma, R. B., & Yánez-Pérez, I. (2024). Effects of ChatGPT use on undergraduate students’ creativity: A threat to creative thinking? Discover Artificial Intelligence, 4, 74. [Google Scholar] [CrossRef]
- Uppal, K., & Hajian, S. (2025). Students’ perceptions of ChatGPT in higher education: A study of academic enhancement, procrastination, and ethical concerns. European Journal of Educational Research, 14(1), 199–211. [Google Scholar] [CrossRef]
- Valaidum, S., & Mahat, J. (2024, November 25–29). Factors influencing ChatGPT use behaviour among trainee teachers. International Conference on Computers in Education (ICCE), Manila, Philippines. [Google Scholar] [CrossRef]
- Valencia Londoño, P. A., Trujillo Orrego, S. P., Duque Monsalve, L. F., & Giraldo Cardona, L. S. (2025). Factor structure and reliability of the Family Resilience Scale (FRAS): Adaptation with Colombian families exposed to stressful events. Frontiers in Psychology, 16, 1568139. [Google Scholar] [CrossRef]
- van Raaij, E. M., & Schepers, J. J. L. (2008). The acceptance and use of a virtual learning environment in China. Computers & Education, 50(3), 838–852. [Google Scholar] [CrossRef]
- Velicer, W. F. (1976). Determining the number of components from the matrix of partial correlations. Psychometrika, 41, 321–327. [Google Scholar] [CrossRef]
- Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the Technology Acceptance Model: Four longitudinal field studies. Management Science, 46(2), 186–204. [Google Scholar] [CrossRef]
- Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425–478. [Google Scholar] [CrossRef]
- Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157–178. [Google Scholar] [CrossRef]
- Venkatesh, V., & Zhang, X. (2010). Unified theory of acceptance and use of technology: U.S. vs. China. Journal of Global Information Technology Management, 13(1), 5–27. [Google Scholar] [CrossRef]
- Vörösmarty, G., & Dobos, I. (2020). Green purchasing frameworks considering firm size: A multicollinearity analysis using variance inflation factor. Supply Chain Forum: An International Journal, 21(4), 290–301. [Google Scholar] [CrossRef]
- Wang, H., Dang, A., Wu, Z., & Mac, S. (2024). Generative AI in higher education: Seeing ChatGPT through universities’ policies, resources, and guidelines. Computers and Education: Artificial Intelligence, 7, 100326. [Google Scholar] [CrossRef]
- Wang, V. H.-C., Silver, D., & Pagán, J. A. (2022). Generational differences in beliefs about COVID-19 vaccines. Preventive Medicine, 157, 107005. [Google Scholar] [CrossRef]
- Wang, Y., & Zhang, W. (2023). Factors influencing the adoption of generative AI for art designing among Chinese Generation Z: A structural equation modeling approach. IEEE Access, 11, 143272–143284. [Google Scholar] [CrossRef]
- Wedlock, B. C., & Trahan, M. P. (2020). Revisiting the unified theory of acceptance and the use of technology (UTAUT) model and scale: An empirical evolution of educational technology. Research Issues in Contemporary Education, 4(1), 6–20. Available online: https://eric.ed.gov/?id=EJ1244613 (accessed on 3 March 2025).
- Worthington, R. L., & Whittaker, T. A. (2006). Scale development research: A content analysis and recommendations for best practices. The Counseling Psychologist, 34, 806–838. [Google Scholar] [CrossRef]
- Xiao, J., Xu, Z., Xiao, A., Wang, X., & Skare, M. (2024). Overcoming barriers and seizing opportunities in the innovative adoption of next-generation digital technologies. Journal of Innovation & Knowledge, 9(4), 100622. [Google Scholar] [CrossRef]
- Xue, L., Rashid, A. M., & Ouyang, S. (2024). The Unified Theory of Acceptance and Use of Technology (UTAUT) in higher education: A systematic review. SAGE Open, 14(1), 21582440241229570. [Google Scholar] [CrossRef]
- Yan, L., Sha, L., Zhao, L., Li, Y., Maldonado, R., Chen, G., Li, X., Jin, Y., & Gašević, D. (2023). Practical and ethical challenges of large language models in education: A systematic scoping review. British Journal of Educational Technology, 55, 90–112. [Google Scholar] [CrossRef]
- Yu, C., Yan, J., & Cai, N. (2024). ChatGPT in higher education: Factors influencing ChatGPT user satisfaction and continued use intention. Frontiers in Education, 9, 1354929. [Google Scholar] [CrossRef]
- Yurtseven, N., & Karadeniz, Ş. (2020). An overview of generation alpha. In The teacher of Generation Alpha (pp. 11–31). Verlag Peter Lang AG. [Google Scholar]
- Zhai, C., Wibowo, S., & Li, L. D. (2024). Efectos de la excesiva dependencia de los sistemas de diálogo de IA en las capacidades cognitivas de los estudiantes: Una revisión sistemática. Smart Learning Environments, 11, 28. [Google Scholar] [CrossRef]
- Zhou, J., Müller, H., Holzinger, A., & Chen, F. (2024). Ethical ChatGPT: Concerns, challenges, and commandments. Electronics, 13(17), 3417. [Google Scholar] [CrossRef]
- Zinbarg, R. E., Revelle, W., Yovel, I., & Li, W. (2005). Cronbach’s α, Revelle’s β, and McDonald’s ωh: Their relations with each other and two alternative conceptualizations of reliability. Psychometrika, 70(1), 123–133. [Google Scholar] [CrossRef]
- Zirar, A. (2023). Exploring the impact of language models, such as ChatGPT, on student learning and assessment. Review of Education, 11(3), e3433. [Google Scholar] [CrossRef]

| Generation | Birth Years | Key Characteristics | Authors & Years |
|---|---|---|---|
| Traditionalists/Silent | 1928–1945 | Experienced pre-technology era; value discipline and hard work. | Ismail and Shaari (2019), Ismail et al. (2025); V. H.-C. Wang et al. (2022) |
| Baby Boomers | 1946–1964 | Experienced post-WWII economic boom; value loyalty and work ethic. | Ismail and Shaari (2019), Ismail et al. (2025); Fernandes et al. (2025) |
| Generation X | 1965–1980 | Adapted to both pre- and post-digital worlds; value independence and work–life balance. | Ismail and Shaari (2019), Ismail et al. (2025); Fernandes et al. (2025); Yurtseven and Karadeniz (2020) |
| Millennials/Generation Y | 1981–1996 | Digital natives; value flexibility and social consciousness. | Ismail and Shaari (2019), Ismail et al. (2025); Fernandes et al. (2025); Srivastava (2024) |
| Generation Z | 1997–2012 | Grew up with digital technology; value instant access to information and social media. | Ismail et al. (2025); Fernandes et al. (2025); Srivastava (2024) |
| Generation Alpha | 2013–2024 | Known as “tech thumbs,” highly integrated with technology from birth. | Srivastava (2024); V. H.-C. Wang et al. (2022) |
| Variable | Categories/Values | %/M (SD) |
|---|---|---|
| Academic area | Health | 26.2 |
| Education and Technology | 27.7 | |
| Applied Engineering | 17.0 | |
| Agro-Environmental Sciences and Biotechnology | 14.1 | |
| Administration and Economics | 15.0 | |
| Age (years) | Range: 28–77 | M = 45.0 (SD = 9.5) |
| Sex | Male | 57.3 |
| Female | 42.7 | |
| Generation cohort | Baby Boomers | 6.0 |
| Generation X | 43.2 | |
| Generation Y/Millennials | 49.5 | |
| Generation Z | 1.0 | |
| Years of teaching experience | <6 years | 2.4 |
| 6–10 years | 20.4 | |
| 11–15 years | 32 | |
| 16–20 years | 24.8 | |
| 21–25 years | 14.1 | |
| >25 years | 6.3 | |
| Self-identification (ethnicity) | Mixed-race | 93.7 |
| Nationality | Ecuadorian | 97.6 |
| Usage Level 1 | % |
|---|---|
| Never | 0 |
| Rarely (less than once a month) | 14.1 |
| Occasionally (1–3 times per month) | 29.6 |
| Frequently (1–3 times per week) | 44.7 |
| Very frequently (almost every day) | 11.7 |
| Initial Eigenvalues | Rotation Sums of Squared Loadings 1 | |||
|---|---|---|---|---|
| Factor | Total | %Variance | %Cumulative | Total |
| EAC | 8.484 | 30.300 | 30.300 | 7.917 |
| PRT | 5.328 | 19.028 | 49.328 | 4.614 |
| CA | 2.230 | 7.964 | 57.293 | 4.900 |
| FACT | 1.806 | 6.451 | 63.743 | 3.783 |
| FC | 1.241 | 4.431 | 68.175 | 5.884 |
| Factor | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| 1 | 1.000 | ||||
| 2 | 0.015 | 1.000 | |||
| 3 | −0.395 | −0.485 | 1.000 | ||
| 4 | 0.457 | 0.295 | −0.435 | 1.000 | |
| 5 | 0.762 | 0.036 | −0.335 | 0.474 | 1.000 |
| Item | Description | Initial | Extraction * |
|---|---|---|---|
| EAC_I1 | Inv_I feel that relying on ChatGPT could reduce my ability to analyze and reflect on my own. | 0.678 | 0.701 |
| EAC_I2 | Inv_I am concerned that ChatGPT may limit the development of my critical thinking. | 0.583 | 0.447 |
| EAC_I3 | Inv_I believe that the constant use of ChatGPT may affect my ability to think critically. | 0.622 | 0.578 |
| EAC_I4 | Inv_I feel that by using ChatGPT, the authorship of my work may be questioned. | 0.617 | 0.562 |
| EAC_I5 | Inv_I am concerned that my work may lose originality if I use ChatGPT. | 0.621 | 0.643 |
| EAC_I6 | Inv_I am concerned that by using ChatGPT, the authorship of my scientific-academic work may become unclear. | 0.540 | 0.483 |
| EAC_I7 | Inv_I feel that using ChatGPT’s responses may lead me to commit unintentional plagiarism. | 0.540 | 0.504 |
| PRT_I1 | I consider ChatGPT’s responses to be accurate and reliable. | 0.564 | 0.621 |
| PRT_I2 | ChatGPT’s responses are usually accurate and useful for my academic and research work. | 0.651 | 0.660 |
| PRT_I3 | I trust the accuracy of the information provided by ChatGPT. | 0.650 | 0.733 |
| CA_I1 | Inv_The cost of advanced ChatGPT versions may represent a barrier to its use in my academic and research work. | 0.736 | 0.745 |
| CA_I2 | Inv_The cost of advanced ChatGPT versions is a barrier to my access and use of the tool. | 0.730 | 0.784 |
| CA_I3 | Inv_I wish I had greater financial access to use the advanced models and features of ChatGPT. | 0.533 | 0.486 |
| CA_I4 | Inv_The cost of advanced ChatGPT versions may influence how often I use it. | 0.741 | 0.764 |
| CA_I5 | Inv_The cost of technology access affects my use of ChatGPT. | 0.495 | 0.392 |
| FACT_I1 | The use of ChatGPT has had a positive impact on my work performance. | 0.557 | 0.500 |
| FACT_I2 | Using ChatGPT helps me carry out my academic and research tasks more efficiently. | 0.746 | 0.708 |
| FACT_I3 | ChatGPT provides me with valuable resources for my job performance. | 0.622 | 0.554 |
| FACT_I4 | My work performance has improved thanks to the support of ChatGPT. | 0.711 | 0.689 |
| FACT_I5 | I believe that using ChatGPT is useful for improving my job performance. | 0.674 | 0.632 |
| FACT_I6 | ChatGPT facilitates my learning and understanding of scientific-academic topics. | 0.623 | 0.598 |
| FACT_I7 | I am satisfied with the overall experience of using ChatGPT in my teaching and research work. | 0.757 | 0.746 |
| FC_I1 | My institution facilitates access to tools like ChatGPT. | 0.485 | 0.560 |
| FC_I2 | I perceive institutional support for the use of ChatGPT. | 0.460 | 0.485 |
| FC_I3 | I receive support from my institution to use ChatGPT in my work. | 0.566 | 0.696 |
| FACT_I8 | I consider it important to continue using ChatGPT in my teaching and research practice. | 0.708 | 0.697 |
| FACT_I9 | I am likely to continue using ChatGPT as a support tool in my academic and research work. | 0.695 | 0.635 |
| FACT_I10 | I plan to continue using ChatGPT in the future. | 0.704 | 0.644 |
| Item | Factor * | ||||
|---|---|---|---|---|---|
| FACT | EAC | CA | FC | PRT | |
| I believe that using ChatGPT is useful for improving my job performance. | 0.929 | ||||
| I am likely to continue using ChatGPT as a support tool in my academic and research work. | 0.913 | ||||
| I plan to continue using ChatGPT in the future. | 0.913 | ||||
| My work performance has improved thanks to the support of ChatGPT. | 0.905 | ||||
| I am satisfied with the overall experience of using ChatGPT in my teaching and research work. | 0.875 | ||||
| Using ChatGPT helps me carry out my academic and research tasks more efficiently. | 0.855 | ||||
| I consider it important to continue using ChatGPT in my teaching and research practice. | 0.847 | ||||
| ChatGPT provides me with valuable resources for my job performance. | 0.754 | ||||
| ChatGPT facilitates my learning and understanding of scientific-academic topics. | 0.738 | ||||
| The use of ChatGPT has had a positive impact on my work performance. | 0.678 | ||||
| Inv_I feel that relying on ChatGPT could reduce my ability to analyze and reflect on my own. | 0.903 | ||||
| Inv_I believe that the constant use of ChatGPT may affect my ability to think critically. | 0.814 | ||||
| Inv_I am concerned that my work may lose originality if I use ChatGPT. | 0.802 | ||||
| Inv_I feel that by using ChatGPT, the authorship of my work may be questioned. | 0.771 | ||||
| Inv_I feel that using ChatGPT’s responses may lead me to commit unintentional plagiarism. | 0.758 | ||||
| Inv_I am concerned that ChatGPT may limit the development of my critical thinking. | 0.692 | ||||
| Inv_I am concerned that by using ChatGPT, the authorship of my scientific-academic work may become unclear. | 0.643 | ||||
| Inv_The cost of advanced ChatGPT versions is a barrier to my access and use of the tool. | 0.993 | ||||
| Inv_The cost of advanced ChatGPT versions may influence how often I use it. | 0.938 | ||||
| Inv_The cost of advanced ChatGPT versions may represent a barrier to its use in my academic and research work. | 0.936 | ||||
| Inv_The cost of technology access affects my use of ChatGPT. | 0.656 | ||||
| Inv_I wish I had greater financial access to use the advanced models and features of ChatGPT. | 0.653 | ||||
| I receive support from my institution to use ChatGPT in my work. | 0.884 | ||||
| My institution facilitates access to tools like ChatGPT. | 0.830 | ||||
| I perceive institutional support for the use of ChatGPT. | 0.669 | ||||
| I trust the accuracy of the information provided by ChatGPT. | 0.982 | ||||
| I consider ChatGPT’s responses to be accurate and reliable. | 0.911 | ||||
| ChatGPT’s responses are usually accurate and useful for my academic and research work. | 0.771 | ||||
| Subscale | α (Pearson) | ω (McDonald HA) |
|---|---|---|
| EAC | 0.894 | 0.893 |
| PRT | 0.852 | 0.855 |
| CA | 0.882 | 0.886 |
| FACT | 0.940 | 0.941 |
| FC | 0.795 | 0.797 |
| General | 0.858 | 0.764 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira-González, L.-M.; Basantes-Andrade, A.; Naranjo-Toro, M.; Guia-Pereira, M. Initial Validation of the IMPACT Model: Technological Appropriation of ChatGPT by University Faculty. Educ. Sci. 2025, 15, 1520. https://doi.org/10.3390/educsci15111520
Pereira-González L-M, Basantes-Andrade A, Naranjo-Toro M, Guia-Pereira M. Initial Validation of the IMPACT Model: Technological Appropriation of ChatGPT by University Faculty. Education Sciences. 2025; 15(11):1520. https://doi.org/10.3390/educsci15111520
Chicago/Turabian StylePereira-González, Luz-M., Andrea Basantes-Andrade, Miguel Naranjo-Toro, and Mailevy Guia-Pereira. 2025. "Initial Validation of the IMPACT Model: Technological Appropriation of ChatGPT by University Faculty" Education Sciences 15, no. 11: 1520. https://doi.org/10.3390/educsci15111520
APA StylePereira-González, L.-M., Basantes-Andrade, A., Naranjo-Toro, M., & Guia-Pereira, M. (2025). Initial Validation of the IMPACT Model: Technological Appropriation of ChatGPT by University Faculty. Education Sciences, 15(11), 1520. https://doi.org/10.3390/educsci15111520

