Effects of Increased Letter Spacing on Digital Text Reading Comprehension, Calibration, and Preferences in Young Readers
Abstract
1. Introduction
1.1. Integrating Visual Processing and Cognitive Load in Reading Development
The Case of Hebrew Reading Development
1.2. LS and Visual Crowding: Developmental Perspectives
Comprehension Monitoring in Early Reading: Reader, Task, and Text Influences
1.3. Display Preferences and Performance
1.4. The Current Study
- How does increased LS affect RC and reading speed across developmental stages? We hypothesize that increased LS will enhance comprehension for second graders but not for third graders, reflecting developmental shifts in visual processing and reading strategies, while no effect is expected on reading speed (Dotan & Katzir, 2018; Ginestet et al., 2019; Hughes & Wilkins, 2002).
- How does LS affect children’s CoC? We hypothesize that children will demonstrate more accurate CoC under conditions that optimize their RC (Dahan-Golan et al., 2018), reflecting the development of comprehension monitoring at a young age (Yeomans-Maldonado, 2017).
- How does LS affect children’s display preferences before and after reading tasks? We hypothesize that children will initially prefer standard LS due to familiarity, with preferences potentially shifting after experiencing both conditions (Dahan-Golan et al., 2018).
2. Method
2.1. Participants
2.2. Procedure and Materials
2.3. RC Task
2.4. CoC Ratings
2.5. Preference Questions
3. Results
3.1. The Effect of LS on Reading Performance
3.2. The Effect of LS RC
3.3. The Effect of LS on Reading Speed
3.4. The Effect of LS on CoC
3.5. LS and Preferences
4. Discussion
4.1. Developmental Trajectory of LS Effects
Comprehension Monitoring and Text Typography
4.2. Reader Preferences and Educational Technology Design
Implications
4.3. Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adams, M. J. (1990). Beginning to read: Thinking and learning about print. MIT Press. [Google Scholar]
- Aghababian, V., & Nazir, T. (2000). Developing normal reading skills: Aspects of the visual processes underlying word recognition. Journal of Experimental Child Psychology, 76(2), 123–150. [Google Scholar] [CrossRef]
- Arditi, A., Knoblauch, K., & Grunwald, I. (1990). Reading with fixed and variable character pitch. JOSA A, 7(10), 2011–2015. [Google Scholar] [CrossRef]
- Bar-On, A. (2011). Developmental model of reading the unpointed Hebrew. DASH: The Israeli Journal of Language, Speech and Hearing, 30, 1–24. [Google Scholar]
- Bernard, M. L., Chaparro, B. S., Mills, M. M., & Halcomb, C. G. (2002). Examining children’s reading performance and preference for different computer-displayed text. Behaviour & Information Technology, 21(2), 87–96. [Google Scholar] [CrossRef]
- Bjork, R. A. (1994). Memory and metamemory considerations in the training of human beings. Metacognition: Knowing About Knowing, 185(7.2), 185–205. [Google Scholar] [CrossRef]
- Bjork, R. A., & Bjork, E. L. (2020). Desirable difficulties in theory and practice. Journal of Applied Research in Memory and Cognition, 9(4), 475. [Google Scholar] [CrossRef]
- Bondarko, V. M., & Semenov, L. A. (2005). Visual acuity and the crowding effect in 8- to 17-year-old school children. Human Physiology, 31(5), 532–538. [Google Scholar] [CrossRef]
- Bosse, M. L., & Valdois, S. (2009). Influence of the visual attention span on child reading performance: A cross-sectional study. Journal of Research in Reading, 32(2), 230–253. [Google Scholar] [CrossRef]
- Bouma, H. (1970). Interaction effects in parafoveal letter recognition. Nature, 226(5241), 177–178. [Google Scholar] [CrossRef] [PubMed]
- Bouma, H. (1973). Visual interference in the parafoveal recognition of initial and final letters of words. Vision Research, 13(4), 767–782. [Google Scholar] [CrossRef] [PubMed]
- Bouma, H., & Legein, C. P. (1977). Foveal and parafoveal recognition of letters and words by dyslexics and by average readers. Neuropsychologia, 15(1), 69–80. [Google Scholar] [CrossRef]
- Cain, K., Oakhill, J., & Bryant, P. (2004). Children’s reading comprehension ability: Concurrent prediction by working memory, verbal ability, and component skills. Journal of Educational Psychology, 96(1), 31. [Google Scholar] [CrossRef]
- Chan, A. H. S., & Lee, P. S. K. (2005). Effect of display factors on Chinese reading times, comprehension scores, and preferences. Behaviour & Information Technology, 24(2), 81–91. [Google Scholar] [CrossRef]
- Chang, M., & Brainerd, C. J. (2022). Association and dissociation between judgments of learning and memory: A meta-analysis of the font size effect. Metacognition and Learning, 17(2), 443–476. [Google Scholar] [CrossRef] [PubMed]
- Chung, S. T. (2004). Reading speed benefits from increased vertical word spacing in normal peripheral vision. Optometry and Vision Science: Official Publication of the American Academy of Optometry, 81(7), 525. [Google Scholar] [CrossRef] [PubMed]
- Dahan-Golan, D., Barzillai, M., & Katzir, T. (2018). The effect of presentation mode on children’s reading preferences, performance, and self-evaluations. Computers & Education, 126, 346–358. [Google Scholar] [CrossRef]
- Dinsmore, D. L., & Parkinson, M. M. (2013). What are confidence judgments made of? Students’ explanations for their confidence ratings and what that means for calibration. Learning and Instruction, 24, 4–14. [Google Scholar] [CrossRef]
- Dotan, S., & Katzir, T. (2018). Mind the gap: Increased LS as a means of improving reading performance. Journal of Experimental Child Psychology, 174, 13–28. [Google Scholar] [CrossRef]
- Dotan, S., & Katzir, T. (2024). The effect of modality on reading comprehension of struggling and typical readers in the second and third grades. Journal of Research in Reading, 47(3), 292–308. [Google Scholar] [CrossRef]
- Dunlosky, J., Rawson, K. A., & Middleton, E. L. (2005). What constrains the accuracy of metacomprehension judgments? Testing the transfer-appropriate-monitoring and accessibility hypotheses. Journal of Memory and Language, 52(4), 551–565. [Google Scholar] [CrossRef]
- Dyson, M. C., & Kipping, G. J. (1998). The effects of line length and method of movement on patterns of reading from screen. Visible Language, 32(2), 150. [Google Scholar]
- Ehri, L. C. (2005). Learning to read words: Theory, findings, and issues. Scientific Studies of Reading, 9(2), 167–188. [Google Scholar] [CrossRef]
- Ehrlich, M. F., Remond, M., & Tardieu, H. (1999). Processing of anaphoric devices in young skilled and less skilled comprehenders: Differences in metacognitive monitoring. Reading and Writing, 11(1), 29–63. [Google Scholar] [CrossRef]
- Eutsler, L., & Trotter, J. (2020). Print or iPad? Young children’s text type shared reading preference and behaviors in comparison to parent predictions and at-home practices. Literacy Research and Instruction, 59(4), 324–345. [Google Scholar] [CrossRef]
- Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive-developmental inquiry. American Psychologist, 34(10), 906–911. [Google Scholar] [CrossRef]
- Florit, E., & Cain, K. (2011). The simple view of reading: Is it valid for different types of alphabetic orthographies? Educational Psychology Review, 23(4), 553–576. [Google Scholar] [CrossRef]
- Ginestet, E., Phénix, T., Diard, J., & Valdois, S. (2019). Modeling the length effect for words in lexical decision: The role of visual attention. Vision Research, 159, 10–20. [Google Scholar] [CrossRef]
- Glenberg, A. M., & Epstein, W. (1985). Calibration of comprehension. Journal of Experimental Psychology: Learning, Memory, and Cognition, 11(4), 702. [Google Scholar] [CrossRef]
- Gori, S., & Facoetti, A. (2015). How the visual aspects can be crucial in reading acquisition: The intriguing case of crowding and developmental dyslexia. Journal of Vision, 15(1), 8. [Google Scholar] [CrossRef]
- Gough, P. B., & Tunmer, W. E. (1986). Decoding, reading, and reading disability. Remedial and Special Education, 7(1), 6–10. [Google Scholar] [CrossRef]
- Grabe, W. (2014). Key issues in L2 reading development. In Proceedings of the 4th CELC symposium for English language teachers-selected papers (pp. 8–18). Centre for English Language Communication, National University of Singapore. [Google Scholar]
- Grobelny, J., & Michalski, R. (2015). The role of background color, interletter spacing, and font size on preferences in the digital presentation of a product. Computers in Human Behavior, 43, 85–100. [Google Scholar] [CrossRef]
- Gutierrez, A. P., & Schraw, G. (2015). Effects of strategy training and incentives on students’ performance, confidence, and calibration. The Journal of Experimental Education, 83(3), 386–404. [Google Scholar] [CrossRef]
- Hakvoort, B., van den Boer, M., Leenaars, T., Bos, P., & Tijms, J. (2017). Improvements in reading accuracy as a result of increased interletter spacing are not specific to children with dyslexia. Journal of Experimental Child Psychology, 164, 101–116. [Google Scholar] [CrossRef]
- Halamish, V., & Elbaz, E. (2020). Children’s reading comprehension and metacomprehension on screen versus on paper. Computers & Education, 145, 103737. [Google Scholar] [CrossRef]
- Halamish, V., Nachman, H., & Katzir, T. (2018). The effect of font size on children’s memory and metamemory. Frontiers in Psychology, 9, 1577. [Google Scholar] [CrossRef] [PubMed]
- Helder, A., Van Leijenhorst, L., & van den Broek, P. (2016). Coherence monitoring by good and poor comprehenders in elementary school: Comparing offline and online measures. Learning and Individual Differences, 48, 17–23. [Google Scholar] [CrossRef]
- Hoffman, J. L., & Paciga, K. A. (2014). Click, swipe, and read: Sharing e-books with toddlers and preschoolers. Early Childhood Education Journal, 42, 379–388. [Google Scholar] [CrossRef]
- Hoover, W. A., & Gough, P. B. (1990). The simple view of reading. Reading and Writing, 2(2), 127–160. [Google Scholar] [CrossRef]
- Huang, Y. M., Liang, T. H., Su, Y. N., & Chen, N. S. (2012). Empowering personalized learning with an interactive e-book learning system for elementary school students. Educational Technology Research and Development, 60, 703–722. [Google Scholar] [CrossRef]
- Hughes, L. E., & Wilkins, A. J. (2002). Reading at a distance: Implications for the design of text in children’s big books. British Journal of Educational Psychology, 72(2), 213–226. [Google Scholar] [CrossRef] [PubMed]
- Jamali, H. R., Nicholas, D., & Rowlands, I. (2009). Scholarly e-books: The views of 16,000 academics. Aslib Proceedings, 61(1), 33–47. [Google Scholar] [CrossRef]
- Jeon, S. T., Hamid, J., Maurer, D., & Lewis, T. L. (2010). Developmental changes during childhood in single-letter acuity and its crowding by surrounding contours. Journal of Experimental Child Psychology, 107(4), 423–437. [Google Scholar] [CrossRef]
- Joshi, R. M., & Aaron, P. G. (2000). The component model of reading: Simple view of reading made a little more complex. Reading Psychology, 21(2), 85–97. [Google Scholar] [CrossRef]
- Kahneman, D. (1973). Attention and effort (Vol. 1063, pp. 218–226). Prentice-Hall. [Google Scholar]
- Katzir, T., Hershko, S., & Halamish, V. (2013). The effect of font size on reading comprehension on second and fifth grade children: Bigger is not always better. PLoS ONE, 8(9), e74061. [Google Scholar] [CrossRef]
- Kleider-Tesler, E., Prior, A., & Katzir, T. (2019). The role of calibration of comprehension in adolescence: From theory to online training. Journal of Cognitive Education & Psychology, 18(3), 190–211. [Google Scholar] [CrossRef]
- LaBerge, D., & Samuels, S. J. (1974). Toward a theory of automatic information processing in reading. Cognitive Psychology, 6(2), 293–323. [Google Scholar] [CrossRef]
- Legge, G. E., & Bigelow, C. A. (2011). Does print size matter for reading? A review of findings from vision science and typography. Journal of Vision, 11(5), 8. [Google Scholar] [CrossRef]
- Legge, G. E., Pelli, D. G., Rubin, G. S., & Schleske, M. M. (1985). Psychophysics of reading, I. Normal vision. Vision Research, 25(2), 239–252. [Google Scholar] [CrossRef] [PubMed]
- Lonsdale, M. D. S., Dyson, M. C., & Reynolds, L. (2006). Reading in examination-type situations: The effects of text layout on performance. Journal of Research in Reading, 29(4), 433–453. [Google Scholar] [CrossRef]
- Luna, K., & Albuquerque, P. B. (2022). Do beliefs about font size affect retrospective metamemory judgments in addition to prospective judgments? Experimental Psychology, 69(3), 172–184. [Google Scholar] [CrossRef]
- Luna, K., Bueno, D., Conde, E., Bermúdez, D., Gutiérrez, M. F., Aldana, G., Botía, I., Rodríguez, V., & Cadavid, S. (2023). Letter spacing does not affect memory and metamemory. Psychological Reports, 128(3), 2055–2070. [Google Scholar] [CrossRef]
- Maki, R. H., & Berry, S. L. (1984). Metacomprehension of text material. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10(4), 663–679. [Google Scholar] [CrossRef]
- Maki, R. H., Foley, J. M., Kajer, W. K., Thompson, R. C., & Willert, M. G. (1990). Increased processing enhances calibration of comprehension. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16(4), 609. [Google Scholar] [CrossRef]
- Maki, R. H., Shields, M., Wheeler, A. E., & Zacchilli, T. L. (2005). Individual differences in absolute and relative metacomprehension accuracy. Journal of Educational Psychology, 97(4), 723–731. [Google Scholar] [CrossRef]
- Marinus, E., Mostard, M., Segers, E., Schubert, T. M., Madelaine, A., & Wheldall, K. (2016). A special font for people with dyslexia: Does it work and, if so, why? Dyslexia, 22(3), 233–244. [Google Scholar] [CrossRef]
- Martelli, M., Di Filippo, G., Spinelli, D., & Zoccolotti, P. (2009). Crowding, reading, and developmental dyslexia. Journal of Vision, 9(4), 14. [Google Scholar] [CrossRef]
- Mayer, R. E., & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational Psychologist, 38(1), 43–52. [Google Scholar] [CrossRef]
- Montani, V., Facoetti, A., & Zorzi, M. (2014). The effect of decreased interletter spacing on orthographic processing. Psychonomic Bulletin & Review, 22(3), 824–832. [Google Scholar] [CrossRef] [PubMed]
- Moreno, R., & Mayer, R. E. (1999). Cognitive principles of multimedia learning: The role of modality and contiguity. Journal of Educational Psychology, 91(2), 358–368. [Google Scholar] [CrossRef]
- Paas, F., Renkl, A., & Sweller, J. (2004). Cognitive load theory: Instructional implications of the interaction between information structures and cognitive architecture. Instructional Science, 32(1/2), 1–8. [Google Scholar] [CrossRef]
- Pallier, G., Wilkinson, R., Danthiir, V., Kleitman, S., Knezevic, G., Stankov, L., & Roberts, R. D. (2002). The role of individual differences in the accuracy of confidence judgments. The Journal of General Psychology, 129(3), 257–299. [Google Scholar] [CrossRef] [PubMed]
- Parish-Morris, J., Mahajan, N., Hirsh-Pasek, K., Golinkoff, R. M., & Collins, M. F. (2013). Once upon a time: Parent–child dialogue and storybook reading in the electronic era. Mind, Brain, and Education, 7(3), 200–211. [Google Scholar] [CrossRef]
- Parkes, L., Lund, J., Angelucci, A., Solomon, J. A., & Morgan, M. (2001). Compulsory averaging of crowded orientation signals in human vision. Nature Neuroscience, 4(7), 739–744. [Google Scholar] [CrossRef] [PubMed]
- Pelli, D. G. (2008). Crowding: A cortical constraint on object recognition. Current Opinion in Neurobiology, 18(4), 445–451. [Google Scholar] [CrossRef]
- Pelli, D. G., Palomares, M., & Majaj, N. J. (2004). Crowding is unlike ordinary masking: Distinguishing feature integration from detection. Journal of Vision, 4(12), 12. [Google Scholar] [CrossRef]
- Pelli, D. G., & Tillman, K. A. (2008). The uncrowded window of object recognition. Nature Neuroscience, 11(10), 1129–1135. [Google Scholar] [CrossRef]
- Pelli, D. G., Tillman, K. A., Freeman, J., Su, M., Berger, T. D., & Majaj, N. J. (2007). Crowding and eccentricity determine reading rate. Journal of Vision, 7(2), 20. [Google Scholar] [CrossRef]
- Perea, M., & Gomez, P. (2012a). Increasing interletter spacing facilitates encoding of words. Psychonomic Bulletin & Review, 19, 332–338. [Google Scholar] [CrossRef]
- Perea, M., & Gomez, P. (2012b). Subtle increases in interletter spacing facilitate the encoding of words during normal reading. PLoS ONE, 7(10), e47568. [Google Scholar] [CrossRef]
- Perea, M., Moret-Tatay, C., & Gómez, P. (2011). The effects of interletter spacing in visual-word recognition. Acta Psychologica, 137(3), 345–351. [Google Scholar] [CrossRef]
- Perea, M., Panadero, V., Moret-Tatay, C., & Gómez, P. (2012). The effects of LS in visual-word recognition: Evidence with young normal readers and developmental dyslexics. Learning and Instruction, 22(6), 420–430. [Google Scholar] [CrossRef]
- Perfetti, C. A. (1985). Reading ability. Oxford University Press. [Google Scholar]
- Perfetti, C. A. (2007). Reading ability: Lexical quality to comprehension. Scientific Studies of Reading, 11(4), 357–383. [Google Scholar] [CrossRef]
- Rawson, K. A., Dunlosky, J., & Thiede, K. W. (2000). The rereading effect: Metacomprehension accuracy improves across reading trials. Memory & Cognition, 28, 1004–1010. [Google Scholar] [CrossRef] [PubMed]
- Sabag-Shushan, T., & Katzir, T. (2024). Emotional understanding in reading comprehension at the text, task, and reader levels: A comparison of diverse struggling readers. Reading and Writing, 37, 1905–1929. [Google Scholar] [CrossRef]
- Schneps, M. H., Thomson, J. M., Sonnert, G., Pomplun, M., Chen, C., & Heffner-Wong, A. (2013). Shorter lines facilitate reading in those who struggle. PLoS ONE, 8(8), e71161. [Google Scholar] [CrossRef] [PubMed]
- Schraw, G. (2009). A conceptual analysis of five measures of metacognitive monitoring. Metacognition and Learning, 4, 33–45. [Google Scholar] [CrossRef]
- Schwanenflugel, P. J., Meisinger, E. B., Wisenbaker, J. M., Kuhn, M. R., Strauss, G. P., & Morris, R. D. (2006). Becoming a fluent and automatic reader in the early elementary school years. Reading Research Quarterly, 41(4), 496–522. [Google Scholar] [CrossRef]
- Semenov, L. A., Chernova, N. D., & Bondarko, V. M. (2000). Measurement of visual acuity and crowding effect in 3–9-year-old children. Human Physiology, 26(1), 16–20. [Google Scholar] [CrossRef]
- Shany, M., & Share, D. L. (2011). Subtypes of reading disability in a shallow orthography: A double dissociation between accuracy-disabled and rate-disabled readers of Hebrew. Annals of Dyslexia, 61(1), 64–84. [Google Scholar] [CrossRef]
- Share, D. L. (1999). Phonological recoding and orthographic learning: A direct test of the self-teaching hypothesis. Journal of Experimental Child Psychology, 72(2), 95–129. [Google Scholar] [CrossRef] [PubMed]
- Share, D. L. (2004). Orthographic learning at a glance: On the time course and developmental onset of self-teaching. Journal of Experimental Child Psychology, 87(4), 267–298. [Google Scholar] [CrossRef]
- Share, D. L., Shany, M., & Lipka, O. (2019). Developmental dyslexia in Hebrew. In Developmental dyslexia across languages and writing systems (pp. 152–175). Cambridge University Press. [Google Scholar] [CrossRef]
- Shechter, A., & Share, D. L. (2025). Learning to read and developmental dyslexia in Hebrew. Reading Research Quarterly, 60(1), e599. [Google Scholar] [CrossRef]
- Singer, L. M., & Alexander, P. A. (2017). Reading across mediums: Effects of reading digital and print texts on comprehension and calibration. The Journal of Experimental Education, 85(1), 155–172. [Google Scholar] [CrossRef]
- Spinelli, D., De Luca, M., Judica, A., & Zoccolotti, P. (2002). Crowding effects on word identification in developmental dyslexia. Cortex, 38, 179–200. [Google Scholar] [CrossRef]
- Stone, R. W., & Baker-Eveleth, L. (2013). Students’ expectation, confirmation, and continuance intention to use electronic textbooks. Computers in Human Behavior, 29(3), 984–990. [Google Scholar] [CrossRef]
- Sweller, J. (1994). Cognitive load theory, learning difficulty, and instructional design. Learning and Instruction, 4(4), 295–312. [Google Scholar] [CrossRef]
- Takacs, Z. K., Swart, E. K., & Bus, A. G. (2015). Benefits and pitfalls of multimedia and interactive features in technology-enhanced storybooks: A meta-analysis. Review of Educational Research, 85(4), 698–739. [Google Scholar] [CrossRef]
- Temelman-Yogev, L., Katzir, T., & Prior, A. (2020). Monitoring comprehension in a foreign language: Trait or skill? Metacognition and Learning, 15, 343–365. [Google Scholar] [CrossRef]
- Temelman-Yogev, L., Prior, A., & Katzir, T. (2024). Comprehension monitoring across languages—The effect of online feedback. Learning and Instruction, 92, 101928. [Google Scholar] [CrossRef]
- Thiede, K. W., Anderson, M., & Therriault, D. (2003). Accuracy of metacognitive monitoring affects learning of texts. Journal of Educational Psychology, 95(1), 66–73. [Google Scholar] [CrossRef]
- Thiede, K. W., Griffin, T. D., Wiley, J., & Redford, J. S. (2009). Metacognitive monitoring during and after reading. In D. J. Hacker, J. Dunlosky, & A. C. Graesser (Eds.), Handbook of metacognition in education (pp. 85–106). Routledge. [Google Scholar]
- van den Boer, M., & Hakvoort, B. E. (2015). Default spacing is the optimal spacing for word reading. The Quarterly Journal of Experimental Psychology, 68(4), 697–709. [Google Scholar] [CrossRef] [PubMed]
- Veenman, M. V. J., Van Hout-Wolters, B. H. A. M., & Afflerbach, P. (2006). Metacognition and learning: Conceptual and methodological considerations. Metacognition and Learning, 1(1), 3–14. [Google Scholar] [CrossRef]
- Weaver, C. A., & Bryant, D. S. (1995). Monitoring of comprehension: The role of text difficulty in metamemory for narrative and expository text. Memory & Cognition, 23, 12–22. [Google Scholar] [CrossRef]
- Whitney, D., & Levi, D. M. (2011). Visual crowding: A fundamental limit on conscious perception and object recognition. Trends in Cognitive Sciences, 15(4), 160–168. [Google Scholar] [CrossRef]
- Woods, R. J., Davis, K., & Scharff, L. F. V. (2005). Effects of typeface and font size on legibility for children. American Journal of Psychological Research, 161(1), 86–102. [Google Scholar]
- Yeomans-Maldonado, G. (2017). Development of comprehension monitoring in beginner readers. Reading and Writing, 30, 2039–2067. [Google Scholar] [CrossRef]
- Yu, D., Cheung, S. H., Legge, G. E., & Chung, S. T. (2007). Effect of letter spacing on visual span and reading speed. Journal of Vision, 7(2), 2. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D., & Zhang, L. J. (2019). Metacognition and self-regulated learning (SRL) in second/foreign language teaching. In Second handbook of English language teaching (pp. 883–897). Springer International Handbooks of Education. [Google Scholar] [CrossRef]
- Zorzi, M., Barbiero, C., Facoetti, A., Lonciari, I., Carrozzi, M., Montico, M., Bravar, L., George, F., Pech-Georgel, C., & Ziegler, J. C. (2012). Extra-large letter spacing improves reading in dyslexia. Proceedings of the National Academy of Sciences, 109(28), 11455–11459. [Google Scholar] [CrossRef] [PubMed]
N | Standard Spacing RC (M, Sd) | Increased Spacing RC (M, Sd) | |
---|---|---|---|
Second grade | |||
OSS | 39 | 0.79 (0.25) | 0.45 (0.26) |
OIS | 67 | 0.53 (0.24) | 0.84 (0.20) |
EP | 57 | 0.77 (0.27) | 0.77 (0.27) |
Third grade | |||
OSS | 55 | 0.84 (0.19) | 0.51 (0.22) |
OIS | 33 | 0.50 (0.25) | 0.85 (0.18) |
EP | 38 | 0.70 (0.24) | 0.70 (0.24) |
Increased LS CoC (M, Sd) | Standard LS CoC (M, Sd) | T Values | |
---|---|---|---|
Second grade | |||
OSS | 0.28 (0.39) | −0.04 (0.36) | t(34) = 5.86, p < 0.001, Cohen’s d = 0.32 |
OIS | 0.08 (0.23) | 0.30 (0.32) | t(64) = 6.56, p < 0.001, Cohen’s d = 0.26 |
EP | 0.12 (0.25) | 0.10 (0.29) | t(54) = 1.00, p = 0.32 |
Third grade | |||
OSS | 0.26 (0.29) | −0.07 (0.31) | t(50) = 8.42, p < 0.001, Cohen’s d = 0.28 |
OIS | −0.01 (0.23) | 0.32 (0.26) | t(29) = 8.60, p < 0.001, Cohen’s d = 0.22 |
EP | 0.15 (0.31) | 0.16 (0.27) | t(34) = 0.14, p = 0.89 |
Relation Examined | Second Grade | Third Grade |
---|---|---|
LS optimal performance subgroups-Pre task preference | χ2(4) = 4.12, p = 0.39 | χ2(4) = 0.82, p = 0.94 |
LS optimal performance subgroups-Post task preference | χ2(4) = 5.20, p = 0.27 | χ2(4) = 1.32, p = 0.86 |
Pre task preference-Post task preference | χ2(4) = 54.49, p < 0.001 | χ2(4) = 66.69, p < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dotan, S.; Katzir, T. Effects of Increased Letter Spacing on Digital Text Reading Comprehension, Calibration, and Preferences in Young Readers. Educ. Sci. 2025, 15, 1306. https://doi.org/10.3390/educsci15101306
Dotan S, Katzir T. Effects of Increased Letter Spacing on Digital Text Reading Comprehension, Calibration, and Preferences in Young Readers. Education Sciences. 2025; 15(10):1306. https://doi.org/10.3390/educsci15101306
Chicago/Turabian StyleDotan, Shahar, and Tami Katzir. 2025. "Effects of Increased Letter Spacing on Digital Text Reading Comprehension, Calibration, and Preferences in Young Readers" Education Sciences 15, no. 10: 1306. https://doi.org/10.3390/educsci15101306
APA StyleDotan, S., & Katzir, T. (2025). Effects of Increased Letter Spacing on Digital Text Reading Comprehension, Calibration, and Preferences in Young Readers. Education Sciences, 15(10), 1306. https://doi.org/10.3390/educsci15101306