Differences in Academic Persistence Intentions among STEM Undergraduates in South Korea: Analysis of Related and Influencing Factors
Abstract
:1. Introduction
- How do academic persistence intentions and related factors such as environmental factors (contextual supports and career barriers), achievement-related factors (engineering self-efficacy, outcome expectations, and major interest), and career motivation among STEM students differ by individual background (gender, grade, and GPA) and university institutional characteristics (major, university location, and departments with a significant gender employment gap)?
- Which factors are significant predictors of STEM undergraduates’ academic persistence intentions?
2. Literature Review
2.1. Academic Persistence Intentions
2.2. Contextual Supports and Career Barriers
2.3. Engineering Self-Efficacy, Outcome Expectations, and Major Interest
2.4. Career Motivation
3. Methods
3.1. Data Sources and Sample
3.2. Measures
3.3. Data Analysis
4. Results
4.1. Differences in Academic Persistence Intentions, Environmental Factors, Achievement-Related Factors, and Career Motivation of STEM Students by Group
4.2. Factors Affecting Academic Persistence Intentions
4.2.1. Relationships between Academic Persistence Intentions and Related Variables
4.2.2. Factors Affecting Academic Persistence Intentions
5. Discussion
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WISET. A Study on Gender Characteristics Diagnosis and Countermeasures for the Establishment of the Growth Foundation of Female Human Resources in STEM. Policy Report. 2022. Available online: https://www.wiset.or.kr/prog/pblcte/kor/sub02_03_01_01/02/view.do?pblcteNo=820 (accessed on 1 October 2023).
- Meiksins, P.; Garcia, C.V.; Huggins, N.; Menon, M.; Ryan, O. Women in Engineering: A Review of the 2022 Literature. 2023. Available online: https://magazine.swe.org/state-of-women-in-engineering-2023/ (accessed on 1 October 2023).
- Balakrishnan, B.; Low, F.S. Learning experience and socio-cultural influences on female engineering students’ perspectives on engineering courses and careers. Minerva 2016, 54, 219–239. [Google Scholar] [CrossRef]
- Cho, S.; Hwang, S. Exploring Factors Affecting Major Persistence and Career Decision of Engineering Students through FGI Analysis. J. Eng. Educ. Res. 2023, 26, 20–34. [Google Scholar]
- Kulcsár, V.; Dobrean, A.; Gati, I. Challenges and difficulties in career decision making: Their causes, and their effects on the process and the decision. J. Vocat. Behav. 2020, 116, 103346. [Google Scholar] [CrossRef]
- Gayles, J.G.; Ampaw, F. The impact of college experiences on degree completion in STEM fields at four-year institutions: Does gender matter? J. High. Educ. 2014, 85, 439–468. [Google Scholar] [CrossRef]
- Rundgren, S.N.C.; Sun, Y.L.; Jidesjö, A. Examining Gender Differences in Students’ Entrance into and Persistence in STEM Programs in Swedish Higher Education. Eur. J. Educ. Sci. 2019, 6, 66–94. [Google Scholar]
- Delaney, J.M.; Devereux, P.J. Gender differences in STEM persistence after graduation. Economica 2022, 89, 862–883. [Google Scholar] [CrossRef]
- Hunt, J. Why do women leave science and engineering? ILR Rev. 2016, 69, 199–226. [Google Scholar] [CrossRef]
- Jelks, S.M.; Crain, A.M. Sticking with STEM: Understanding STEM career persistence among STEM bachelor’s degree holders. J. High. Educ. 2020, 91, 805–831. [Google Scholar] [CrossRef]
- Jiang, X. Women in STEM: Ability, preference, and value. Labour Econ. 2021, 70, 101991. [Google Scholar] [CrossRef]
- Osten, V. Gender Differences in Organizational Commitment among Early Career Engineers in Canada. Can. J. Sociol. 2023, 47, 31–52. [Google Scholar] [CrossRef]
- Speer, J.D. Bye bye Ms. American Sci: Women and the leaky STEM pipeline. Econ. Educ. Rev. 2023, 93, 102371. [Google Scholar] [CrossRef]
- Cabrera, A.F.; Nora, A.; Castaneda, M.B. College persistence: Structural equations modeling test of an integrated model of student retention. J. High. Educ. 1993, 64, 123–139. [Google Scholar] [CrossRef]
- Shin, N. Transactional Presence as a critical predictor of success in distance learning. Distance Educ. 2003, 24, 69–86. [Google Scholar] [CrossRef]
- Vansteenkiste, M.; Simons, J.; Lens, W.; Sheldon, K.M.; Deci, E.L. Motivating learning, performance, and persistence: The synergistic effects of intrinsic goal contents and autonomy-supportive contexts. J. Personal. Soc. Psychol. 2004, 87, 246–260. [Google Scholar] [CrossRef] [PubMed]
- Byars-Winston, A.; Estrada, Y.; Howard, C.; Davis, D.; Zalapa, J. Influence of social cognitive and ethnic variables on academic goals of underrepresented students in science and engineering: A multiple-groups analysis. J. Couns. Psychol. 2010, 57, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Lent, R.W.; Lopez, A.M.; Lopez, F.G.; Sheu, H.-B. Social cognitive career theory and the prediction of interests and choice goals in the computing disciplines. J. Vocat. Behav. 2008, 73, 52–62. [Google Scholar] [CrossRef]
- Wang, X. Why Students Choose STEM Majors: Motivation, High School Learning, and Postsecondary Context of Support. Am. Educ. Res. J. 2013, 50, 1081–1121. [Google Scholar] [CrossRef]
- Sax, L.J. Undergraduate science majors: Gender differences in who goes to graduate school. Rev. High. Educ. 2001, 24, 153–172. [Google Scholar] [CrossRef]
- Astin, H.S.; Sax, L.J. Developing scientific talent in undergraduate women. In The Equity Equation: Fostering the Advancement of Women in the Sciences, Mathematics, and Engineering; Wiley: Hoboken, NJ, USA, 1996; pp. 96–121. [Google Scholar]
- Sax, L.J. The Gender Gap in College: Maximizing the Developmental Potential of Women and Men; Jossey-Bass/Wiley: Hoboken, NJ, USA, 2008. [Google Scholar]
- Seymour, E.; Hewitt, N.M. Talking about Leaving: Why Undergraduates Leave the Sciences; Westview Press: Boulder, CO, USA, 1997. [Google Scholar]
- Hwang, S.; Choi, K.; Cho, S. Differences in College Life Experiences and Career Decision-Making Factors among STEM Students. J. Educ. Cult. 2023, 29, 123–152. [Google Scholar]
- Lent, R.W.; Miller, M.J.; Smith, P.E.; Watford, B.A.; Lim, R.H.; Hui, K.; Morrison, M.A.; Wilkins, G.; Williams, K. Social cognitive predictors of adjustment to engineering majors across gender and race/ethnicity. J. Vocat. Behav. 2013, 83, 22–30. [Google Scholar] [CrossRef]
- Lent, R.W.; Miller, M.J.; Smith, P.E.; Watford, B.A.; Lim, R.H.; Hui, K. Social cognitive predictors of academic persistence and performance in engineering: Applicability across gender and race/ethnicity. J. Vocat. Behav. 2016, 94, 79–88. [Google Scholar] [CrossRef]
- Aleta, B.T. Engineering Self-Efficacy Contributing to the Academic Performance of AMAIUB Engineering Students: A Qualitative Investigation. J. Educ. Pract. 2016, 7, 53–61. [Google Scholar]
- Hutchison, M.A.; Follman, D.K.; Sumpter, M.; Bodner, G.M. Factors influencing the self-efficacy beliefs of first-year engineering students. J. Eng. Educ. 2006, 95, 39–47. [Google Scholar] [CrossRef]
- Vogt, C.; Hocevar, D.; Hagedorn, L. A social cognitive construct validation: Determining women and men’s success in engineering programs. J. High. Educ. 2007, 78, 336–364. [Google Scholar] [CrossRef]
- Wong, B. Careers “From” but not “in” science: Why are aspirations to be a scientist challenging for minority ethnic students? J. Res. Sci. Teach. 2015, 52, 979–1002. [Google Scholar] [CrossRef]
- Perry, S.R.; Cabrera, A.F.; Vogt, W.P. Career maturity and college student persistence. J. Coll. Stud. Retent. Res. Theory Pract. 1999, 1, 41–58. [Google Scholar] [CrossRef]
- Thomas, S. Ties that bind: A social network approach to understanding student integration and persistence. J. High. Educ. 2000, 71, 591–615. [Google Scholar] [CrossRef]
- Gray, J.; Hackling, M. Wellbeing and retention: A senior secondary student perspective. Aust. Educ. Res. 2009, 36, 119–145. [Google Scholar] [CrossRef]
- Reisberg, R.; Bailey, M.; Burger, C.; Hamann, J.; Raelin, J.; Whitman, D. The Effect of Gender on Support and Self Efficacy in Undergraduate Engineering Programs. In Proceedings of the 2010 Annual Conference & Exposition, San Diego, CA, USA, 27–30 June 2010; pp. 15–1223. [Google Scholar]
- Grier-Reed, T.; Appleton, J.; Rodriguez, M.; Ganuza, Z.; Reschly, A.L. Exploring the student engagement instrument and career perceptions with college students. J. Educ. Dev. Psychol. 2012, 2, 85. [Google Scholar] [CrossRef]
- Nicpon, M.F.; Huser, L.; Blanks, E.H.; Sollenberger, S.; Befort, C.; Kurpius, S.E.R. The relationship of loneliness and social support with college freshmen’s academic performance and persistence. J. Coll. Stud. Retent. Res. Theory Pract. 2006, 8, 345–358. [Google Scholar] [CrossRef]
- José, B.; Tores, V.; Scot, S. Role of Self-Efficacy, Stress, Social Integration, and Family Support in Latino College Student Persistence and Health. J. Vocat. Behav. 2001, 59, 53–63. [Google Scholar]
- Fouad, N.A.; Cotter, E.W.; Fitzpattrick, M.E.; Kantamneni, N.; Carter, L.; Bernfeld, S. Development and Validation of Family Influence Scale. J. Career Assess. 2010, 18, 276–291. [Google Scholar] [CrossRef]
- Lent, R.W.; Brown, S.D.; Hackett, G. Toward a unifying social cognitive theory of career and academic interest, choice, and performance. J. Vocat. Behav. 1994, 45, 79–122. [Google Scholar] [CrossRef]
- Carrell, S.E.; Page, M.E.; West, J.E. Sex and science: How professor gender perpetuates the gender gap. Q. J. Econ. 2010, 125, 1101–1144. [Google Scholar] [CrossRef]
- Lent, R.W.; Brown, S.D.; Schimidt, J.; Brenner, B.; Lyons, H.; Treistman, D. Relationship of contextual supports and barriers to choice behavior in engineering majors: A test of alternative social cognitive models. J. Couns. Psychol. 2003, 50, 458–465. [Google Scholar] [CrossRef]
- Lent, R.W.; Lopez, F.G.; Sheu, H.; Lopez, A.M. Social cognitive predictors of the interests and choices of computing majors: Applicability to underrepresented students. J. Vocat. Behav. 2011, 78, 184–192. [Google Scholar] [CrossRef]
- Lent, R.W.; Brown, S.D.; Sheu, H.B.; Schmidt, J.; Brenner, B.R.; Gloster, C.S.; Wilkins, G.; Schmidt, L.C.; Lyons, H.Z.; Treistman, D. Social cognitive predictors of academic interests and goals in engineering: Utility for women and students at historically black universities. J. Couns. Psychol. 2005, 52, 84–92. [Google Scholar] [CrossRef]
- Marra, R.M.; Rodgers, K.A.; Shen, D.; Bogue, B. Leaving engineering: A multi-year single institution study. J. Eng. Educ. 2012, 101, 6–27. [Google Scholar] [CrossRef]
- Archer, L.; DeWitt, J.; Willis, B. Adolescent boys’ science aspirations: Masculinity capital, and power. J. Res. Sci. Teach. 2014, 51, 1–30. [Google Scholar] [CrossRef]
- Luzzo, D.A.; Jenkins-Smith, A. Perceived occupational barriers among Mexican-American college students. TCA J. 1996, 24, 1–8. [Google Scholar] [CrossRef]
- Swanson, J.L.; Woitke, M.B. Theory into practice in career assessment for women: Assessment and interventions regarding perceived career barriers. J. Career Assess. 1997, 5, 443–462. [Google Scholar] [CrossRef]
- Betz, N. Career self-efficacy. In Contemporary Models in Vocational Psychology; Routledge: London, UK, 2005; pp. 63–86. [Google Scholar]
- Hacker, S. Pleasure, Power and Technology: Some Tales of Gender, Engineering, and the Cooperative Workplace; Routledge: London, UK, 2017. [Google Scholar]
- Syed, M.; Zurbriggen, E.L.; Chemers, M.M.; Goza, B.K.; Bearman, S.; Crosby, F.J.; Shaw, J.M.; Hunter, L.; Morgan, E.M. The role of self-efficacy and identity in mediating the effects of STEM support experiences. Anal. Soc. Issues Public Policy 2019, 19, 7–49. [Google Scholar] [CrossRef] [PubMed]
- Lent, R.W.; Singley, D.; Sheu, H.B.; Schmidt, J.A.; Schmidt, L.C. Relation of social-cognitive factors to academic satisfaction in engineering students. J. Career Assess. 2007, 15, 87–97. [Google Scholar] [CrossRef]
- Bandura, A. The explanatory and predictive scope of self-efficacy theory. J. Soc. Clin. Psychol. 1986, 4, 359–373. [Google Scholar] [CrossRef]
- Chemers, M.M.; Hu, L.T.; Garcia, B.F. Academic self-efficacy and first year college student performance and adjustment. J. Educ. Psychol. 2001, 93, 55–64. [Google Scholar] [CrossRef]
- Parker, P.D.; Marsh, H.W.; Ciarrochi, J.; Marshall, S.; Abduljabbar, A.S. Juxtaposing math self-efficacy and self-concept as predictors of long-term achievement outcomes. In Noncognitive Psychological Processes and Academic Achievement; Routledge: London, UK, 2017; pp. 39–58. [Google Scholar]
- Zimmerman, B.J. A social cognitive view of self-regulated academic learning. J. Educ. Psychol. 1989, 81, 329–339. [Google Scholar] [CrossRef]
- Robnett, R.D.; Chemers, M.M.; Zurbriggen, E.L. Longitudinal associations among undergraduates’ research experience, self-efficacy, and identity. J. Res. Sci. Teach. 2015, 52, 847–867. [Google Scholar] [CrossRef]
- Zimmerman, B.J. Self-efficacy and educational development. In Self-Efficacy in Changing Societies; Bandura, A., Ed.; Cambridge University Press: Cambridge, UK, 1995; pp. 202–231. [Google Scholar]
- Kardash, C.M. Evaluation of undergraduate research experience: Perceptions of undergraduate interns and their faculty mentors. J. Educ. Psychol. 2000, 92, 191. [Google Scholar] [CrossRef]
- Britner, S.L.; Pajares, F. Sources of science self-efficacy beliefs of middle school students. J. Res. Sci. Teach. Off. J. Natl. Assoc. Res. Sci. Teach. 2006, 43, 485–499. [Google Scholar] [CrossRef]
- Mau, W.C. Factors that influence persistence in science and engineering career aspirations. Career Dev. Q. 2003, 51, 234–243. [Google Scholar] [CrossRef]
- Micari, M.; Pazos, P. Fitting in and feeling good: The relationships among peer alignment, instructor connectedness, and self-efficacy in undergraduate satisfaction with engineering. Eur. J. Eng. Educ. 2016, 41, 380–392. [Google Scholar] [CrossRef]
- Mamaril, N.A.; Usher, E.L.; Li, C.R.; Economy, D.R.; Kennedy, M.S. Measuring undergraduate students’ engineering self-efficacy: A validation study. J. Eng. Educ. 2016, 105, 366–395. [Google Scholar] [CrossRef]
- Vuong, M.; Brown-Welty, S.; Tracz, S. The effects of self-efficacy on academic success of first-generation college sophomore students. J. Coll. Stud. Dev. 2010, 51, 50–64. [Google Scholar] [CrossRef]
- Zajacova, A.; Lynch, S.M.; Espenshade, T.J. Self-efficacy, stress, and academic success in college. Res. High. Educ. 2005, 46, 677–706. [Google Scholar] [CrossRef]
- Jordan, K.L. Intervention to Improve Engineering Self-Efficacy and Sense of Belonging of First-Year Engineering Students. Ph.D. Thesis, The Ohio State University, Columbus, OH, USA, 2014. Available online: https://www.proquest.com/docview/1647431297?pq-origsite=gscholar&fromopenview=true&sourcetype=Dissertations%20&%20Theses (accessed on 2 February 2024).
- Hwang, S. The Role of Psychological Well-being in Female Engineering Students’ Engineering Self-efficacy and Major Satisfaction. Int. J. Eng. Educ. 2021, 37, 999–1012. [Google Scholar]
- Concannon, J.P.; Barrow, L.H. A reanalysis of engineering majors’ self-efficacy beliefs. J. Sci. Educ. Technol. 2012, 21, 742–753. [Google Scholar] [CrossRef]
- Eccles, J.S.; Wigfield, A. Motivational beliefs, values, and goals. Annu. Rev. Psychol. 2002, 53, 109–132. [Google Scholar] [CrossRef] [PubMed]
- Hinds, E.M.; Shultz, G.V. Investigation of the factors that influence undergraduate student chemistry course selection. J. Chem. Educ. 2018, 95, 913–919. [Google Scholar] [CrossRef]
- Ertl, B.; Hartmann, F.G. The interest profiles and interest congruence of male and female students in STEM and non-STEM fields. Front. Psychol. 2019, 10, 897. [Google Scholar] [CrossRef]
- London, M. Toward a theory of career motivation. Acad. Manag. Rev. 1983, 8, 620–630. [Google Scholar] [CrossRef]
- Noe, R.A.; Noe, A.W.; Bachhuber, J.A. An investigation of the correlates of career motivation. J. Vocat. Behav. 1990, 37, 340–356. [Google Scholar] [CrossRef]
- London, M.; Noe, R.A. London’s career motivation theory: An update on measurement and research. J. Career Assess. 1997, 5, 61–80. [Google Scholar] [CrossRef]
- Lopes, T.P. Career development of foreign-born workers: Where is the career motivation research? Hum. Resour. Dev. Rev. 2006, 5, 478–493. [Google Scholar] [CrossRef]
- Hardin, E.E.; Varghese, F.V.; Tran, U.V.; Carlson, A.Z. Anxiety and career exploration: Gender differences in the role of self-construal. J. Vocat. Behav. 2006, 69, 346–358. [Google Scholar] [CrossRef]
- Day, R.; Allen, D. The relationship between career motivation and self-efficacy with protege career success. J. Vocat. Behav. 2004, 64, 72–91. [Google Scholar] [CrossRef]
- Holms, V.L.; Esses, L.M. Factors influencing Canadian high school girls’ career motivation. Psychol. Women Q. 1988, 12, 313–328. [Google Scholar] [CrossRef]
- Hughes, R. The evolution of the chilly climate for women in science. In Girls and Women in STEM; Koch, J., Irby, B., Eds.; Information Age Publishing, Inc.: Charlotte, NC, USA, 2014; pp. 71–94. [Google Scholar]
- Lee, M. Structural Relationship for Influencing Major Persistence and Career Preparation Behavior of Engineering College Students. Master’s Thesis, Ewha Woman’s University, Seoul, Republic of Korea, 2015. [Google Scholar]
- Lee, K.; Woo, Y.; Yang, E. Validation of the Korean Contextual Career Supports and Barriers. Korean J. Educ. Methodol. Stud. 2008, 20, 127–150. [Google Scholar]
- Lee, J. Construction and Validation of Engineering Self-Efficacy Scale. Master’s Thesis, Pusan National University, Pusan, Republic of Korea, 2009. [Google Scholar]
- Kang, M.; Yoon, S.; Kim, D.; Ryoo, D. Structural Relationships among Social Support, Career Motivation, Academic Persistence and Career Preparation Behavior of Natural Science College Students. J. Career Educ. Res. 2016, 29, 27–48. [Google Scholar]
- Hwang, S.; Cho, S. Differences in Career Motivation and Career Exploration Behavior Among STEM Students and Their Affecting Factors. J. Eng. Educ. Res. 2024, 27, 13–31. [Google Scholar]
- Kim, E.; Lee, H. The Influence of College Students’ perception of Opportunity Inequality on Career Resilience and Career-Preparation Behavior. J. Employ. Career 2018, 8, 115–136. [Google Scholar]
- Chang, Y.H.; Lee, J.S.; Sin, E.S. The Relations between Career Barriers and Career Preparation Behavior Perceived by College Students: The Mediating Effect of Subjective Happiness. J. Educ. Res. 2016, 14, 163–184. [Google Scholar]
Regions and Cities | Number of Universities | Number of Responses | Ratio (%) | |
---|---|---|---|---|
Metropolitan regions | Seoul | 25 | 968 | 40.45 |
Gyeonggi | 10 | 170 | 7.1 | |
Incheon | 3 | 59 | 2.47 | |
Total | 38 | 1197 | 50.02 | |
Non-metropolitan regions | Gangwon | 1 | 337 | 14.08 |
Daejeon and Chungcheong (Chungbuk, Chungnam, and Sejong) | 3 | 166 | 6.94 | |
Gwangju and Honam (Jeonbuk and Jeonnam) | 2 | 272 | 11.37 | |
Busan, Daegu, Ulsan, and Yeongnam (Gyeongbuk and Gyeongnam) | 6 | 406 | 16.97 | |
Jeju | 1 | 15 | 0.63 | |
Total | 13 | 1196 | 49.98 | |
Total | 51 | 2393 | 100 |
Variables | Subfactors | Source | Number of Items | Cronbach’s α |
---|---|---|---|---|
Academic persistence intentions | - | Lee (2015), [79] | 4 | 0.732 |
Contextual supports | Social support | Lee et al. (2008), [80] | 3 | 0.764 |
Instrumental support | 3 | 0.749 | ||
Financial support | 2 | 0.656 | ||
Total | 8 | 0.828 | ||
Career barriers | Physical constraint | Lee et al. (2008), [80] | 5 | 0.812 |
Social influence | 2 | 0.862 | ||
Discrimination | 4 | 0.879 | ||
Total | 11 | 0.907 | ||
Engineering self-efficacy | Effort and satisfaction | Lee (2009), [81] | 8 | 0.832 |
Major aptitude | 6 | 0.796 | ||
Goal and self-confidence | 5 | 0.778 | ||
Total | 19 | 0.83 | ||
Outcome expectations | - | Lee (2015), [79] | 8 | 0.855 |
Major interest | - | Lee (2015), [79] | 6 | 0.822 |
Career motivation | Career identity | Kang et al. (2016), [82] | 3 | 0.745 |
Career insight | 5 | 0.724 | ||
Career resilience | 3 | 0.614 | ||
Total | 11 | 0.846 |
Variables | Individual Background | University Characteristics | Total | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Stat | Gender | Grade | GPA | Major Field | University Location | Departments with a Significant Gender Employment Gap | ||||||||
Men | Women | Freshmen and Sophomores | Juniors and Seniors | Low (Poor) | High (Excellent) | Engineering | Natural Sciences | Metropolitan Area | Non-Metropolitan Area | Departments with a Low Gender Employment Gap | Departments with a High Gender Employment Gap | |||
1. | M | 3.83 | 3.89 | 3.76 | 3.94 | 3.71 | 3.92 | 3.86 | 3.86 | 3.84 | 3.88 | 3.83 | 3.92 | 3.86 |
SD | 0.6 | 0.61 | 0.62 | 0.59 | 0.61 | 0.6 | 0.59 | 0.63 | 0.59 | 0.63 | 0.61 | 0.6 | 0.61 | |
2.1. | M | 3.84 | 3.86 | 3.74 | 3.93 | 3.71 | 3.91 | 3.87 | 3.83 | 3.81 | 3.9 | 3.84 | 3.88 | 3.85 |
SD | 0.65 | 0.7 | 0.71 | 0.63 | 0.68 | 0.66 | 0.66 | 0.69 | 0.66 | 0.68 | 0.65 | 0.72 | 0.67 | |
2.2. | M | 3.63 | 3.54 | 3.54 | 3.62 | 3.41 | 3.66 | 3.57 | 3.6 | 3.63 | 3.54 | 3.61 | 3.53 | 3.59 |
SD | 0.71 | 0.83 | 0.76 | 0.78 | 0.81 | 0.75 | 0.8 | 0.75 | 0.68 | 0.85 | 0.74 | 0.83 | 0.77 | |
2.3. | M | 3.5 | 3.42 | 3.44 | 3.48 | 3.35 | 3.51 | 3.47 | 3.46 | 3.52 | 3.41 | 3.5 | 3.39 | 3.46 |
SD | 0.86 | 0.86 | 0.83 | 0.88 | 0.85 | 0.86 | 0.85 | 0.87 | 0.84 | 0.88 | 0.86 | 0.86 | 0.86 | |
2. | M | 3.68 | 3.63 | 3.59 | 3.7 | 3.51 | 3.71 | 3.66 | 3.65 | 3.67 | 3.64 | 3.67 | 3.62 | 3.66 |
SD | 0.57 | 0.62 | 0.61 | 0.58 | 0.61 | 0.58 | 0.6 | 0.59 | 0.58 | 0.61 | 0.58 | 0.63 | 0.6 | |
3.1. | M | 3.11 | 3.17 | 3.21 | 3.09 | 3.24 | 3.1 | 3.09 | 3.19 | 3.1 | 3.18 | 3.11 | 3.2 | 3.14 |
SD | 0.87 | 0.79 | 0.79 | 0.85 | 0.72 | 0.87 | 0.81 | 0.85 | 0.87 | 0.79 | 0.86 | 0.78 | 0.83 | |
3.2. | M | 2.52 | 2.44 | 2.59 | 2.4 | 2.48 | 2.48 | 2.29 | 2.66 | 2.53 | 2.43 | 2.49 | 2.45 | 2.48 |
SD | 1.1 | 1.16 | 1.14 | 1.12 | 1.05 | 1.16 | 1.07 | 1.16 | 1.1 | 1.16 | 1.11 | 1.17 | 1.13 | |
3.3. | M | 2.43 | 2.58 | 2.6 | 2.44 | 2.52 | 2.5 | 2.45 | 2.56 | 2.49 | 2.52 | 2.5 | 2.52 | 2.51 |
SD | 1.05 | 0.97 | 1 | 1.02 | 0.96 | 1.03 | 1 | 1.02 | 1.01 | 1.01 | 1.01 | 1.01 | 1.01 | |
3. | M | 2.76 | 2.82 | 2.87 | 2.73 | 2.84 | 2.77 | 2.71 | 2.86 | 2.78 | 2.8 | 2.78 | 2.82 | 2.79 |
SD | 0.86 | 0.79 | 0.82 | 0.82 | 0.73 | 0.86 | 0.8 | 0.84 | 0.85 | 0.8 | 0.84 | 0.8 | 0.83 | |
4.1. | M | 3.75 | 3.74 | 3.66 | 3.81 | 3.59 | 3.81 | 3.75 | 3.75 | 3.75 | 3.74 | 3.74 | 3.78 | 3.75 |
SD | 0.55 | 0.57 | 0.57 | 0.54 | 0.58 | 0.54 | 0.57 | 0.55 | 0.56 | 0.56 | 0.57 | 0.53 | 0.56 | |
4.2. | M | 3.75 | 3.59 | 3.67 | 3.67 | 3.61 | 3.69 | 3.71 | 3.63 | 3.75 | 3.59 | 3.71 | 3.59 | 3.67 |
SD | 0.61 | 0.62 | 0.65 | 0.61 | 0.71 | 0.58 | 0.65 | 0.59 | 0.6 | 0.63 | 0.63 | 0.53 | 0.62 | |
4.3. | M | 3.66 | 3.66 | 3.56 | 3.73 | 3.46 | 3.73 | 3.61 | 3.7 | 3.7 | 3.62 | 3.65 | 3.67 | 3.66 |
SD | 0.62 | 0.63 | 0.65 | 0.59 | 0.7 | 0.58 | 0.66 | 0.59 | 0.61 | 0.64 | 0.64 | 0.6 | 0.62 | |
4. | M | 3.72 | 3.66 | 3.63 | 3.73 | 3.55 | 3.75 | 3.69 | 3.7 | 3.73 | 3.65 | 3.7 | 3.68 | 3.69 |
SD | 0.5 | 0.54 | 0.53 | 0.52 | 0.56 | 0.5 | 0.54 | 0.51 | 0.51 | 0.54 | 0.53 | 0.51 | 0.52 | |
5. | M | 3.67 | 3.67 | 3.66 | 3.68 | 3.55 | 3.71 | 3.67 | 3.66 | 3.7 | 3.64 | 3.69 | 3.63 | 3.67 |
SD | 0.61 | 0.63 | 0.6 | 0.63 | 0.64 | 0.6 | 0.59 | 0.65 | 0.62 | 0.62 | 0.6 | 0.65 | 0.65 | |
6. | M | 3.62 | 3.56 | 3.59 | 3.59 | 3.45 | 3.64 | 3.58 | 3.6 | 3.68 | 3.5 | 3.61 | 3.57 | 3.6 |
SD | 0.63 | 0.7 | 0.65 | 0.68 | 0.69 | 0.65 | 0.68 | 0.65 | 0.58 | 0.73 | 0.66 | 0.65 | 0.66 | |
7.1. | M | 3.7 | 3.68 | 3.61 | 3.74 | 3.59 | 3.73 | 3.67 | 3.71 | 3.7 | 3.68 | 3.68 | 3.71 | 3.69 |
SD | 0.66 | 0.69 | 0.67 | 0.68 | 0.7 | 0.66 | 0.67 | 0.68 | 0.64 | 0.7 | 0.68 | 0.66 | 0.67 | |
7.2. | M | 3.74 | 3.78 | 3.68 | 3.82 | 3.63 | 3.81 | 3.74 | 3.79 | 3.77 | 3.76 | 3.75 | 3.8 | 3.76 |
SD | 0.56 | 0.58 | 0.6 | 0.54 | 0.6 | 0.55 | 0.58 | 0.56 | 0.55 | 0.58 | 0.56 | 0.59 | 0.57 | |
7.3. | M | 3.67 | 3.68 | 3.61 | 3.72 | 3.5 | 3.74 | 3.63 | 3.71 | 3.71 | 3.63 | 3.67 | 3.67 | 3.67 |
SD | 0.62 | 0.67 | 0.63 | 0.66 | 0.66 | 0.63 | 0.64 | 0.66 | 0.61 | 0.68 | 0.63 | 0.69 | 0.65 | |
7. | M | 3.71 | 3.72 | 3.64 | 3.77 | 3.58 | 3.77 | 3.69 | 3.74 | 3.73 | 3.7 | 3.71 | 3.74 | 3.72 |
SD | 0.51 | 0.54 | 0.54 | 0.5 | 0.55 | 0.5 | 0.53 | 0.52 | 0.51 | 0.54 | 0.52 | 0.54 | 0.53 |
Independent Variables | Dependent Variables | Wilks’ Lambda (Λ) | F | df | Univariate | ||
---|---|---|---|---|---|---|---|
MS | F | df | |||||
Gender | Academic persistence intentions | 0.985 | 4.949 *** | 7 | 0.012 | 0.037 | 1 |
Contextual supports | 0.050 | 0.158 | 1 | ||||
Career barriers | 2.243 | 3.782 | 1 | ||||
Engineering self-efficacy | 3.114 | 12.384 *** | 1 | ||||
Outcome expectations | 0.004 | 0.011 | 1 | ||||
Major interest | 0.934 | 2.320 | 1 | ||||
Career motivation | 1.342 | 5.266 * | 1 | ||||
Grade | Academic persistence intentions | 0.987 | 4.380 *** | 7 | 0.317 | 0.950 | 1 |
Contextual supports | 0.004 | 0.012 | 1 | ||||
Career barriers | 1.250 | 2.107 | 1 | ||||
Engineering self-efficacy | 0.044 | 0.177 | 1 | ||||
Outcome expectations | 1.662 | 4.635 * | 1 | ||||
Major interest | 2.540 | 6.312 * | 1 | ||||
Career motivation | 0.195 | 0.764 | 1 | ||||
GPA | Academic persistence intentions | 0.981 | 6.575 *** | 7 | 4.736 | 14.167 *** | 1 |
Contextual supports | 10.813 | 34.413 *** | 1 | ||||
Career barriers | 4.557 | 7.684 ** | 1 | ||||
Engineering self-efficacy | 6.876 | 27.339 *** | 1 | ||||
Outcome expectations | 9.451 | 26.360 *** | 1 | ||||
Major interest | 8.924 | 22.174 *** | 1 | ||||
Career motivation | 3.303 | 12.959 *** | 1 | ||||
Major field | Academic persistence intentions | 0.991 | 2.855 *** | 7 | 2.042 | 6.108 | 1 |
Contextual supports | 0.003 | 0.010 | 1 | ||||
Career barriers | 6.891 | 11.618 ** | 1 | ||||
Engineering self-efficacy | 0.013 | 0.050 | 1 | ||||
Outcome expectations | 0.035 | 0.099 | 1 | ||||
Major interest | 0.324 | 0.805 | 1 | ||||
Career motivation | 0.010 | 0.039 | 1 | ||||
University location | Academic persistence intentions | 0.978 | 7.614 *** | 7 | 0.094 | 0.282 | 1 |
Contextual supports | 0.943 | 3.002 | 1 | ||||
Career barriers | 2.385 ×10 −6 | 0.000 | 1 | ||||
Engineering self-efficacy | 2.014 | 8.007 ** | 1 | ||||
Outcome expectations | 4.256 | 11.8712 ** | 1 | ||||
Major interest | 12.510 | 31.082 *** | 1 | ||||
Career motivation | 0.551 | 2.161 | 1 | ||||
Departments with a significant gender employment gap | Academic persistence intentions | 0.986 | 4.548 *** | 7 | 2.408 | 7.203 ** | 1 |
Contextual supports | 0.214 | 0.681 | 1 | ||||
Career barriers | 0.273 | 0.460 | 1 | ||||
Engineering self-efficacy | 0.003 | 0.012 | 1 | ||||
Outcome expectations | 1.685 | 4.699 * | 1 | ||||
Major interest | 0.076 | 0.189 | 1 | ||||
Career motivation | 0.446 | 1.751 | 1 |
1 | 2.1. | 2.2. | 2.3. | 2 | 3.1. | 3.2. | 3.3. | 3 | 4.1. | 4.2. | 4.3. | 4 | 5 | 6 | 7.1. | 7.2. | 7.3. | 7 | a. | b. | c. | d. | e. | f. | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2.1. | 0.573 ** | 1 | |||||||||||||||||||||||
2.2. | 0.332 ** | 0.427 ** | 1 | ||||||||||||||||||||||
2.3. | 0.311 ** | 0.342 ** | 0.496 ** | 1 | |||||||||||||||||||||
2 | 0.516 ** | 0.754 ** | 0.846 ** | 0.747 ** | 1 | ||||||||||||||||||||
3.1. | −0.229 ** | −0.219 ** | −0.087 ** | −0.250 ** | −0.225 ** | 1 | |||||||||||||||||||
3.2. | −0.328 ** | −0.319 ** | 0.052 * | −0.01 | −0.114 ** | 0.568 ** | 1 | ||||||||||||||||||
3.3. | −0.254 ** | −0.245 ** | 0.059 ** | 0.016 | −0.069 ** | 0.598 ** | 0.721 ** | 1 | |||||||||||||||||
3 | −0.299 ** | −0.288 ** | −0 | −0.110 ** | −0.162 ** | 0.864 ** | 0.829 ** | 0.897 ** | 1 | ||||||||||||||||
4.1. | 0.656 ** | 0.575 ** | 0.470 ** | 0.337 ** | 0.593 ** | −0.178 ** | −0.219 ** | −0.158 ** | −0.206 ** | 1 | |||||||||||||||
4.2. | 0.469 ** | 0.381 ** | 0.477 ** | 0.378 ** | 0.530 ** | −0.080 ** | −0.04 | 0.019 | −0.04 | 0.638 ** | 1 | ||||||||||||||
4.3. | 0.521 ** | 0.479 ** | 0.468 ** | 0.320 ** | 0.546 ** | −0.096 ** | −0.04 | −0.075 ** | −0.087 ** | 0.708 ** | 0.574 ** | 1 | |||||||||||||
4 | 0.626 ** | 0.545 ** | 0.541 ** | 0.396 ** | 0.637 ** | −0.133 ** | −0.108 ** | −0.079 ** | −0.122 ** | 0.889 ** | 0.850 ** | 0.876 ** | 1 | ||||||||||||
5 | 0.562 ** | 0.494 ** | 0.500 ** | 0.464 ** | 0.619 ** | −0.192 ** | −0.135 ** | −0.061 ** | −0.148 ** | 0.601 ** | 0.601 ** | 0.543 ** | 0.667 ** | 1 | |||||||||||
6 | 0.519 ** | 0.436 ** | 0.492 ** | 0.357 ** | 0.552 ** | −0.072 ** | −0.01 | 0.02 | −0.03 | 0.644 ** | 0.701 ** | 0.580 ** | 0.736 ** | 0.623 ** | 1 | ||||||||||
7.1. | 0.533 ** | 0.418 ** | 0.386 ** | 0.350 ** | 0.491 ** | −0.139 ** | −0.138 ** | −0.121 ** | −0.151 ** | 0.561 ** | 0.514 ** | 0.556 ** | 0.624 ** | 0.527 ** | 0.533 ** | 1 | |||||||||
7.2. | 0.571 ** | 0.470 ** | 0.391 ** | 0.279 ** | 0.490 ** | −0.114 ** | −0.165 ** | −0.150 ** | −0.160 ** | 0.674 ** | 0.450 ** | 0.619 ** | 0.663 ** | 0.534 ** | 0.521 ** | 0.604 ** | 1 | ||||||||
7.3. | 0.461 ** | 0.404 ** | 0.450 ** | 0.360 ** | 0.520 ** | −0.146 ** | −0.061 ** | −0.077 ** | −0.116 ** | 0.588 ** | 0.486 ** | 0.568 ** | 0.627 ** | 0.562 ** | 0.568 ** | 0.535 ** | 0.575 ** | 1 | |||||||
7 | 0.622 ** | 0.513 ** | 0.478 ** | 0.381 ** | 0.587 ** | −0.154 ** | −0.150 ** | −0.142 ** | −0.171 ** | 0.725 ** | 0.565 ** | 0.689 ** | 0.755 ** | 0.636 ** | 0.633 ** | 0.827 ** | 0.895 ** | 0.806 ** | 1 | ||||||
a. | 0.046 * | 0.017 | −0.057 ** | −0.046 * | −0.04 | 0.040 * | −0.04 | 0.072 ** | 0.041 * | −0.01 | −0.130 ** | −0 | −0.056 ** | 0.002 | −0.041 * | −0.02 | 0.037 | 0.008 | 0.013 | 1 | |||||
b. | 0.110 ** | 0.136 ** | 0.045 * | 0.03 | 0.090 ** | −0.050 * | −0.057 ** | −0.04 | −0.054 ** | 0.113 ** | −0.02 | 0.125 ** | 0.081 ** | 0.008 | −0.01 | 0.083 ** | 0.121 ** | 0.070 ** | 0.112 ** | 0.03 | 1 | ||||
c. | 0.155 ** | 0.136 ** | 0.145 ** | 0.079 ** | 0.157 ** | −0.075 ** | 0 | −0.01 | −0.04 | 0.176 ** | 0.060 ** | 0.196 ** | 0.164 ** | 0.119 ** | 0.127 ** | 0.094 ** | 0.141 ** | 0.166 ** | 0.158 ** | 0.076 ** | 0.167 ** | 1 | |||
d. | 0 | −0.02 | 0.027 | 0.069 ** | 0.03 | −0.01 | 0.014 | 0.041 * | 0.018 | −0 | 0.058 ** | 0.034 | 0.036 | 0.109 ** | 0.011 | 0.061 ** | −0 | 0.059 ** | 0.039 | −0.01 | 0.04 | 0.011 | 1 | ||
e. | 0.404 ** | 0.327 ** | 0.182 ** | 0.165 ** | 0.287 ** | −0.120 ** | −0.235 ** | −0.100 ** | −0.158 ** | 0.365 ** | 0.332 ** | 0.240 ** | 0.356 ** | 0.326 ** | 0.282 ** | 0.281 ** | 0.220 ** | 0.168 ** | 0.263 ** | −0.03 | 0.172 ** | 0.083 ** | 0.183 ** | 1 | |
f. | 0.015 | −0.02 | −0.068 ** | 0.001 | −0.04 | −0.089 ** | −0.133 ** | −0.116 ** | −0.125 ** | −0.049 * | −0.074 ** | −0.145 ** | −0.104 ** | −0.062 ** | −0.114 ** | −0.073 ** | −0.070 ** | −0.116 ** | −0.099 ** | −0.054 ** | 0.183 ** | −0.044 * | −0.070 ** | 0.026 | 1 |
Variables | M | SD | Min | Max | Skewness | Kurtosis | |
---|---|---|---|---|---|---|---|
Dependent variable | Academic persistence intentions | 3.86 | 0.61 | 1 | 5 | −0.22 | 3.08 |
Independent variables | Contextual supports (Total) | 3.66 | 0.6 | 1 | 5 | −0.36 | 3.21 |
Career barriers (Total) | 2.79 | 0.83 | 1 | 5 | −0.23 | 3.3 | |
Engineering self-efficacy (Total) | 3.69 | 0.52 | 1 | 5 | 0.2 | 3.03 | |
Outcome expectations | 3.67 | 0.62 | 1 | 5 | 0.46 | 3.76 | |
Major interest | 3.59 | 0.66 | 1 | 5 | 0.55 | 3.78 | |
Career motivation | 3.72 | 0.53 | 1.27 | 5 | −0.03 | 0.42 | |
Variables | N | % | |||||
Gender | Men | 1189 | 49.7 | ||||
Women | 1204 | 50.3 | |||||
Grade | Freshmen, sophomores | 1002 | 41.9 | ||||
Juniors, seniors | 1391 | 58.1 | |||||
GPA | Low (poor) | 665 | 27.8 | ||||
High (excellent) | 1728 | 72.2 | |||||
Career direction after graduation | Employment | 1764 | 73.7 | ||||
Graduate school admission in domestic universities | 291 | 12.2 | |||||
Graduate school admission in overseas universities | 23 | 1 | |||||
Undecided | 315 | 13.2 | |||||
Career field to enter after graduation | Major related field | 1933 | 80.8 | ||||
Major unrelated field | 218 | 9.1 | |||||
Undecided | 242 | 10.1 | |||||
Start period of career path preparation | Freshmen | 172 | 7.2 | ||||
Sophomores | 347 | 14.5 | |||||
Juniors | 1105 | 46.2 | |||||
Seniors | 769 | 32.1 |
Independent Variables | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
B | SE | ß | B | SE | ß | B | SE | ß | B | SE | ß | B | SE | ß | B | SE | ß | ||
Constant | 3.638 | 0.029 | 3.269 | 0.043 | 1.831 | 0.070 | 2.367 | 0.082 | 1.384 | 0.084 | 1.135 | 0.085 | |||||||
1 | 1 | 0.041 | 0.025 | 0.033 | 0.058 | 0.023 | 0.047 * | 0.081 | 0.020 | 0.066 *** | 0.087 | 0.020 | 0.071 *** | 0.099 | 0.018 | 0.081 *** | 0.085 | 0.017 | 0.070 *** |
2 | 0.109 | 0.026 | 0.086 *** | 0.028 | 0.024 | 0.022 | 0.010 | 0.022 | 0.008 | 0.011 | 0.021 | 0.009 | 0.032 | 0.019 | 0.025 | 0.009 | 0.019 | 0.007 | |
3 | 0.188 | 0.028 | 0.138 *** | 0.156 | 0.026 | 0.115 *** | 0.081 | 0.023 | 0.059 ** | 0.077 | 0.023 | 0.056 ** | 0.041 | 0.020 | 0.030 * | 0.037 | 0.020 | 0.027 | |
2 | ① | −0.105 | 0.026 | −0.076 *** | −0.088 | 0.023 | −0.064 *** | −0.079 | 0.023 | −0.057 ** | −0.079 | 0.020 | −0.057 *** | −0.080 | 0.020 | −0.058 *** | |||
② | 0.627 | 0.030 | 0.405 *** | 0.444 | 0.027 | 0.287 *** | 0.408 | 0.027 | 0.264 *** | 0.250 | 0.025 | 0.162 *** | 0.271 | 0.024 | 0.175 *** | ||||
③ | 0.004 | 0.028 | 0.003 | 0.037 | 0.025 | 0.025 | 0.002 | 0.025 | 0.001 | 0.061 | 0.022 | 0.042 ** | 0.075 | 0.021 | 0.051 *** | ||||
3 | a. | 0.439 | 0.018 | 0.429 *** | 0.413 | 0.017 | 0.404 *** | 0.084 | 0.020 | 0.082 *** | 0.060 | 0.020 | 0.059 ** | ||||||
4 | b. | −0.141 | 0.012 | −0.191 *** | −0.139 | 0.011 | −0.189 *** | −0.125 | 0.011 | −0.170 *** | |||||||||
5 | c. | 0.372 | 0.028 | 0.320 *** | 0.231 | 0.031 | 0.199 *** | ||||||||||||
d | 0.165 | 0.021 | 0.167 *** | 0.121 | 0.021 | 0.123 *** | |||||||||||||
e | 0.081 | 0.020 | 0.088 *** | 0.053 | 0.020 | 0.058 ** | |||||||||||||
6 | f | 0.289 | 0.026 | 0.249 *** | |||||||||||||||
R2 (Adj. R2) | 0.032 (0.031) | 0.186 (0.184) | 0.351 (0.349) | 0.385 (0.383) | 0.516 (0.514) | 0.539 (0.537) | |||||||||||||
△R2 | 0.032 | 0.154 | 0.165 | 0.035 | 0.131 | 0.023 | |||||||||||||
F | 26.705 *** | 90.962 *** | 184.146 *** | 186.849 *** | 230.807 *** | 232.018 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, S. Differences in Academic Persistence Intentions among STEM Undergraduates in South Korea: Analysis of Related and Influencing Factors. Educ. Sci. 2024, 14, 577. https://doi.org/10.3390/educsci14060577
Hwang S. Differences in Academic Persistence Intentions among STEM Undergraduates in South Korea: Analysis of Related and Influencing Factors. Education Sciences. 2024; 14(6):577. https://doi.org/10.3390/educsci14060577
Chicago/Turabian StyleHwang, Soonhee. 2024. "Differences in Academic Persistence Intentions among STEM Undergraduates in South Korea: Analysis of Related and Influencing Factors" Education Sciences 14, no. 6: 577. https://doi.org/10.3390/educsci14060577
APA StyleHwang, S. (2024). Differences in Academic Persistence Intentions among STEM Undergraduates in South Korea: Analysis of Related and Influencing Factors. Education Sciences, 14(6), 577. https://doi.org/10.3390/educsci14060577