Neurodiversity Positively Predicts Perceived Extraneous Load in Online Learning: A Quantitative Research Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chapman, R. Defining neurodiversity for research and practice. In Neurodiversity Studies; Routledge: London, UK, 2020; pp. 218–220. [Google Scholar]
- Pollak, D. (Ed.) Neurodiversity in Higher Education: Positive Responses to Specific Learning Differences; Wiley–Blackwell: Chichester, UL, 2009. [Google Scholar]
- Singer, J. Why can’t you be normal for once in your life? From a problem with no name to the emergence of a new category of difference. In Disability Discourse; Open University Press: Buckingham, UK, 1999; pp. 59–67. [Google Scholar]
- Dwyer, P. The neurodiversity approach(es): What are they and what do they mean for researchers? Hum. Dev. 2022, 66, 73–92. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.J.; Boilson, M.; Rutherford, M.; Prior, S.; Johnston, L.; Maciver, D.; Forsyth, K. Neurodevelopmental disorders and neurodiversity: Definition of terms from Scotlands’ National Autism Implementation Team. Br. J. Psychiatry 2022, 221, 577–579. [Google Scholar] [CrossRef] [PubMed]
- Clouder, L.; Karakus, M.; Cinotti, A.; Ferreyra, M.V.; Fierros, G.A.; Rojo, P. Neurodiversity in higher education: A narrative synthesis. High. Educ. 2020, 80, 757–778. [Google Scholar] [CrossRef]
- Fabri, M.; Andrews, P. Hurdles and Drivers Affecting Autistic Students’ Higher Education Experience: Lessons Learnt from The Multinational Autism & Uni Research Study. In Proceedings of the INTED Proceedings, Valencia, Spain, 7–9 March 2016; pp. 1800–1811. [Google Scholar]
- Richardson, J.T. The academic attainment of students with disabilities in UK higher education. Stud. High. Educ. 2009, 34, 123–137. [Google Scholar] [CrossRef]
- Bakker, T.C.; Krabbendam, L.; Bhulai, S.; Begeer, S. First-year progression and retention of autistic students in higher education: A propensity score-weighted population study. Autism Adulthood 2020, 2, 307–316. [Google Scholar] [CrossRef]
- DuPaul, G.J.; Weyandt, L.L.; O’Dell, S.M.; Varejao, M. College students with ADHD: Current status and future directions. J. Atten. Disord. 2009, 13, 234–250. [Google Scholar] [CrossRef] [PubMed]
- Chown, N.; Baker-Rogers, J.; Hughes, L.; Cossburn, K.N.; Byrne, P. The ‘High Achievers’ project: An assessment of the support for students with autism attending UK universities. J. Furth. High. Educ. 2018, 42, 837–854. [Google Scholar] [CrossRef]
- Shattuck, P.T.; Narendorf, S.C.; Cooper, B.; Sterzing, P.R.; Wagner, M.; Taylor, J.L. Postsecondary education and employment among youth with an autism spectrum disorder. Pediatrics 2012, 129, 1042–1049. [Google Scholar] [CrossRef]
- Hamilton, L.G.; Petty, S. Compassionate pedagogy for neurodiversity in higher education: A conceptual analysis. Front. Psychol. 2023, 14, 1093290. [Google Scholar] [CrossRef]
- Salama, R.; Hinton, T. Online higher education: Current landscape and future trends. J. Furth. High. Educ. 2023, 47, 913–924. [Google Scholar] [CrossRef]
- Almendingen, K.; Morseth, M.S.; Gjølstad, E.; Brevik, A.; Tørris, C. Student’s experiences with online teaching following COVID-19 lockdown: A mixed methods explorative study. PLoS ONE 2021, 16, e0250378. [Google Scholar] [CrossRef] [PubMed]
- Abu, L.; Chipfuwamiti, C.; Costea, A.M.; Kelly, A.F.; Major, K.; Mulrooney, H.M. Staff and student perspectives of online teaching and learning: Implications for belonging and engagement at university: A qualitative exploration. Compass J. Learn. Teach. 2021, 14, 1–20. [Google Scholar] [CrossRef]
- Kauffman, H. A review of predictive factors of student success in and satisfaction with online learning. Res. Learn. Technol. 2015, 23. [Google Scholar] [CrossRef]
- Kedia, P.; Mishra, L. Exploring the factors influencing the effectiveness of online learning: A study on college students. Soc. Social. Sci. Humanit. Open 2023, 8, 100559. [Google Scholar] [CrossRef]
- Yu, Q. Factors influencing online learning satisfaction. Front. Psychol. 2022, 13, 852360. [Google Scholar] [CrossRef] [PubMed]
- Sonuga-Barke, E.; Thapar, A. The neurodiversity concept: Is it helpful for clinicians and scientists? Lancet Psychiatry 2021, 8, 559–561. [Google Scholar] [CrossRef]
- Stenning, A.; Rosqvist, H.B. Neurodiversity studies: Mapping out possibilities of a new critical paradigm. Disabil. Soc. 2021, 36, 1532–1537. [Google Scholar] [CrossRef]
- Batanero, J.M.F.; Rueda, M.M.; Cerero, J.F.; Tadeu, P. Online education in higher education: Emerging solutions in crisis times. Heliyon 2022, 8, e10139. [Google Scholar] [CrossRef]
- Hernández-Hernández, F.; Sancho-Gil, J.M. Students’ experiences in suddenly transformed living and educational environments by COVID-19. Front. Psychol. 2021, 12, 782433. [Google Scholar] [CrossRef]
- Skulmowski, A.; Xu, K.M. Understanding cognitive load in digital and online learning: A new perspective on extraneous cognitive load. Educ. Psychol. Rev. 2022, 34, 171–196. [Google Scholar] [CrossRef]
- Sweller, J. Cognitive load theory and E-learning. In Proceedings of the Artificial Intelligence in Education: 15th International Conference, AIED, Auckland, New Zealand, 28 June–2 July 2011; pp. 5–6. [Google Scholar]
- Barrouillet, P.; Camos, V. The time-based resource-sharing model of working memory. In Working Memory: State of the Science; Oxford University Press: Oxford, UK, 2020; pp. 85–115. [Google Scholar]
- Chandler, P.; Sweller, J. Cognitive load theory and the format of instruction. Cogn. Instr. 1991, 8, 293–332. [Google Scholar] [CrossRef]
- Paas, F.; Sweller, J. Implications of cognitive load theory for multimedia learning. Camb. Handb. Multimed. Learn. 2014, 3, 19–30. [Google Scholar]
- Sweller, J. Instructional Design in Technical Areas. Australian Education Review; PCS Data Processing: New York, NY, USA, 1999; Volume 43. [Google Scholar]
- Ayres, P. Rethinking germane cognitive load. In Proceedings of the EARLI Conference, Exeter, UK, 29 August–3 September 2011; pp. 1768–1770. [Google Scholar]
- Mayer, R.E. Cognitive theory of multimedia learning. In The Cambridge Handbook of Multimedia Learning, 2nd ed.; Mayer, R.E., Ed.; Cambridge University Press: Cambridge, UK, 2014; pp. 43–71. [Google Scholar]
- Mayer, R.E. Thirty years of research on online learning. Appl. Cogn. Psychol. 2019, 33, 152–159. [Google Scholar] [CrossRef]
- Poupard, M.; Larrue, F.; Sauzéon, H.; Tricot, A. A systematic review of immersive technologies for education: Effects of cognitive load and curiosity state on learning performance. HAL Open Sci. 2022, preprint. [Google Scholar]
- Van Merrienboer, J.J.; Ayres, P. Research on cognitive load theory and its design implications for e-learning. Educ. Technol. Res. Dev. 2005, 53, 5–13. [Google Scholar] [CrossRef]
- Zhao, Y. The Impact of Cognitive Load Theory on Online Learning Outcomes for Adolescent Students. J. Educ. Humanit. Soc. Sci. 2023, 18, 50–55. [Google Scholar] [CrossRef]
- Fong, S.F.; Lily, L.P.L.; Por, F.P. Reducing cognitive overload among students of different anxiety levels using segmented animation. Procedia-Soc. Behav. Sci. 2012, 47, 1448–1456. [Google Scholar] [CrossRef]
- Fox, J.R.; Park, B.; Lang, A. When available resources become negative resources: The effects of cognitive overload on memory sensitivity and criterion bias. Commun. Res. 2007, 34, 277–296. [Google Scholar] [CrossRef]
- Leppink, J. Cognitive load theory: Practical implications and an important challenge. J. Taibah Univ. Med. Sci. 2017, 12, 385–391. [Google Scholar] [CrossRef]
- Orru, G.; Longo, L. The evolution of cognitive load theory and the measurement of its intrinsic, extraneous and germane loads: A review. Hum. Ment. Work. Models Appl. 2018, 2, 23–48. [Google Scholar]
- Sweller, J. Element interactivity and intrinsic, extraneous, and germane cognitive load. Educ. Psychol. Rev. 2010, 22, 123–138. [Google Scholar] [CrossRef]
- Jordan, J.; Wagner, J.; Manthey, D.E.; Wolff, M.; Santen, S.; Cico, S.J. Optimizing lectures from a cognitive load perspective. AEM Educ. Train. 2020, 4, 306–312. [Google Scholar] [CrossRef]
- Jeffries, S.; Everatt, J. Working memory: Its role in dyslexia and other specific learning difficulties. Dyslexia 2004, 10, 196–214. [Google Scholar] [CrossRef]
- Roodenrys, S. Working memory function in attention deficit hyperactivity disorder. In Working Memory and Neurodevelopmental Disorders; Taylor & Francis Goup: Abingdon, UK, 2012; pp. 187–211. [Google Scholar]
- Travers, B.G.; Klinger, M.R.; Klinger, L.G. Attention and working memory in ASD. In The Neuropsychology of Autism; Oxford University Press: New York, NY, USA, 2011; pp. 161–184. [Google Scholar]
- Kofler, M.J.; Singh, L.J.; Soto, E.F.; Chan, E.S.; Miller, C.E.; Harmon, S.L.; Spiegel, J.A. Working memory and short-term memory deficits in ADHD: A bifactor modeling approach. Neuropsychology 2020, 34, 686. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, Y.B.; Liu, L.L.; Cui, J.F.; Wang, J.; Shum, D.H.; Amelsvoort, T.; Chan, R.C. A meta-analysis of working memory impairments in autism spectrum disorders. Neuropsychol. Rev. 2017, 27, 46–61. [Google Scholar] [CrossRef]
- Smith-Spark, J.H.; Fisk, J.E. Working memory functioning in developmental dyslexia. Memory 2007, 15, 34–56. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Huo, S.; Wu, K.C.; Mo, J.; Wong, W.L.; Maurer, U. Behavioral and neurophysiological aspects of working memory impairment in children with dyslexia. Sci. Rep. 2022, 12, 12571. [Google Scholar] [CrossRef] [PubMed]
- Alderson, R.M.; Kasper, L.J.; Hudec, K.L.; Patros, C.H. Attention-deficit/hyperactivity disorder (ADHD) and working memory in adults: A meta-analytic review. Neuropsychology 2013, 27, 287. [Google Scholar] [CrossRef]
- Habib, A.; Harris, L.; Pollick, F.; Melville, C. A meta-analysis of working memory in individuals with autism spectrum disorders. PLoS ONE 2019, 14, e0216198. [Google Scholar] [CrossRef]
- Peng, P.; Fuchs, D. A meta-analysis of working memory deficits in children with learning difficulties: Is there a difference between verbal domain and numerical domain? J. Learn. Disabil. 2016, 49, 3–20. [Google Scholar] [CrossRef]
- Le Cunff, A.L.; Dommett, E.; Giampietro, V. Neurodiversity and cognitive load in online learning: A systematic review with narrative synthesis. Educ. Res. Rev. 2024, 43, 100604. [Google Scholar] [CrossRef]
- Le Cunff, A.L.; Giampietro, V.; Dommett, E. Neurodiversity and cognitive load in online learning: A focus group study. PLoS ONE 2024, 19, e0301932. [Google Scholar] [CrossRef] [PubMed]
- Scandurra, V.; Emberti Gialloreti, L.; Barbanera, F.; Scordo, M.R.; Pierini, A.; Canitano, R. Neurodevelopmental disorders and adaptive functions: A study of children with autism spectrum disorders (ASD) and/or attention deficit and hyperactivity disorder (ADHD). Front. Psychiatry 2019, 10, 673. [Google Scholar] [CrossRef] [PubMed]
- Wagner, R.K.; Zirps, F.A.; Edwards, A.A.; Wood, S.G.; Joyner, R.E.; Becker, B.J.; Liu, G.; Beal, B. The prevalence of dyslexia: A new approach to its estimation. J. Learn. Disabil. 2020, 53, 354–365. [Google Scholar] [CrossRef]
- Erdfelder, E.; Buchner, A.; Faul, F.; Brandt, M. GPower: Teststärkeanalysen Leicht Gemacht; Erdfelder, Edgar: Göttingen, Germany, 2004. [Google Scholar]
- Abdelazeem, B.; Hamdallah, A.; Rizk, M.A.; Abbas, K.S.; El-Shahat, N.A.; Manasrah, N.; Mostafa, R.N.; Eltobgy, M. Does usage of monetary incentive impact the involvement in surveys? A systematic review and meta-analysis of 46 randomized controlled trials. PLoS ONE 2023, 18, e0279128. [Google Scholar] [CrossRef] [PubMed]
- Qualtrics. 2020. Available online: https://www.qualtrics.com (accessed on 23 January 2024).
- Cronbach, L.J. Coefficient alpha and the internal structure of tests. Psychometrika 1951, 16, 297–334. [Google Scholar] [CrossRef]
- Kessler, R.C.; Adler, L.; Ames, M.; Demler, O.; Faraone, S.; Hiripi, E.V.; Howes, M.J.; Jin, R.; Secnik, K.; Spencer, T.; et al. The World Health Organization Adult ADHD Self-Report Scale (ASRS): A short screening scale for use in the general population. Psychol. Med. 2005, 35, 245–256. [Google Scholar] [CrossRef]
- Baron-Cohen, S.; Wheelwright, S.; Skinner, R.; Martin, J.; Clubley, E. The autism-spectrum quotient (AQ): Evidence from asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. J. Autism Dev. Disord. 2001, 31, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Allison, C.; Auyeung, B.; Baron-Cohen, S. Toward brief “red flags” for autism screening: The short autism spectrum quotient and the short quantitative checklist in 1000 cases and 3000 controls. J. Am. Acad. Child. Adolesc. Psychiatry 2012, 51, 202–212. [Google Scholar] [CrossRef]
- Finucci, J.M.; Whitehouse, C.C.; Isaacs, S.D.; Childs, B. Derivation and validation of a quantitative definition of specific reading disability for adults. Dev. Med. Child. Neurol. 1984, 26, 143–153. [Google Scholar] [CrossRef]
- Klepsch, M.; Schmitz, F.; Seufert, T. Development and validation of two instruments measuring intrinsic, extraneous, and germane cognitive load. Front. Psychol. 2017, 8, 1997. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, N.; Oyserman, D. Asking questions about behavior: Cognition, communication, and questionnaire construction. Am. J. Eval. 2001, 22, 127–160. [Google Scholar] [CrossRef]
- Kalyuga, S. Cognitive load theory: How many types of load does it really need? Educ. Psychol. Rev. 2011, 23, 1–19. [Google Scholar] [CrossRef]
- Sweller, J.; Ayres, P.; Kalyuga, S. Cognitive load theory. Psychol. Learn. Motiv. 2011, 55, 37–76. [Google Scholar]
- Schnotz, W.; Kürschner, C. A reconsideration of cognitive load theory. Educ. Psychol. Rev. 2007, 19, 469–508. [Google Scholar] [CrossRef]
- De Jong, T. Cognitive load theory, educational research, and instructional design: Some food for thought. Instr. Sci. 2010, 38, 105–134. [Google Scholar] [CrossRef]
- Moreno, R. Cognitive load theory: More food for thought. Instr. Sci. 2010, 2, 135–141. [Google Scholar] [CrossRef]
- Jiang, D.; Kalyuga, S. Confirmatory factor analysis of cognitive load ratings supports a two-factor model. Tutor. Quant. Methods Psychol. 2020, 16, 216–225. [Google Scholar] [CrossRef]
- van Schalkwyk, G.I. At the intersection of neurodiversity and gender diversity. J. Autism Dev. Disord. 2018, 48, 3973. [Google Scholar] [CrossRef]
- Walsh, R.J.; Krabbendam, L.; Dewinter, J.; Begeer, S. Brief report: Gender identity differences in autistic adults: Associations with perceptual and socio-cognitive profiles. J. Autism Dev. Disord. 2018, 48, 4070–4078. [Google Scholar] [CrossRef]
- Warrier, V.; Greenberg, D.M.; Weir, E.; Buckingham, C.; Smith, P.; Lai, M.C.; Allison, C.; Baron-Cohen, S. Elevated rates of autism, other neurodevelopmental and psychiatric diagnoses, and autistic traits in transgender and gender-diverse individuals. Nat. Commun. 2020, 11, 3959. [Google Scholar] [CrossRef] [PubMed]
- IBM Corp. SPSS Statistics for Windows, Version 28.0; IBM Corp.: Armonk, NY, USA, 2021. [Google Scholar]
- Rothman, K.J. No adjustments are needed for multiple comparisons. Epidemiology 1990, 1, 43–46. [Google Scholar] [CrossRef] [PubMed]
- Saville, D.J. Multiple comparison procedures: The practical solution. Am. Stat. 1990, 44, 174–180. [Google Scholar] [CrossRef]
- Armitage, P.; Berry, G.; Matthews, J.N.S. Statistical Methods in Medical Research; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Debue, N.; Van De Leemput, C. What does germane load mean? An empirical contribution to the cognitive load theory. Front. Psychol. 2014, 5, 1099. [Google Scholar] [CrossRef] [PubMed]
- Leppink, J.; Paas, F.; Van der Vleuten, C.P.; Van Gog, T.; Van Merriënboer, J.J. Development of an instrument for measuring different types of cognitive load. Behav. Res. Methods 2013, 45, 1058–1072. [Google Scholar] [CrossRef] [PubMed]
- Serdar, C.; Cihan, M.; Yücel, D.; Serdar, M.A. Sample size, power and effect size revisited: Simplified and practical approaches in pre-clinical, clinical and laboratory studies. Biochem. Medica 2021, 31, 27–53. [Google Scholar] [CrossRef] [PubMed]
- Doyle, N. Neurodiversity at work: A biopsychosocial model and the impact on working adults. Br. Med. Bull. 2020, 135, 108. [Google Scholar] [CrossRef] [PubMed]
- Paas, F.; Renkl, A.; Sweller, J. Cognitive load theory and instructional design: Recent developments. Educ. Psychol. 2003, 38, 1–4. [Google Scholar] [CrossRef]
- Sweller, J.; Van Merrienboer, J.J.; Paas, F.G. Cognitive architecture and instructional design. Educ. Psychol. Rev. 1998, 10, 251–296. [Google Scholar] [CrossRef]
- Hadie, S.N.; Yusoff, M.S. Assessing the validity of the cognitive load scale in a problem-based learning setting. J. Taibah Univ. Med. Sci. 2016, 11, 194–202. [Google Scholar] [CrossRef]
- Lewis, D.; Brown, V. Individuals with ADHD and the Cognitive Processing of Multimedia. In Proceedings of the Society for Information Technology & Teacher Education International Conference, Austin, TX, USA, 5 March 2012; Association for the Advancement of Computing in Education: Waynesville, NC, USA, 2012; pp. 4645–4649. [Google Scholar]
- Willcutt, E.G.; Doyle, A.E.; Nigg, J.T.; Faraone, S.V.; Pennington, B.F. Validity of the executive function theory of attention-deficit/hyperactivity disorder: A meta-analytic review. Biol. Psychiatry 2005, 57, 1336–1346. [Google Scholar] [CrossRef] [PubMed]
- Whelan, R.R. Neuroimaging of cognitive load in instructional multimedia. Educ. Res. Rev. 2007, 2, 1–12. [Google Scholar] [CrossRef]
- Egeland, J.; Johansen, S.N.; Ueland, T. Differentiating between ADHD sub-types on CCPT measures of sustained attention and vigilance. Scand. J. Psychol. 2009, 50, 347–354. [Google Scholar] [CrossRef]
- Mason, D.J.; Humphreys, G.W.; Kent, L. Insights into the control of attentional set in ADHD using the attentional blink paradigm. J. Child. Psychol. Psychiatry 2005, 46, 1345–1353. [Google Scholar] [CrossRef] [PubMed]
- Antonietti, A.; Fabio, R.A.; Iannello, P.; Zugno, E. Multimedia Learning in ADHD Students. In Attention-Deficit Hyperactivity Disorder: Diagnosis, Prevalence and Treatment; Nova Science Publishers, Inc.: New York, NY, USA, 2021; pp. 71–95. [Google Scholar]
- Paas, F.; van Merriënboer, J.J. Cognitive-load theory: Methods to manage working memory load in the learning of complex tasks. Curr. Dir. Psychol. Sci. 2020, 29, 394–398. [Google Scholar] [CrossRef]
- Brimo, K.; Dinkler, L.; Gillberg, C.; Lichtenstein, P.; Lundström, S.; Åsberg Johnels, J. The co-occurrence of neurodevelopmental problems in dyslexia. Dyslexia 2021, 27, 277–293. [Google Scholar] [CrossRef]
- Russell, G.; Pavelka, Z. Co-occurrence of developmental disorders: Children who share symptoms of autism, dyslexia and attention deficit hyperactivity disorder. Recent. Adv. Autism Spectr. Disord. 2013, 1, 361–386. [Google Scholar]
- Riglin, L.; Leppert, B.; Dardani, C.; Thapar, A.K.; Rice, F.; O’Donovan, M.C.; Smith, G.D.; Stergiakouli, E.; Tilling, K.; Thapar, A. ADHD and depression: Investigating a causal explanation. Psychol. Med. 2021, 51, 1890–1897. [Google Scholar] [CrossRef] [PubMed]
- Bauhoff, S. Self-report bias in estimating cross-sectional and treatment effects. In Encyclopedia of Quality of Life and Well-Being Research; Springer: Dordrecht, The Netherlands, 2014; pp. 5798–5800. [Google Scholar]
- Kreitchmann, R.S.; Abad, F.J.; Ponsoda, V.; Nieto, M.D.; Morillo, D. Controlling for response biases in self-report scales: Forced-choice vs. psychometric modeling of Likert items. Front. Psychol. 2019, 10, 2309. [Google Scholar] [CrossRef]
- Rosenman, R.; Tennekoon, V.; Hill, L.G. Measuring bias in self-reported data. Int. J. Behav. Healthc. Res. 2011, 2, 320–332. [Google Scholar] [CrossRef]
- Scheiter, K.; Ackerman, R.; Hoogerheide, V. Looking at mental effort appraisals through a metacognitive lens: Are they biased? Educ. Psychol. Rev. 2020, 32, 1003–1027. [Google Scholar] [CrossRef]
- Skulmowski, A.; Rey, G.D. Subjective cognitive load surveys lead to divergent results for interactive learning media. Hum. Behav. Emerg. Technol. 2020, 2, 149–157. [Google Scholar] [CrossRef]
- Martin, C.P.; Shoulberg, E.K.; Hoza, B.; Vaughn, A.; Waschbusch, D.A. Factors Relating to the Presence and Modifiability of Self-Perceptual Bias Among Children with ADHD. Child. Psychiatry Hum. Dev. 2020, 51, 281–293. [Google Scholar] [CrossRef] [PubMed]
- Lind, S.E. Memory and the self in autism: A review and theoretical framework. Autism 2010, 14, 430–456. [Google Scholar] [CrossRef] [PubMed]
- Martin, S. Measuring cognitive load and cognition: Metrics for technology-enhanced learning. Educ. Res. Eval. 2014, 20, 592–621. [Google Scholar] [CrossRef]
- Korbach, A.; Brünken, R.; Park, B. Measurement of cognitive load in multimedia learning: A comparison of different objective measures. Instr. Sci. 2017, 45, 515–536. [Google Scholar] [CrossRef]
- Antonenko, P.D.; Keil, A. Assessing working memory dynamics with electroencephalography: Implications for research on cognitive load. In Cognitive Load Measurement and Application; Taylor & Francis Goup: Abingdon, UK, 2017; pp. 93–111. [Google Scholar]
- Le Cunff, A.L.; Dommett, E.; Giampietro, V. Neurophysiological measures and correlates of cognitive load in attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD) and dyslexia: A scoping review and research recommendations. Eur. J. Neurosci. 2023, 59, 256–282. [Google Scholar] [CrossRef]
- Mills, C.; Fridman, I.; Soussou, W.; Waghray, D.; Olney, A.M.; D’Mello, S.K. Put your thinking cap on: Detecting cognitive load using EEG during learning. In Proceedings of the Seventh International Learning Analytics & Knowledge Conference, Vancouver, BC, Canada, 13–17 March 2017; pp. 80–89. [Google Scholar]
Neurotypical n = 129 (55.8%) | Neurodivergent n = 102 (44.2%) | Test Statistic (df) | Significance | |
---|---|---|---|---|
Age | M = 27 (SD = 11) | M = 26 (SD = 7) | t = −1.05 (229) | 0.29 |
ASRS * | M = 10.84 (SD = 4.88) | M = 17.03 (SD = 3.91) | t = 10.44 (229) | <0.001 |
ASQ * | M = 3.24 (SD = 2.13) | M = 5.49 (SD = 2.40) | t = 7.55 (229) | <0.001 |
ARHQ * | M = 28.57 (SD = 12.69) | M = 42.84 (SD = 14.97) | t = 7.84 (229) | <0.001 |
Gender | X2 = 9.18 (2) ** | 0.010 | ||
Male | 54 | 36 | ||
Female | 74 | 57 | ||
Non-binary | 1 | 9 | ||
Study Level | X2 = 7.30 (2) ** | 0.02 | ||
Bachelor’s level | 76 | 60 | ||
Master’s level | 49 | 30 | ||
Doctoral level | 4 | 12 |
Age | ICL | GCL | ECL | ASRS | ASQ | ARHQ | ||
---|---|---|---|---|---|---|---|---|
All Participants | Age | 1 | 0.12 | 0.15 * | −0.08 | −0.18 ** | −0.07 | −0.11 |
ICL | 1.00 | 0.21 ** | 0.36 ** | 0.18 ** | 0.12 | 0.13 * | ||
GCL | 1.00 | −0.23 ** | −0.11 | −0.13 * | −0.17 * | |||
ECL | 1.00 | 0.41 ** | 0.22 ** | 0.32 ** | ||||
ASRS | 1.00 | 0.46 ** | 0.55 ** | |||||
ASQ | 1.00 | 0.36 ** | ||||||
ARHQ | 1.00 | |||||||
Neurotypical Participants | Age | 1 | 0.18 * | 0.28 ** | −0.14 | −0.24 ** | −0.03 | −0.22 * |
ICL | 1.00 | 0.27 ** | 0.27 ** | 0.12 | 0.08 | 0.12 | ||
GCL | 1.00 | −0.25 ** | −0.030 ** | −0.29 ** | −0.26 ** | |||
ECL | 1.00 | 0.47 ** | 0.27 ** | 0.39 ** | ||||
ASRS | 1.00 | 0.40 ** | 0.57 ** | |||||
ASQ | 1.00 | 0.27 ** | ||||||
ARHQ | 1.00 | |||||||
Neurodivergent Participants | Age | 1 | 0.03 | −0.09 | 0.09 | 0.02 | −0.08 | 0.13 |
ICL | 1.00 | 0.16 | 0.48 ** | 0.19 | 0.08 | 0.05 | ||
GCL | 1.00 | −0.17 | 0.25 * | 0.08 | −0.04 | |||
ECL | 1.00 | 0.10 | −0.05 | 0.05 | ||||
ASRS | 1.00 | 0.12 | 0.19 | |||||
ASQ | 1.00 | 0.11 | ||||||
ARHQ | 1.00 |
Neurotypical (N = 129) | Neurodivergent (N = 102) | |||||
---|---|---|---|---|---|---|
M | SD | M | SD | F(1, 227) | Sig. | |
ICL | 4.51 | 1.21 | 4.80 | 1.00 | 3.60 | p = 0.059 |
GCL | 5.28 | 0.88 | 5.11 | 0.94 | 1.97 | p = 0.161 |
ECL | 3.88 | 1.39 | 4.58 | 1.29 | 14.69 * | p < 0.001 |
Unstandardized Coeff. | 95% Confidence Interval of the Difference | ||||||
---|---|---|---|---|---|---|---|
B | Std. Error | Beta | t | Sig. | Lower | Upper | |
(Constant) | 2.46 | 0.41 | 6.05 | <0.001 | 1.66 | 3.26 | |
ASRS | 0.08 | 0.02 | 0.32 | 3.99 | <0.001 | 0.04 | 0.12 |
ASQ | 0.02 | 0.04 | 0.03 | 0.41 | 0.68 | −0.06 | 0.09 |
ARHQ | 0.01 | 0.01 | 0.13 | 1.80 | 0.07 | 0.00 | 0.03 |
Female | 0.18 | 0.18 | 0.07 | 1.03 | 0.30 | −0.17 | 0.53 |
Non-Binary | 0.14 | 0.45 | 0.02 | 0.31 | 0.76 | −0.74 | 1.02 |
Age | 0.00 | 0.01 | −0.01 | −0.18 | 0.86 | −0.02 | 0.02 |
Study Level | 0.06 | 0.14 | 0.03 | 0.38 | 0.70 | −0.23 | 0.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le Cunff, A.-L.; Giampietro, V.; Dommett, E. Neurodiversity Positively Predicts Perceived Extraneous Load in Online Learning: A Quantitative Research Study. Educ. Sci. 2024, 14, 516. https://doi.org/10.3390/educsci14050516
Le Cunff A-L, Giampietro V, Dommett E. Neurodiversity Positively Predicts Perceived Extraneous Load in Online Learning: A Quantitative Research Study. Education Sciences. 2024; 14(5):516. https://doi.org/10.3390/educsci14050516
Chicago/Turabian StyleLe Cunff, Anne-Laure, Vincent Giampietro, and Eleanor Dommett. 2024. "Neurodiversity Positively Predicts Perceived Extraneous Load in Online Learning: A Quantitative Research Study" Education Sciences 14, no. 5: 516. https://doi.org/10.3390/educsci14050516
APA StyleLe Cunff, A. -L., Giampietro, V., & Dommett, E. (2024). Neurodiversity Positively Predicts Perceived Extraneous Load in Online Learning: A Quantitative Research Study. Education Sciences, 14(5), 516. https://doi.org/10.3390/educsci14050516