A Systematic Literature Review of the Impact of Cognitive Stimulation Programs on Reading Skills in Children Aged between 6 and 12 Years Old
Abstract
:1. Introduction
1.1. Definition of Executive Functions
1.2. Definition of Reading Skills
1.3. Role of Executive Functions in Reading
1.4. Training of Executive Functions and Effects on Reading Skills
1.5. The Present Study
2. Materials and Methods
2.1. Sample
2.2. Procedure and Analysis
3. Results
3.1. Measurement Instruments
3.1.1. Measurement of Executive Functions
3.1.2. Measurement of Reading Skills
3.2. Transfer of Working Memory Intervention
3.3. Transfer of Inhibitory Control Intervention
3.4. Transfer of Combined Working Memory and Inhibitory Control Intervention
3.5. Transfer of Combined Intervention in Executive Functions and Academic Skills
4. Discussion
4.1. Working Memory Interventions
4.2. Inhibitory Control Interventions
4.3. Combined Interventions in Working Memory and Inhibitory Control
4.4. Combined Interventions in Executive Functions and Academic Skills
4.5. Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Diamond, A. Why assessing and improving executive functions early in life is critical. In Executive Function in Preschool Age Children: Integrating Measurement, Neurodevelopment, and Translational Research; Griffin, J.A., McCardle, P., Freund, L.S., Eds.; American Psychological Association: Worcester, MA, USA, 2016; pp. 11–43. [Google Scholar] [CrossRef]
- Miyake, A.; Friedman, N.; Emerson, M.; Witzki, A.; Howerter, A.; Wager, T.D. The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latest variable analysis. Cogn. Psychol. 2000, 41, 49–100. [Google Scholar] [CrossRef]
- Hanakawa, T. Rostral premotor cortex as a gateway between motor and cognitive networks. Neurosci. Res. 2011, 70, 144–154. [Google Scholar] [CrossRef]
- Swaab, D. Somos Nuestro Cerebro; Plataforma Editorial: Barcelona, Spain, 2014. [Google Scholar]
- McNab, F.; Klingberg, T. Prefrontal cortex and basal ganglia control access to working memory. Nat. Neurosci. 2008, 11, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Postle, B.R. Working memory as an emergent property of the mind and brain. Neuroscience 2006, 139, 23–38. [Google Scholar] [CrossRef]
- Tranel, D.; Grabowski, T.J.; Lyon, J.; Damasio, H. Naming the same entities from visual or from auditory stimulation engages similar regions of left inferotemporal cortices. J. Cogn. Neurosci. 2005, 17, 1293–1305. [Google Scholar] [CrossRef] [PubMed]
- Alloway, T.P. How does working memory work in the classroom? Educ. Res. Rev. 2006, 1, 134–139. [Google Scholar]
- Baddeley, A. Working Memory. Science 1992, 255, 556–559. [Google Scholar] [CrossRef]
- Baddeley, A. The episodic buffer: A new component of working memory? Trends Cogn. Sci. 2000, 4, 417–423. [Google Scholar] [CrossRef]
- Swanson, H.L.; Berninger, V. The Role of Working Memory in Skilled and Less Skilled Readers’ Comprehension. Intelligence 1995, 21, 83–108. [Google Scholar] [CrossRef]
- Diamond, A. Executive Functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef]
- Garcia-Madruga, J.A.; Vila, J.O.; Gomez-Veiga, I.; Duque, G.; Elosua, M.R. Executive processes, reading comprehension and academic achievement in 3rd grade primary students. Learn. Individ. Differ. 2014, 35, 41–48. [Google Scholar] [CrossRef]
- Kamza, A. Developmental patterns of relationships between inhibitory control and reading skill in early-school children. L1 Educ. Stud. Lang. Lit. 2017, 17, 1–23. [Google Scholar] [CrossRef]
- Johann, V.; Koenen, T.; Karbach, J. The unique contribution of working memory, inhibition, cognitive flexibility, and intelligence to reading comprehension and reading speed. Child Neuropsychol. 2018, 26, 324–344. [Google Scholar] [CrossRef]
- Best, J.R.; Miller, P.H.; Naglieri, J.A. Relations between executive function and academic achievement from ages 5 to 17 in a large, representative national sample. Learn. Individ. Differ. 2011, 21, 327–336. [Google Scholar] [CrossRef]
- Butterfuss, R.; Kendeou, P. The Role of Executive Functions in Reading Comprehension. Educ. Psychol. Rev. 2018, 30, 801–826. [Google Scholar] [CrossRef]
- Titz, C.; Karbach, J. Working memory and executive functions: Effects of training on academic achievement. Psychol. Res. 2014, 78, 852–868. [Google Scholar] [CrossRef]
- Weissheimer, J.; Fujii, R.C.; Marques de Souza, J.G. The effects of cognitive training on executive functions and reading in typically developing children with varied socioeconomic status in Brazil. Ilha Desterro A J. Engl. Lang. Lit. Engl. Cult. Stud. 2019, 72, 85–100. [Google Scholar] [CrossRef]
- Miyake, A.; Friedman, N.P. The Nature and Organization of Individual Differences in Executive Functions: Four General Conclusions. Curr. Dir. Psychol. Sci. 2012, 21, 8–14. [Google Scholar] [CrossRef]
- Ramos-Galarza, C.; Villegas, C.; Ortiz, D.; Garcia, A.; Bolanos, M.; Acosta, P.; Lepe, N.; Del Valle, M.; Ramos, V. Evaluación de las Habilidades de la Corteza Prefrontal: La Escala Efecto II-VC y II-VR. Rev. Ecuat. Neurol. 2018, 27, 36–42. [Google Scholar]
- Aksayli, N.D.; Sala, G.; Gobet, F. The cognitive and academic benefits of Cogmed: A meta-analysis. Educ. Res. Rev. 2019, 27, 229–243. [Google Scholar] [CrossRef]
- Alloway, T.P. Working memory, but not IQ, predicts subsequent learning in children with learning difficulties. Eur. J. Psychol. Assess. 2009, 25, 92–98. [Google Scholar] [CrossRef]
- Baddeley, A. Working memory and language: An overview. J. Commun. Disord. 2003, 36, 189–208. [Google Scholar] [CrossRef]
- Fuhs, M.W.; Farran, D.C.; Nesbitt, K.T. Prekindergarten children’s executive functioning skills and achievement gains: The utility of direct assessments and teacher ratings. J. Educ. Psychol. 2015, 107, 207–221. [Google Scholar] [CrossRef]
- Fuhs, M.W.; Nesbitt, K.T.; Farran, D.C.; Dong, N. Longitudinal Associations Between Executive Functioning and Academic Skills Across Content Areas. Dev. Psychol. 2014, 50, 1698–1709. [Google Scholar] [CrossRef]
- Alloway, T.P.; Alloway, R.G. Investigating the predictive roles of working memory and IQ in academic attainment. J. Exp. Child Psychol. 2010, 106, 20–29. [Google Scholar] [CrossRef]
- Altemeier, L.E.; Abbott, R.D.; Berninger, V.W. Executive functions for reading and writing in typical literacy development and dyslexia. J. Clin. Exp. Neuropsychol. 2008, 30, 588–606. [Google Scholar] [CrossRef]
- Cain, K.; Oakhill, J.; Bryant, P. Children’s reading comprehension ability: Concurrent prediction by working memory, verbal ability, and component skills. J. Educ. Psychol. 2004, 96, 31–42. [Google Scholar] [CrossRef]
- Gathercole, S.E.; Pickering, S.J. Assessment of working memory in six- and seven-year-old children. J. Educ. Psychol. 2000, 92, 377–390. [Google Scholar] [CrossRef]
- Loosli, S.V.; Buschkuehl, M.; Perrig, W.J.; Jaeggi, S.M. Working memory training improves reading processes in typically developing children. Child Neuropsychol. 2012, 18, 62–78. [Google Scholar] [CrossRef]
- Peng, P.; Fuchs, D.; Fuchs, L.S.; Elleman, A.M.; Kearns, D.M.; Gilbert, J.K.; Compton, D.L.; Cho, E.; Patton, S., III. A Longitudinal Analysis of the Trajectories and Predictors of Word Reading and Reading Comprehension Development Among At-Risk Readers. J. Learn. Disabil. 2018, 52, 195–208. [Google Scholar] [CrossRef]
- Siu, T.C.; McBride, C.; Tse, C.; Tong, X.; Maurer, U. Evaluating the Effects of Metalinguistic and Working Memory Training on Reading Fluency in Chinese and English: A Randomized Controlled Trial. Front. Psychol. 2018, 9, 2510. [Google Scholar] [CrossRef]
- Johann, V.E.; Karbach, J. Effects of game-based and standard executive control training on cognitive and academic abilities in elementary school children. Dev. Sci. 2020, 23, e12866. [Google Scholar] [CrossRef] [PubMed]
- Melby-Lervag, M.; Hulme, C. Is Working Memory Training Effective? A Meta-Analytic Review. Dev. Psychol. 2013, 49, 270–291. [Google Scholar] [CrossRef]
- Melby-Lervag, M.; Redick, T.S.; Hulme, C. Working Memory Training Does Not Improve Performance on Measures of Intelligence or Other Measures of “Far Transfer”: Evidence From a Meta-Analytic Review. Perspect. Psychol. Sci. 2016, 11, 512–534. [Google Scholar] [CrossRef] [PubMed]
- Sala, G.; Gobet, F. Working Memory Training in Typically Developing Children: A Meta-Analysis of the Available Evidence. Dev. Psychol. 2017, 53, 671–685. [Google Scholar] [CrossRef]
- Sala, G.; Gobet, F. Working memory training in typically developing children: A multilevel meta-analysis. Psychon. Bull. Rev. 2020, 27, 423–434. [Google Scholar] [CrossRef] [PubMed]
- Simons, D.J.; Boot, W.R.; Charness, N.; Gathercole, S.E.; Chabris, C.F.; Hambrick, D.Z.; Stine-Morrow, E.A.L. Do “Brain-Training” Programs Work? Psychol. Sci. Public Interest 2016, 17, 103–186. [Google Scholar] [CrossRef]
- Strobach, T.; Karbach, J. Cognitive Training: An Overview of Features and Applications; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Blakey, E.; Carroll, D.J. A short executive function training program improves preschoolers’ working memory. Front. Psychol. 2015, 6, 1827. [Google Scholar] [CrossRef]
- Dunning, D.L.; Holmes, J.; Gathercole, S.E. Does working memory training lead to generalized improvements in children with low working memory? A randomized controlled trial. Dev. Sci. 2013, 16, 915–925. [Google Scholar] [CrossRef]
- Holmes, J.; Gathercole, S.E. Taking working memory training from the laboratory into schools. Educ. Psychol. 2014, 34, 440–450. [Google Scholar] [CrossRef]
- Jones, J.S.; Milton, F.; Mostazir, M.; Adlam, A.R. The academic outcomes of working memory and metacognitive strategy training in children: A double-blind randomized controlled trial. Dev. Sci. 2020, 23, e12870. [Google Scholar] [CrossRef]
- Swanson, H.L.; Alloway, T.P. Working memory, learning, and academic achievement. In APA Educational Psychology Handbook; Harris, K.R., Graham, S., Urdan, T., McCormick, C.B., Sinatra, G.M., Sweller, J., Eds.; American Psychological Association: Worcester, MA, USA, 2012; Volume 1, pp. 327–366. [Google Scholar] [CrossRef]
- Avtzon, S.A. Effect of Neuroscience-based Cognitive skill Training on Growth of Cognitive Deficits Associated with Learning Disabilities in children Grades 2–4. Learn. Disabil. A Multidiscip. J. 2012, 18, 111–121. [Google Scholar]
- Fried, R.; Chan, J.; Feinberg, L.; Pope, A.; Woodworth, K.Y.; Faraone, S.V.; Biederman, J. Clinical correlates of working memory deficits in youth with and without ADHD: A controlled study. J. Clin. Exp. Neuropsychol. 2016, 38, 487–496. [Google Scholar] [CrossRef]
- Holmes, J.; Gathercole, S.E.; Dunning, D.L. Adaptive training leads to sustained enhancement of poor working memory in children. Dev. Sci. 2009, 12, F9–F15. [Google Scholar] [CrossRef]
- Peng, P.; Barnes, M.; Wang, C.; Wang, W.; Li, S.; Swanson, H.L.; Dardick, W.; Tao, S. A Meta-Analysis on the Relation Between Reading and Working Memory. Psychol. Bull. 2018, 144, 48–76. [Google Scholar] [CrossRef]
- Savage, R.; Cornish, K.; Manly, T.; Hollis, C. Cognitive processes in children’s reading and attention: The role of working memory, divided attention, and response inhibition. Br. J. Psychol. 2006, 97, 368–385. [Google Scholar] [CrossRef] [PubMed]
- Sjowall, D.; Bohlin, G.; Rydell, A.; Thorell, L.B. Neuropsychological deficits in preschool as predictors of ADHD symptoms and academic achievement in late adolescence. Child Neuropsychol. 2017, 23, 111–128. [Google Scholar] [CrossRef] [PubMed]
- Borella, E.; Carretti, B.; Pelgrina, S. The specific role of inhibition in reading comprehension in good and poor comprehenders. J. Learn. Disabil. 2010, 43, 541–552. [Google Scholar] [CrossRef] [PubMed]
- Lopez, M.; Aran, V. Transfer effects of working memory training on language and mathematics performance in school-aged children. Cuad. Neuropsicol.-Panam. J. Neuropsychol. 2021, 15, 97–107. [Google Scholar] [CrossRef]
- Gutierrez-Fresneda, R. El aprendizaje de la lectura, ¿cuál es el mejor momento para iniciar su enseñanza? In Lectura y Dificultades Lectoras en el Siglo XXI; Díez-Mediavilla, A., Gutierrez-Fresneda, R., Coords, Eds.; Octaedro: Quito, Ecuador, 2020; pp. 77–88. [Google Scholar]
- Martinez-Cubelos, J. Relationship between the Executive Functions, Phonological Awareness and Early Reading Performance in 1st Elementary Students. Educ. Y Futuro Digit. 2014, 10, 65–80. Available online: https://dialnet.unirioja.es/servlet/articulo?codigo=4998798 (accessed on 10 November 2023).
- Cuetos, F.; Rodriguez, B.; Ruano, E.; Arribas, D. PROLEC-R. Batería de Evaluación de Los Procesos Lectores, Revisada; TEA Ediciones S.A.: Madrid, Spain, 2014. [Google Scholar]
- De la Calle, A.M.; Guzman-Simon, F.; Garcia-Jimenez, E. Letter Knowledge and Learning Sequence of Graphemes in Spanish: Precursors of Early Reading. Rev. Psicodidáctica 2018, 23, 128–136. [Google Scholar] [CrossRef]
- De la Calle, A.M. The prediction of early reading performance: A comparative perspective in Spanish and Chilean children. Rev. Complut. Educ. 2019, 30, 935–950. [Google Scholar] [CrossRef]
- Kuhn, M.; Schwanenflugel, P.; Meisinger, E.; Levy, B.; Rasinski, T. Aligning theory and assessment of reading fluency: Automaticity, prosody, and definitions of fluency. Read. Res. Q. 2010, 45, 230–251. [Google Scholar] [CrossRef]
- Gonzalez-Hernandez, K.; Otero, L.; Castro, A.M. Comprensión lectora, memoria de trabajo, fluidez y vocabulario en escolares cubanos. Actual. Investig. Educ. 2016, 16, 162–180. [Google Scholar] [CrossRef]
- Chang, I. Influences of executive function, language comprehension, and fluency on reading comprehension. J. Early Child. Res. 2019, 18, 44–57. [Google Scholar] [CrossRef]
- Horowitz-Kraus, T.; Hershey, A.; Kay, B.; DiFrancesco, M. Differential effect of reading training on functional connectivity in children with reading difficulties with and without ADHD comorbidity. J. Neurolinguist. 2019, 49, 93–108. [Google Scholar] [CrossRef] [PubMed]
- Amiama-Espaillat, C.; Mayor-Ruiz, C. Analysing the relationship between Reading fluency and Reading competence in Secondary Education. Ocnos. Rev. Estud. Sobre Lect. 2018, 17, 21–31. [Google Scholar] [CrossRef]
- Alliende, F.; Condemarin, M.; Milicic, N. Prueba CLP. Formas Paralelas. Manual Para la Aplicación de la Prueba de Comprensión Lectora de Complejidad Lingüística Progresiva: 8 Niveles de Lectura; CEPE: Auderghem, Belgium, 2004. [Google Scholar]
- Abusamra, V.; Cartoceti, R.; Raiter, A.; Ferreres, A. Una perspectiva cognitiva en el estudio de la comprensión de textos. Psico 2008, 39, 352–361. [Google Scholar]
- Canet-Juric, L.; Burin, D.; Andres, M.L.; Urquijo, S. Perfil cognitivo de niños con rendimientos bajos en comprensión lectora. An. Psicol. 2013, 29, 996–1005. [Google Scholar] [CrossRef]
- Canet-Juric, L.; Urquijo, S.; Richards, M.M.; Burin, D. Predictores Cognitivos de Niveles de Comprensión Lectora Mediante Análisis Discriminante. Int. J. Psychol. Res. 2009, 2, 99–111. Available online: https://www.redalyc.org/articulo.oa?id=299023513003 (accessed on 10 November 2023). [CrossRef]
- Cartoceti, R.; Abusamra, V. El rol del mecanismo de actualización en la comprensión de textos. Rev. Neuropsicol. Latinoam. 2013, 5, 1–10. [Google Scholar] [CrossRef]
- Gomez-Veiga, I.; Vila, J.O.; Garcia-Madruga, J.A.; Contreras, A.; Elosua, M.J. Reading comprehension and working memory’s executive processes. Psicol. Educ. 2013, 19, 103–111. [Google Scholar] [CrossRef]
- Artuso, C.; Carretti, B.; Palladino, P. Short-term training on working memory updating and metacognition in primary school: The effect on reading comprehension. Sch. Psychol. Int. 2019, 40, 641–657. [Google Scholar] [CrossRef]
- Carretti, B.; Borella, E.; Elosua, M.R.; Gomez-Veiga, I.; Garcia-Madruga, J.A. Improvements in Reading Comprehension Performance After a Training Program Focusing on Executive Processes of Working Memory. J. Cogn. Enhanc. 2017, 1, 268–279. [Google Scholar] [CrossRef]
- Grainger, J.; Lete, B.; Bertand, D.; Dufau, S.; Ziegler, J.C. Evidence for multiple routes in learning to read. Cognition 2012, 123, 280–292. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Herrera, N.; Bausela-Herreras, E. Relationship between Executive Functions and Processes of Decoding Grapheme-phoneme in Elementary School Children. Rev. Mex. Neurocienc. 2016, 17, 51–63. Available online: https://previous.revmexneurociencia.com/articulo/relacion-entre-las-funciones-ejecutivas-los-procesos-de-decodificacion-grafema-fonema-en-educacion-primaria/ (accessed on 10 November 2023).
- Ramus, F.; Rosen, S.; Dakin, S.C.; Day, B.L.; Castellote, J.M.; White, S.; Frith, U. Theories of developmental dyslexia: Insights from a multiple case study of dyslexic adults. Brain 2003, 126, 841–865. [Google Scholar] [CrossRef]
- Shankweiller, D.; Lundquist, E.; Katz, L.; Stuebing, K.K.; Fretcher, J.M.; Brady, S.; Fowler, A.; Dreyer, L.G.; Marchione, K.E.; Shaywitz, S.E.; et al. Comprehension and Decoding: Patterns of Association in Children with Reading Difficulties. Sci. Stud. Read. 2009, 3, 69–94. [Google Scholar] [CrossRef]
- Engle, R.W.; Cantor, J.; Carullo, J.J. Individual-Differences in Working Memory and Comprehension: A Test of 4 Hypotheses. J. Exp. Psychol.-Learn. Mem. Cogn. 1992, 18, 972–992. [Google Scholar] [CrossRef]
- Swanson, H.L.; Howell, M. Working memory, short-term memory, and speech rate as predictors of children’s reading performance at different ages. J. Educ. Psychol. 2001, 93, 720–734. [Google Scholar] [CrossRef]
- Gioyagnoli, G.; Vicari, S.; Tomassetti, S.; Menghini, D. The Role of Visual-Spatial Abilities in Dyslexia: Age Differences in Children’s Reading? Front. Psychol. 2016, 7, 1997. [Google Scholar] [CrossRef]
- Shiran, A.; Breznitz, Z. The effect of cognitive training on recall range and speed of information processing in the working memory of dyslexic and skilled readers. J. Neurolinguist. 2011, 24, 524–537. [Google Scholar] [CrossRef]
- Gathercole, S.E.; Willis, C.S.; Baddeley, A.D.; Emslie, H. The children’s test of nonword repetition. A test of phonological working memory. Memory 1994, 2, 103–127. [Google Scholar] [CrossRef]
- Pasqualotto, A.; Venuti, P. A Multifactorial Model of Dyslexia: Evidence from Executive Functions and Phonological-based Treatments. Learn. Disabil. Res. Pract. 2020, 35, 150–164. [Google Scholar] [CrossRef]
- Conners, F.A. Attentional control and the Simple View of reading. Read. Writ. 2009, 22, 591–613. [Google Scholar] [CrossRef]
- Juhasz, B.J.; Starr, M.S.; Inhoff, A.W.; Placke, L. The effects of morphology on the processing of compound words: Evidence from naming, lexical decisions and eye fixations. Br. J. Psychol. 2003, 94, 223–244. [Google Scholar] [CrossRef] [PubMed]
- Pylkkänen, L.; Feintuch, S.; Hopkins, E.; Marantz, A. Neural correlates of the effects of morphological family frequency and family size: An MEG study. Cognition 2004, 91, B35–B45. [Google Scholar] [CrossRef] [PubMed]
- Shalev, L.; Tsal, Y.; Mevorach, C. Computerized Progressive Attentional Training (CPAT) Program: Effective Direct Intervention for Children with ADHD. Child Neuropsychol. 2007, 13, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Shaywitz, S.E.; Shaywitz, B.A. Paying attention to reading: The neurobiology of reading and dyslexia. Dev. Psychopathol. 2008, 20, 1329–1349. [Google Scholar] [CrossRef]
- Peng, P.; Namkung, J.; Barnes, M.; Sun, C. A Meta-Analysis of Mathematics and Working Memory: Moderating Effects of Working Memory Domain, Type of Mathematics Skill, and Sample Characteristics. J. Educ. Psychol. 2016, 108, 455–473. [Google Scholar] [CrossRef]
- Shaul, S.; Schwartz, M. The role of the executive functions in school readiness among preschool-age children. Read. Writ. 2014, 27, 749–768. [Google Scholar] [CrossRef]
- Church, J.A.; Cirino, P.L.; Miciak, J.; Juranek, J.; Vaughn, S.; Fletcher, J.M. Cognitive, Intervention, and Neuroimaging Perspectives on Executive Function in Children With Reading Disabilities. New Dir. Child Adolesc. Dev. 2019, 2019, 25–54. [Google Scholar] [CrossRef]
- Spiegel, J.A.; Goodrich, J.M.; Morris, B.M.; Osborne, C.M.; Lonigan, C.J. Relations Between Executive Functions and Academic Outcomes in Elementary School Children: A Meta-Analysis. Psychol. Bulettin 2021, 147, 329–351. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, G.L.M.; Muntana, M.C.; Pros, R.C. Relationship of Executive Functioning and Metacognitive Processes with the Academic Performance in Primary Children. Rev. Complut. Educ. 2018, 29, 1059–1073. [Google Scholar] [CrossRef]
- Beneventi, H.; Tonnessen, F.E.; Ersland, L.; Hugdahl, K. Executive working memory processes in dyslexia: Behavioral and fMRI evidence. Scand. J. Psychol. 2010, 51, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Perez-Pereira, M.; Martinez-Lopez, Z.; Maneiro, L. Longitudinal Relationships Between Reading Abilities, Phonological Awareness, Language Abilities and Executive Functions: Comparison of Low Risk Preterm and Full-term Children. Front. Psychol. 2020, 11, 468. [Google Scholar] [CrossRef] [PubMed]
- Currie, N.K.; Cain, K. Children’s inference generation. The role of vocabulary and working memory. J. Exp. Child Psychol. 2015, 137, 57–75. [Google Scholar] [CrossRef]
- Florit, E.; Cain, K.; Mason, L. Going beyond children’s single-text comprehension: The role of fundamental and higher-level skills in 4th graders’ multiple-document comprehension. Br. J. Educ. Psychol. 2019, 90, 449–472. [Google Scholar] [CrossRef]
- Shipstead, Z.; Hicks, K.L.; Engle, R.M. Cogmed working memory training: Does the evidence support the claims? J. Appl. Res. Mem. Cogn. 2012, 1, 185–193. [Google Scholar] [CrossRef]
- Mayer, R.E. Information processing variables in learning to solve problems. Rev. Educ. Res. 1975, 45, 525–541. [Google Scholar] [CrossRef]
- Alloway, T.P.; Alloway, R.G. The efficacy of working memory training in improving crystallized intelligence. Nat. Preced. 2009, 1, 1–11. [Google Scholar] [CrossRef]
- Henry, L.A.; Messer, D.J.; Nash, G. Testing for Near and Far Transfer Effects with a Short, Face-to-Face Adaptive Working Memory Training Intervention in Typical Children. Infant Child Dev. 2013, 23, 84–103. [Google Scholar] [CrossRef]
- Karbach, J.; Strobach, T.; Schubert, T. Adaptive working-memory training benefits reading, but not mathematics in middle childhood. Child Neuropsychol. 2015, 21, 285–301. [Google Scholar] [CrossRef]
- Sanchez-Perez, N.; Castillo, A.; Lopez-Lopez, J.A.; Pina, V.; Puga, J.L.; Campoy, G.; Gonzalez-Salinas, C.; Fuentes, L.J. Computer-Based Training in Math and Working Memory Improves Cognitive Skills and Academic Achievement in Primary School Children: Behavioral Results. Front. Psychol. 2018, 8, 2327. [Google Scholar] [CrossRef]
- Astle, D.E.; Barnes, J.J.; Baker, K.; Colclough, G.L.; Woolrich, M.W. Cognitive Training Enhances Intrinsic Brain Connectivity in Childhood. J. Neurosci. 2015, 35, 6277–6283. [Google Scholar] [CrossRef]
- Hardy, S.J.; Bills, S.E.; Meier, E.R.; Schatz, J.C.; Keridan, K.J.; Wise, S.; Hardy, K.K. A Randomized Controlled Trial of Working Memory Training in Pediatric Sickle Cell Disease. J. Pediatr. Psychol. 2021, 46, 1001–1014. [Google Scholar] [CrossRef]
- Roberts, G.; Quach, J.; Spencer-Smith, M.; Anderson, P.J.; Gathercole, S.; Gold, L.; Sia, K.; Mensah, F.; Rickards, F.; Ainley, J.; et al. Academic Outcomes 2 Years After Working Memory Training for Children With Low Working Memory A Randomized Clinical Trial. JAMA Pediatr. 2016, 170, e154568. [Google Scholar] [CrossRef]
- Swanson, H.L.; Orosco, M. Predictive validity of dynamic testing and working memory as it relates to reading growth in children with reading disabilities. In Assessment and Intervention (Advances in Learning and Behavioral Disabilities); Scruggs, T.E., Mastropieri, M.A., Eds.; Emerald Group Publishing Limited: Bingley, UK, 2011; Volume 24, pp. 1–30. [Google Scholar] [CrossRef]
- Farah, R.; Ionta, S.; Horowitz-Kraus, T. Neuro-Behavioral Correlates of Executive Dysfunctions in Dyslexia Over Development From Childhood to Adulthood. Front. Psychol. 2021, 12, 708863. [Google Scholar] [CrossRef]
- Redick, T.S.; Shipstead, Z.; Wiemers, E.A.; Melby-Lervag, M.; Hulme, C. What’s Working in Working Memory Training? An Educational Perspective. Educ. Psychol. Rev. 2015, 27, 617–633. [Google Scholar] [CrossRef]
- Peng, P.; Goodrich, J.M. The Cognitive Element Model of Reading Instruction. Read. Res. Q. 2020, 55, S77–S88. [Google Scholar] [CrossRef]
- Horowitz-Kraus, T. The role of executive functions in the reading process. In Reading Fluency: Literacy Studies; Khateb, A., Bar-Kochva, I., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; Volume 12, pp. 51–63. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Grp. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ Br. Med. J. 2009, 339, b2535. [Google Scholar] [CrossRef]
- Conesa, P.J.; Onandia-Hinchado, I.; Duñabeitia, J.A.; Moreno, M.A. Basic psychological needs in the classroom: A literature review in elementary and middle school students. Learn. Motiv. 2022, 79, 101819. [Google Scholar] [CrossRef]
- Clarivate. Web of Science. Clarivate. 2016. Available online: https://clarivate.com/products/web-of-science/ (accessed on 10 November 2023).
- Elsevier. Scopus. 2021. Available online: www.scopus.com (accessed on 10 November 2023).
- Institute of Education Sciences. ERIC (EBSCO). 1993. Available online: https://eric.ed.gov/ (accessed on 10 November 2023).
- Booth, A. Using evidence in practice. Health Inf. Libr. J. 2011, 28, 87–90. [Google Scholar] [CrossRef]
- Diamond, A. Development of the Ability to Use Recall to Guide Action, as Indicated by Infants’ Performance on AB. Child Dev. 1985, 56, 868–883. [Google Scholar] [CrossRef]
- Moriguchi, Y.; Hiraki, K. Prefrontal cortex and executive function in young children: A review of NIRS studies. Front. Hum. Neurosci. 2013, 7, 867. [Google Scholar] [CrossRef]
- Volckaert, A.M.S.; Noel, M. Training executive function in preschoolers reduce externalizing behaviors. Trends Neurosci. Educ. 2015, 4, 37–47. [Google Scholar] [CrossRef]
- Roebers, C.M.; Roethlisberger, M.; Neuenschwander, R.; Cimeli, P.; Michel, E.; Jaeger, K. The relation between cognitive and motor performance and their relevance for children’s transition to school: A latent variable approach. Hum. Mov. Sci. 2014, 33, 284–297. [Google Scholar] [CrossRef]
- Rodriguez, C.; Jimenez, J.E.; Diaz, A.; Garcia, E.; Martin, R.; Hernandez, S. Datos normativos para el Test de los Cinco Dígitos: Desarrollo evolutivo de la flexibilidad en Educación Primaria. Eur. J. Educ. Psychol. 2012, 5, 27–38. [Google Scholar] [CrossRef]
- Cohen, R.; Castillo, C.J. Aprendizaje Precoz de la Lectura, ¿a los 6 Años ya es Demasiado Tarde? Cincel: Ciudad de México, Mexico, 1982. [Google Scholar]
- Microsoft Corporation. Microsoft Excel; Version 365; Microsoft Corporation: Redmond, WA, USA, 2019. [Google Scholar]
- IBM Company. Statistical Package for the Social Sciences (SPSS); Version 22; IBM Statistics: Armonk, NY, USA, 2013. [Google Scholar]
- Novaes, C.B.; Zuanetti, P.A.; Fukuda, M.T.H. Effects of working memory intervention on students with Reading comprehension difficulties. Rev. CEFAC Speech Lang. Hear. Sci. Educ. J. 2018, 21, 17918. [Google Scholar] [CrossRef]
- Ralph, K.J.; Gibson, B.S.; Gondoli, D.M.; Sztybel, P.; Pauszek, J.R.; Miller, R.W.; Litzow, E. Targeting the Three Stages of Retrieval from Secondary Memory in a Double-Blinded, Placebo-Controlled, Randomized Working Memory Training Study. J. Cogn. Enhanc. 2017, 1, 455–477. [Google Scholar] [CrossRef]
- Sondergaard, H.B.; Lopez, K.M.J. Face-to-face working memory training does not enhance children’s reading comprehension-a pilot study with Danish children. Nord. Psychol. 2021, 73, 211–225. [Google Scholar] [CrossRef]
- Vernucci, S.; Canet-Juric, L.; Richard’s, M.M. Effects of working memory training on cognitive and academic abilities in typically developing school-age children. Psychol. Res. 2023, 87, 308–326. [Google Scholar] [CrossRef] [PubMed]
- Studer-Luethi, B.; Toermaenen, M.; Margelisch, K.; Hogrefe, A.B.; Perrig, W.J. Effects of Working Memory Training on Children’s Memory and Academic Performance: The Role of Training Task Features and Trainee’s Characteristics. J. Cogn. Enhanc. 2022, 6, 340–357. [Google Scholar] [CrossRef]
- Hitchcock, C.; Westwell, M.S. A cluster-randomised, controlled trial of the impact of Cogmed Working Memory Training on both academic performance and regulation of social, emotional and behavioural challenges. J. Child Psychol. Psychiatry 2017, 58, 140–150. [Google Scholar] [CrossRef] [PubMed]
- Reina-Reina, C.; Conesa, P.J.; Duñabeitia, J.A. Impact of a cognitive stimulation program on the reading comprehension of children in primary education. Front. Psychol. 2022, 13, 985790. [Google Scholar] [CrossRef] [PubMed]
- Castejon, J.L. Introducción a los Métodos y Técnicas de Investigación y Obtención de Datos en Psicología; Ediciones Club Universitario: Alicante, Spain, 2019. [Google Scholar]
- Wechsler, D. Wechsler Intelligence Scale for Children, 3rd ed.; Psychological Corporation: San Antonio, TX, USA, 1991. [Google Scholar]
- Wechsler, D. Wechsler Intelligence Scale for Children, 4th ed.; Psychological Corporation: San Antonio, TX, USA, 2003. [Google Scholar]
- Wechsler, D. Wechsler Intelligence Scale for Children, 5th ed.; Pearson Assessment: San Antonio, TX, USA, 2014. [Google Scholar]
- Wechsler, D.; Naglieri, J.A. Wechsler Non-Verbal Scale of Ability; Harcourt Assessment: San Antonio, TX, USA, 2006. [Google Scholar]
- Alloway, T.P. Automated Working Memory Assessment (AWMA); Harcourt Assessment: San Antonio, TX, USA, 2007. [Google Scholar]
- Canivez, G.L.; Watkins, M.W.; Dombrowski, S.C. Structural validity of the Wechsler Intelligence Scale for Children–Fifth Edition: Confirmatory factor analyses with the 16 primary and secondary subtests. Psychol. Assess. 2017, 29, 458–472. [Google Scholar] [CrossRef]
- Hildebrand, D.K.; Ledbetter, M.F. Assessing Children’s Intelligence and Memory: The Wechsler Intelligence Scale for Children-Third Edition and the Children’s Memory Scale. In Handbook of Psychoeducational Assessment. Ability, Achievement, and Behavior in Children; Andrews, J.J.W., Janzen, H.L., Saklofske, D.H., Eds.; Academic Press: Cambridge, MA, USA, 2001; pp. 13–32. [Google Scholar] [CrossRef]
- Corral, S.; Arribas, D.; Santamaria, P.; Sueiro, M.J.; Perena, J. Escala de Inteligencia de Wechsler Para Niños (WISC-IV); TEA Ediciones S.A.: Madrid, Spain, 2005. [Google Scholar]
- Georgas, J.; van de Vijver, F.J.R.; Weiss, L.G.; Saklofske, D.H. A Cross-Cultural Analysis of the WISC-III. In Culture and Children’s Intelligence; Georgas, J., Weiss, L.G., van de Vijver, F.J.R., Eds.; Academic Press: Cambridge, MA, USA, 2003; pp. 277–313. [Google Scholar] [CrossRef]
- Golay, P.; Lecerf, T. Orthogonal Higher Order Structure and Confirmatory Factor Analysis of the French Wechsler Adult Intelligence Scale (WAIS-III). Psychol. Assess. 2011, 23, 143–152. [Google Scholar] [CrossRef]
- Gregoire, J.; Georgas, J.; Saklofske, D.H.; van de Vijver, F.; Wierzbicki, C.; Weiss, L.G.; Zhu, J. Cultural issues in clinical use of the WISC-IV. In WISC-IV Clinical Assessment and Intervention, 2nd ed.; Prifitera, A., Saklofske, D.H., Weiss, L.G., Eds.; Academic Press: Cambridge, MA, USA, 2008; pp. 517–544. [Google Scholar]
- Liu, J.; Lynn, R. Factor structure and sex differences on the Wechsler Preschool and Primary Scale of Intelligence in China, Japan and United States. Personal. Individ. Differ. 2011, 50, 1222–1226. [Google Scholar] [CrossRef]
- Montero-Linares, J.; Navarro-Guzman, J.I.; Aguilar-Vallagran, M. Procesos de automatización cognitiva en alumnado con altas capacidades intelectuales. An. Psicol. 2013, 29, 454–461. [Google Scholar] [CrossRef]
- Dentz, A.; Guay, M.; Gauthier, B.; Romo, L.; Parent, V. Is the Cogmed program effective for youths with attention deficit/hyperactivity disorder under pharmacological treatment? Appl. Cogn. Psychol. 2020, 34, 577–589. [Google Scholar] [CrossRef]
- Stroop, J.R. Studies of interference in serial verbal reaction. J. Exp. Psychol. 1935, 18, 643–662. [Google Scholar] [CrossRef]
- Dellis, D.C.; Kaplan, E.; Kramer, J.H. Delis-Kaplan Executive Function System; Psychological Corporation: San Antonio, TX, USA, 2001. [Google Scholar]
- Golden, C.J. STROOP. Test de Colores y Palabras—Edición Revisada; Ruiz-Fernandez, B., Luque y, T., Sanchez-Sanchez, F., adaptadores, Eds.; TEA Ediciones: Madrid, Spain, 2020. [Google Scholar]
- Golden, Z.L.; Golden, C.J. Patterns of performance on the Stroop Color and Word Test in children with learning, attentional, and psychiatric disabilities. Psychol. Sch. 2002, 39, 489–495. [Google Scholar] [CrossRef]
- Homack, S.; Riccio, C.A. A meta-analysis of the sensitivity and specificity of the Stroop color and word test with children. Arch. Clin. Neuropsychol. 2004, 19, 725–743. [Google Scholar] [CrossRef] [PubMed]
- Torgesen, J.K.; Wagner, R.K.; Rashotte, C.A. Test of Word Reading Efficiency; AGS Publishing: Crowley, TX, USA, 1999. [Google Scholar]
- Jimenez, J.E.; Siegel, L.S.; O’Shanahan, I.; Mazabel, S. Analyzing Cognitive and Reading Skills in Spanish-speaking English-language Learners and English-speaking Canadian Learners. Rev. Educ. 2012, 358, 310–333. [Google Scholar] [CrossRef]
- Wechsler, D. Wechsler Individual Achievement Test (WIAT-II UK). WIAT-II UK; Pearson Assessment: San Antonio, TX, USA, 2005. [Google Scholar] [CrossRef]
- Lenhard, W.; Schneider, W. Ein Leseverständnistest für Erst-Bis Sechstklässler (ELFE 1–6); Hogrefe: Göttingen, Germany, 2006. [Google Scholar]
- Morris, N.; Jones, D.M. Memory updating in working memory: The role of the central executive. Br. J. Psychol. 1990, 81, 111–121. [Google Scholar] [CrossRef]
- Cornoldi, C.; Colpo, G.; Carretti, B. Prove MT-Kit Scuola Primaria [The Assessment of Reading in Primary School]; Giunti EDU: Firenze, Italy, 2017. [Google Scholar]
- Stephanou, A. The Progressive Achievement Tests in Reading (PAT-R), 4th ed.; Australian Council for Educational Research (ACER): Brisbane, Australia, 2013. [Google Scholar]
- Pearson Education. Cogmed, version; Pearson Education: Hoboken, NJ, USA, 2016; Available online: https://www.cogmed.com/ (accessed on 10 November 2023).
- Kuhn, J.-T.; Holling, H. Number sense or working memory? The effect of two computer-based trainings on mathematical skills in elementary school. Adv. Cogn. Psychol. 2014, 10, 59–67. [Google Scholar] [CrossRef]
- Bergman-Nutley, S.; Klingberg, T. Effect of working memory training on working memory, arithmetic and following instructions. Psychol. Res. 2014, 78, 869–877. [Google Scholar] [CrossRef]
- Synaptikon GmbH. NeuroNation; Synaptikon GmbH: Berlin, Germany, 2020; Available online: https://www.neuronation.com/ (accessed on 10 November 2023).
- Hoskinson, P.; Toomim, J. Brain Workshop—A Dual N-Back Game; Version 4.8.1; The Brain Workshop: Dubai, United Arab Emirates, 2010; Available online: https://brainworkshop.sourceforge.net/ (accessed on 10 November 2023).
- Reitan, R.M.; Wolfson, D. Neuropsychological Evaluation of Older Children; Neuropsychology Press: London, UK, 1992. [Google Scholar]
- Archibald, S.J.; Kerns, K. Identification and description of new test of executive functioning in children. Child Neuropsychol. 1999, 5, 115–129. [Google Scholar] [CrossRef]
- Capovilla, F.C.; Seabra, A.G. Teste Constrativo de Compreensão Auditiva e de Leitura. In Availiação Neuropsicológica Cognitiva: Leitura, Escrita e Aritmética; Seabra, A.G., Dias, N.M., Capovilla, F.C., Eds.; Memnom: Birmingham, UK, 2012; pp. 29–44. [Google Scholar]
- Stein, L.M. Teste de Desempenho Escolar: Manual para Aplicação e Interpretação; Casa do Psicólogo: São Paulo, Brazil, 1994. [Google Scholar]
- Northwest Evaluation Association. RIT Scale Norms: For Use with Measures of Academic Progress (MAP) for Primary Grades; Northwest Evaluation Association: Portland, OR, USA, 2011. [Google Scholar]
- Northwest Evaluation Association. Technical Manual: For Use with Measured of Academic Progress (MAP) and MAP for Primary Grades; Northwest Evaluation Association: Portland, OR, USA, 2011. [Google Scholar]
- Ho, C.S.-H.; Chan, D.W.-O.; Lee, S.-H.; Tsang, S.-M.; Luan, V.H. Cognitive profiling and preliminary subtyping in Chinese developmental dyslexia. Cognition 2004, 91, 43–75. [Google Scholar] [CrossRef]
- Ho, C.S.-H.; Chan, D.W.-O.; Tsang, S.-M.; Lee, S.-H. The cognitive profile and multiple-deficit hypothesis in Chinese developmental dyslexia. Dev. Psychol. 2002, 38, 543–553. [Google Scholar] [CrossRef]
- Wechsler, D. Wechsler Intelligence Scale for Children, WISC-IV, Danish Version; Pearson Assessment: San Antonio, TX, USA, 2010. [Google Scholar]
- Gaulin, C.A.; Campbell, T.F. Procedure for assessing verbal working memory in normal school-age children: Some preliminary data. Percept. Mot. Ski. 1994, 79, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Sundahl, L.; de Lopez, K.M. SLI er mere end blot forsinket udvikling af sproglige faerdigheder. Psyke Logos 2010, 31, 83–108. [Google Scholar] [CrossRef]
- Henry, L.A. How does the severity of a learning disability affect working memory performance? Memory 2001, 9, 233–247. [Google Scholar] [CrossRef] [PubMed]
- Moller, L.; Juul, H. Sætningslæseprøve 2 & Vejledning; Hogrefe: Göttingen, Germany, 2012. [Google Scholar]
- Roebers, C.M.; Kauer, M. Motor and cognitive control in a normative sample of 7-year-olds. Dev. Sci. 2009, 12, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Walter, J. LDL: Lernfortschrittsdiagnostik Lesen: Ein Curriculumbasiertes Verfahren; Hogrefe: Göttingen, Germany, 2010. [Google Scholar]
- Canet-Juric, L.; Stelzer, F.; Andres, M.L.; Vernucci, S.; Introzzi, I.; Burin, D.I. Evidencias de validez de una tarea computarizada de memoria de trabajo verbal y viso-espacial para niños. Rev. Interam. Psicol./Interam. J. Psychol. 2018, 52, 112–128. [Google Scholar] [CrossRef]
- Injoque-Ricle, I.; Calero, A.D.; Alloway, T.P.; Burin, D.I. Assessing working memory in Spanish-speaking children: Automated Working Memory Assessment battery adaptation. Learn. Individ. Differ. 2011, 21, 78–84. [Google Scholar] [CrossRef]
- Abusamra, V.; Ferreres, A.; Raiter, A.; De Beni, R.; Cornoldi, C. Test Leer para Comprender TLC: Evaluación de la Comprensión de Textos; Paidós: Barcelona, Spain, 2010. [Google Scholar]
- Brocki, K.C.; Bohlin, G. Executive functions in children aged 6 to 13: A dimensional and developmental study. Dev. Neuropsychol. 2004, 26, 571–593. [Google Scholar] [CrossRef] [PubMed]
- McDermott, J.M.; Perez-Edgar, K.; Fox, N.A. Variations of the flanker paradigm: Assessing selective attention in young children. Behav. Res. Methods 2007, 39, 62–70. [Google Scholar] [CrossRef]
- Gonzalez-Trujillo Calet, N.; Defior, S.; Gutierrez-Palma, N. Scale of reading fluency in Spanish: Measuring the components of fluency. Study Psychol. 2014, 35, 104–136. [Google Scholar] [CrossRef]
- Boletín Oficial del Estado (BOE). Ley Orgánica 8/2013. Para la Mejora de la Calidad Educativa. 9 de Diciembre de 2013 (España). B.O.E. No. 295. Available online: https://www.boe.es/eli/es/lo/2013/12/09/8/con (accessed on 10 November 2023).
- Breznitz, S. CogniFit, version; 4.0; CogniFit Inc.: San Francisco, CA, USA, 2021; Available online: https://www.cognifit.com/es (accessed on 10 November 2023).
- Brickenkamp, R. Test d2. The d2 Test of Attention, 9th ed.; Hogrefe: Göttingen, Germany, 2002. [Google Scholar]
- Saraiva, R.A.; Moojen, S.M.P.; Munarski, R. Avaliação da Compreensão Leitora de Textos Expositivos, 2nd ed.; Casa do Psicólogo: São Paulo, Brazil, 2007. [Google Scholar]
- Salles, J. Habilidades e Dificuldades de Leitura e Escrita em Crianças de 2ª Série: Abordagem Neuropsicológica Cognitiva. Ph.D. Thesis, Programa de Pós-graduação em Psicologia do Desenvolvimento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 2005. [Google Scholar]
- Palladino, P.; Cornoldi, C.; De Beni, R.; Pazzaglia, F. Working memory and updating processes in reading comprehension. Mem. Cogn. 2001, 29, 344–354. [Google Scholar] [CrossRef]
- August, D.; Francis, D.J.; Hsu, H.A.; Snow, C.E. Assessing reading comprehension in bilinguals. Elem. Sch. J. 2006, 107, 221–238. [Google Scholar] [CrossRef]
- Cornoldi, C.; Colpo, G. Prove di Lettura MT-2 per la Scuola Primaria [Test for Reading Assessment in the Primary School]; Giunti OS: Firenze, Italy, 2011. [Google Scholar]
- Garcia-Madruga, J.A.; Elosua, M.; Gil, L.; Gomez-Veiga, I.; Vila, J.; Orjales, I.; Contreras, A.; Rodriguez, R.; Melero, M.; Duque, G. Reading Comprehension and Working Memory’s Executive Processes: An Intervention Study in Primary School Students. Read. Res. Q. 2013, 48, 155–174. [Google Scholar] [CrossRef]
- Breznitz, Z.; Shaul, S.; Horowitz-Kraus, T.; Sela, I.; Nevat, M.; Karni, A. Enhanced reading by training with imposed time constraint in typical and dyslexic adults. Nat. Commun. 2013, 4, 1486. [Google Scholar] [CrossRef]
- Wiederholt, J.L.; Bryant, B.R. Gray Oral Reading Test, 3rd ed.; Pro-Ed: Austin, TX, USA, 1992. [Google Scholar]
- Davidson, M.C.; Amso, D.; Anderson, L.C.; Diamond, A. Development of cognitive control and executive functions from 4 to 13 years: Evidence from manipulations of memory, inhibition, and task switching. Neuropsychologia 2006, 44, 2037–2078. [Google Scholar] [CrossRef]
- Durston, S.; Thomas, K.M.; Yang, Y.; Ulug, A.M.; Zimmerman, R.D.; Casey, B.J. A neural basis for the development of inhibitory control. Dev. Sci. 2002, 5, F9–F16. [Google Scholar] [CrossRef]
- Thorell, L.B.; Lindqvist, S.; Nutley, S.B.; Bohlin, G.; Klingberg, T. Training and transfer effects of executive functions in preschool children. Dev. Sci. 2009, 12, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Kieffer, M.J.; Vukovic, R.K.; Berry, D. Roles of attention shifting and inhibitory control in fourth-grade reading comprehension. Read. Res. Q. 2013, 48, 333–348. [Google Scholar] [CrossRef]
- Klingberg, T.; Fernell, E.; Olesen, P.J.; Johnson, M.; Gustafsson, P.; Dahlstrom, K.; Gillberg, C.G.; Forssberg, H.; Westerberg, H. Computerized Training of Working Memory in Children With ADHD—A randomized, Controlled Trial. J. Am. Acad. Child Adolesc. Psychiatry 2005, 44, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Klingberg, T. Training and plasticity of working memory. Trends Cogn. Sci. 2010, 14, 317–324. [Google Scholar] [CrossRef]
- Roughan, L.; Hadwin, J.A. The impact of working memory training in young people with social, emotional and behavioural difficulties. Learn. Individ. Differ. 2011, 21, 759–764. [Google Scholar] [CrossRef]
- Barnett, W.S. Effectiveness of Early Educational Intervention. Science 2011, 333, 975–978. [Google Scholar] [CrossRef] [PubMed]
- Cornoldi, C.; Carretti, B.; Drusi, S.; Tencati, C. Improving problem solving in primary school students: The effect of a training programme focusing on metacognition and working memory. Br. J. Educ. Psychol. 2015, 85, 424–439. [Google Scholar] [CrossRef]
- Diamond, A.; Lee, K. Interventions Shown to Aid Executive Function Development in Children 4 to 12 Years Old. Science 2011, 333, 959–964. [Google Scholar] [CrossRef]
- Karbach, J.; Koenen, T.; Spengler, M. Who Benefits the Most? Individual Differences in the Transfer of Executive Control Training Across the Lifespan. J. Cogn. Enhanc. 2017, 1, 394–405. [Google Scholar] [CrossRef]
- Kray, J.; Karbach, J.; Haenig, S.; Freitag, C. Can task-switching training enhance executive control functioning in children with attention deficit/-hyperactivity disorder? Front. Hum. Neurosci. 2012, 5, 180. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, J.; Wu, H.; Zhu, D.; Zhang, Y. Working-memory training improves developmental dyslexia in Chinese children. Neural Regen. Res. 2013, 8, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Gathercole, S.E.; Alloway, T.P.; Willis, C.; Adams, A.M. Working memory in children with reading disabilities. J. Exp. Child Psychol. 2006, 93, 265–281. [Google Scholar] [CrossRef]
- Prins, P.J.M.; Dovis, S.; Ponsioen, A.; ten Brink, E.; van der Oord, S. Does Computerized Working Memory Training with Game Elements Enhance Motivation and Training Efficacy in Children with ADHD? Cyberpsychology Behav. Soc. Netw. 2011, 14, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Karbach, J.; Kray, J. How useful is executive control training? Age differences in near and far transfer of task-switching training. Dev. Sci. 2009, 12, 976–990. [Google Scholar] [CrossRef]
- Blair, C.; Razza, R.P. Relating effortful control, executive function, and false belief understanding to emerging math and literacy ability in Kindergarten. Child Dev. 2007, 78, 647–663. [Google Scholar] [CrossRef]
- Protopapas, A.; Archonti, A.; Skaloumbakas, C. Reading ability in negatively related to stroop interference. Cogn. Psychol. 2007, 54, 251–282. [Google Scholar] [CrossRef] [PubMed]
- Liew, J.; McTigue, E.M.; Barrois, L.; Hugues, J.N. Adaptive and effortful control and academic self-efficacy beliefs on achievement: A longitudinal study of 1st through 3rd graders. Early Child. Res. Q. 2008, 23, 515–526. [Google Scholar] [CrossRef] [PubMed]
- Schwaighofer, M.; Fischer, F.; Buehner, M. Does Working Memory Training Transfer? A Meta-Analysis Including Training Conditions as Moderators. Educ. Psychol. 2015, 50, 138–166. [Google Scholar] [CrossRef]
- Diamond, A. Want to Optimize Executive Functions and Academic Outcomes? Simple, Just Nourish the Human Spirit. Dev. Cogn. Control. Process. Mech. Implic. Interv. 2014, 37, 205–230. [Google Scholar] [CrossRef]
- Kerns, K.A.; MacSween, J.; Wekken, S.V.; Gruppuso, V. Investigating the efficacy of an attention training programme in children with foetal alcohol spectrum disorder. Dev. Neurorehabilit. 2010, 13, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Katz, B.; Shah, P. The role of child socioeconomic status in cognitive training outcomes. J. Appl. Dev. Psychol. 2017, 53, 139–150. [Google Scholar] [CrossRef]
- Noble, K.G.; Norman, M.F.; Farah, M.J. Neurocognitive correlates of socioeconomic status in kindergarten children. Dev. Sci. 2005, 8, 74–87. [Google Scholar] [CrossRef]
- Goldin, A.P.; Hermida, M.J.; Shalom, D.E.; Elias-Costa, M.; Lopez-Rosenfeld, M.; Segretin, M.S.; Fernandez-Slezak, D.; Lipina, S.J.; Sigman, M. Far transfer to language and math of a short software-based gaming intervention. Proc. Natl. Acad. Sci. USA 2014, 111, 443–6448. [Google Scholar] [CrossRef]
- Horowitz-Kraus, T. Improvement in non-linguistic executive functions following reading acceleration training in children with reading difficulties. An ERP study. Trends Neurosci. Educ. 2015, 4, 77–86. [Google Scholar] [CrossRef]
- Horowitz-Kraus, T.; DiFrancesco, M.; Kay, B.; Wang, Y.; Holland, S.K. Increased resting-state functional connectivity of visual- and cognitive-control brain networks after training in children with reading difficulties. Neuroimage Clin. 2015, 8, 619–630. [Google Scholar] [CrossRef]
- Horowitz-Kraus, T.; Holland, S.K. Greater functional connectivity between reading and error-detection regions following training with the reading acceleration program in children with reading difficulties. Ann. Dyslexia 2015, 65, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Horowitz-Kraus, T.; Vannest, J.J.; Kadis, D.; Cicchino, N.; Wang, Y.Y.; Holland, S.K. Reading acceleration training changes brain circuitry in children with reading difficulties. Brain Behav. 2014, 4, 886–902. [Google Scholar] [CrossRef] [PubMed]
- Lotfi, S.; Rostami, R.; Shokoohi-Yekta, M.; Ward, R.T.; Motamed-Yeganeh, N.; Mathew, A.S.; Lee, H. Effects of computerized cognitive training for children with dyslexia: An ERP study. J. Neurolinguist. 2020, 55, 100904. [Google Scholar] [CrossRef]
Authors, Year | Participants | Design | Assessment Instruments | Training EF | Intervention Location | Training Conditions | Representative Findings | |
---|---|---|---|---|---|---|---|---|
Evidence | Little Evidence | |||||||
Artuso et al. [70] | 62 Italian children, AR = 9–10 years; M = 9.5 years. | CE PRE–I–POST | Adaptation of RMT [155]; Tasks designed by the authors to measure working memory; BIRT [156]. | Training focused on (UWM) was designed by the authors. | School | 20 sessions of 50 min each, for 4 weeks. | Benefits of WMT on UWM + RC (F (2,69) = 4.14, p = 0.02, ηp2 = 0.11, d = 0.80) and RC (F (2,69) = 6.31, p = 0.003, ηp2 = 0.16, d = 0.60) in POST, compared with PG. | There were no benefits of WMT on UWM in POST, compared with PG. |
Hitchcock and Westwell [129] | 148 Australian children, AR = 10.58–13.50 years; M = 12.25 years. | CE PRE–I–POST–FU | WISC-IV [132]; PAT-R [157]. | CogMed [158]. | School | 45-min sessions, 5 times per week, for 5 weeks. | - | There were no benefits of WMT on VWM or RC in POST, or at 3 months FU, compared with PG and CG. |
Johann and Karbach [34] | 152 German children, AR = 8–11 years; M = 9.56 years. | E PRE–I–POST– FU | N-back task [159]; Spatial Span task [160]; Complex Span task [100]; ELFE 1–6 [154]. | NeuroNation [161]. | Home | 21 sessions of 30 min, 3–5 times per week, for 4 weeks. | Benefits of game-based WMT on VWM (F (1, 62) = 6.58, p < 0.05, ηp2 = 0.10, d = 0.87) and VSWM (F(1, 64) = 6.91, p < 0.05, ηp2 = 0.10, d = 1.06) in POST, and on VSWM (F(1, 60) = 6.31, p < 0.05, ηp2 = 0.10, d = 0.95) at 3 months FU, compared with CG. | There were no benefits of game-based WMT on RS or RC in POST, or on VWM, RS or RC at 3 months FU, compared with CG. |
Benefits of standard WMT on VWM (F (1, 62) = 4.79, p < 0.05, ηp2 = 0.07, d = 0.92) in POST, and on VWM (F (1, 59) = 5.12, p < 0.05, ηp2 = 0.08, d = 1.21) and VSWM (F (1, 60) = 6.31, p < 0.05, ηp2 = 0.10, d = 1.04) at 3 months FU, compared CG. | There were no benefits of standard WMT on VSWM, RS or RC in POST, and on RS or RC at 3 months FU, compared with CG. | |||||||
Jones et al. [44] | 95 English children, AR = 9–14 years; M = 12.51 years. | CE PRE–I–POST– FU | AWMA [136]; WIAT [153]. | CogMed [158]. | School | 20–25 sessions of 45 min each, 5 times a week, for 6–7 weeks. | Benefits of WMT on WM (p < 0.001) in POST, and WM (p = 0.04) at 3 months FU, compared with PG. | There were no benefits of WMT on RC in POST, or at 3 months FU, compared with PG. |
Lopez and Aran [53] | 20 Argentine children, AR = 6 years; M = 6.20 years. | CE PRE–I–POST | WISC-IV [133]; n-back task [162]; TMT [163]; Stroop task [164]. | CogMed [158]. | School | 20–25 sessions, 5 times a week, for 3 months. | Benefits of WMT on VWM (p = 0.001), VSWM (p = 0.001), and UWM (p = 0.00) in POST, compared with CG. | There were no benefits of WMT on IC or RC in POST, compared with CG. |
Novaes et al. [124] | 43 Brazilian children with typical development or reading comprehension difficulties, AR = 8–10 years; M = n/s. | E PRE–I–POST | TCCAL–Let [165]; TDE [166]. | Training focused on WM was designed by the authors. | School | 15 sessions of 1 h each, twice a week, for 2 months. | There were no benefits of WMT on RC in POST in typically developing children. | |
Ralph et al. [125] | 101 American children, AR = 10–13 years; M= n/s. | E PRE–I–POST– FU | MAP [167,168]; TOWRE [151]. | CogMed [158]. | Home | 25 sessions of 30–45 min each, 5 times a week, for 5 weeks. | - | There were no benefits of WMT on RF or RC in POST, or at 6 months FU, compared with PG. |
Siu et al. [33] | 37 Chinese children, AR = 7–8 years; M = 7.5 years. | E PRE–I–POST | Tasks were designed by the authors to measure RF; Tasks used in previous studies to measure VWM [169,170]. | Training focused on WMT was designed by the authors. | Home/University laboratory. | Sessions of 30 min, 4 times per week at home + one session of 60 min each, once a week in the laboratory, for 8 weeks. | Benefits of WMT on Chinese VWM (t (9) = −2.3, p < 0.05) English VWM (t (12) = −2.91, p < 0.05), and Chinese RF (t (9) = −7.58, p < 0.001; t (9) = −4.05, p < 0.001) in POST, compared with CG. | There were no benefits of WMT on Chinese and English PS, or English RF in POST compared with CG. |
Sondergaard and de Lopez [126] | 38 Danish children, AR = 8.3–10.7 years; M = 9.4 years. | E PRE–I–POST– FU | WISC-IV [171]; Danish adaptation of CLPT [172,173]; Odd-One-Out task [174,175]; Sentence Reading Test (Sætningslæseprøve 2) [175]. | Training focused on WMT was designed by the authors. | School | 12 sessions of 10 min each, 3 times a week, for 4 weeks. | Benefits of WMT on VSWM (g = 0.52) in POST, compared with PG. | There were no benefits of WMT on VWM or RC in POST, or on VWM, VSWM or RC at 12 months FU, compared with PG. |
Studer-Luethi et al. [128] | 86 Swedish children, AR = 8–12 years; M = 10.1 years. | CE PRE–I–POST– FU | Backward Colour Recall task [176]; RLPD [177]. | Training focused on VSWMT was designed by the authors. | School | 17–18 sessions of 15 min each, 3 times a week, for 6 weeks. | Benefits of VSWMT on VSWM (Δ = 0.82, p = 0.038) in POST, compared with PG. | There were no benefits of VSWMT on RF in POST, compared with PG. |
Vernucci et al. [127] | 89 Argentine children, AR = 9–10 years; M = 9.52 years. | CE PRE–I–POST– FU | CSRT [178]; adaptation of AWMA [179]; Reading to Comprehend [180]. | Training focused on WMT was designed by the authors. | School | 10–13 sessions of 20 min each, twice a week, for 7 weeks. | Benefits of WMT on VWM (p < 0.001, d = 0.714) in POST, and on VWM (p < 0.001, d = 1.17) at 6 months FU, compared with PG. | There were no benefits of WMT on VSWM or RC in POST, or at 6 months FU, compared with PG. |
Authors, Year | Participants | Design | Assessment Instruments | Training EF | Intervention Location | Training Conditions | Representative Findings | |
---|---|---|---|---|---|---|---|---|
Evidence | Little Evidence | |||||||
Johann and Karbach [34] | 152 German children, AR = 8–11 years; M = 9.56 years. | E PRE–I–POST–FU | Go/noGo task [181]; Flanker task [182]; Stroop-like task [52]; ELFE 1–6 [154]. | NeuroNation [161]. | Home | 21 sessions of 30 min each, 3–5 times per week, for 4 weeks. | Benefits of game-based ICT on IC (F(1, 58) = 7.01; p < 0.05, ηp2 = 0.12, d = 2.04; F(1, 56) = 13.75; p < 0.001, ηp2 = 0.20, d = 2.19; (F(1, 143) = 35.10; p < 0.001, ηp2 = 0.20, d = 1.83) and RF (F(1, 137) = 5.35; p < 0.05, ηp2 = 0.04, d = 0.58) in POST, and on IC (F(1, 56) = 7.66; p < 0.01, ηp2 = 0.12, d = 2.47; F(1, 55) = 8.37; p < 0.01, ηp2 = 0.13, d = 1.91; (F(1, 135) = 12.39; p < 0.01, ηp2 = 0.08, d = 1.77), RF (F(1, 128) = 4.21; p < 0.05, ηp2 = 0.03, d = 1.09), and on RC (F(1, 138) = 4.56; p < 0.05, ηp2 = 0.03, d = 0.63) at 3 months FU, compared with CG. | There were no benefits of game-based ICT on RC in POST, compared with CG. |
Benefits of standard ICT in IC (F(1, 58) = 13.64; p < 0.001, ηp2 = 0.20, d = 1.77; (F(1, 143) = 13.20; p < 0.001, ηp2 = 0.09, d = 1.68) in POST, and on IC (F(1,56) = 5.21; p < 0.05, ηp2 = 0.09, d = 1.78; F(1, 135) = 5.21; p < 0.05, ηp2 = 0.04, d = 1.80) at 3 months FU, compared with CG. | There were no benefits of standard ICT on RF or RC, in POST and at 3 months FU, compared with CG. |
Authors, Year | Participants | Design | Assessment Instruments | Training EF | Intervention Location | Training Conditions | Representative Findings | |
---|---|---|---|---|---|---|---|---|
Evidence | Little Evidence | |||||||
Reina-Reina et al. [130] | 196 Spanish children, AR = 9–12 years; M = 9.9 years. | CE I–POST | CLP [64,183]; Spanish academic curriculum [184]. | CogniFit Inc. [185]. | School | Sessions of 15–20 min each, 3–4 times per week, for 8 weeks. | Benefits of EFE on CL (F (1, 190) = 14.61, p < 0.001, ηp2 = 0.071) in POST. | - |
Weissheimer et al. [19] | 121 Brazilian children, AR = 8–10 years; M = n/s. | CE PRE–I–POST–FU | Adaptation of the n-back task (adaptation of Spatial Span task; Dogs and Monkeys task; Test d2 [186]; RSCT [187]; WPT [188]. | Training focused on EFT was designed by the authors. | School | 10 sessions of 20–25 min each, for 5–7 weeks. | Benefits of EFT on VWM (F (1, 55) = 6.865, p = 0.011, d = 0.53), IC (F (2, 210) = 5.374, p = 0.024, d = 0.99), RS (F (1, 120) = 6.022, p = 0.029, d = 0.61), in POST, and at 3 months FU, in children from low socioeconomic backgrounds compared with PG. | There were no benefits of EFT on VSWM, RF, or RC in POST, or at 3 months FU, in children from low socioeconomic backgrounds compared with PG. |
There were no benefits of EFT on VWM, VSWM, IC, RS, RF, or RC in POST, or at 3 months FU, in children from high socioeconomic backgrounds compared with PG. |
Authors, Year | Participants | Design | Assessment Instruments | Training FE | Intervention Location | Training Conditions | Representative Findings | |
---|---|---|---|---|---|---|---|---|
Evidence | Little Evidence | |||||||
Carretti et al. [71] | 48 Italian children, AR = 8–9 years; M = 8.54 years. | CE PRE–I–POST–FU | Adaptation of UFRC [189]; DARC [190]; MTRA [191]. | Italian adaptation of Garcia-Madruga et al. [192]. | School | 10 sessions of 40 min each, twice a week, for 5 weeks. | Benefits of WMT + RC on UWM (p = 0.001, d = 1.14) and RC (d = 0.76) in POST, and on WM (p = 0.002, d = 1.49) and RC (d = 1.75) at 2 months FU, compared to CG and PG. | - |
Horowitz-Kraus et al. [62] | 54 American children with reading difficulties, ADHD and reading difficulties, and typical development, AR = n/s; M = 9.76 years. | E PRE–I–POST | TOWRE-2 [151]; RAP [193]; GORT-III [194]; D-KEFS Stroop Task [147]. | RAP [193]. | Home | 20 sessions of 15–20 min each, 5 times per week, for 4 weeks. | Benefits of EFT + RC on PP (t (18) = −0.721, p = 0.480), RA (t (18) = −6.727, p < 0.001; t (18) = −5.776, p < 0.001), and RF (t (18) = −4.574, p < 0.001) in POST. | There were no benefits of EFT + RC on IC or RC in POST. |
Sanchez-Perez et al. [101] | 104 Spanish children, AR = 7–12 years; M = 9.17 years. | CE PRE–I–POST | WISC-IV [133]; Dot Task [195]; Go/noGo task [196]; PROLEC-R [56]. | Training focused on EFT + MT was designed by the authors. | School | 30-min sessions each, twice a week, for 13 weeks. | Benefits of WMT + MT on IC (F (1,81) = 12.80, p = 0.001, ηp2 = 0.14, d = 0.61), and RAS (F (1,86) = 9.76, p = 0.002, ηp2 = 0.10, d = 0.61) in POST, compared to GC. | There were no benefits of WMT + MT on VWM in POST, compared to GC. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reina-Reina, C.; Antón, E.; Duñabeitia, J.A. A Systematic Literature Review of the Impact of Cognitive Stimulation Programs on Reading Skills in Children Aged between 6 and 12 Years Old. Educ. Sci. 2024, 14, 229. https://doi.org/10.3390/educsci14030229
Reina-Reina C, Antón E, Duñabeitia JA. A Systematic Literature Review of the Impact of Cognitive Stimulation Programs on Reading Skills in Children Aged between 6 and 12 Years Old. Education Sciences. 2024; 14(3):229. https://doi.org/10.3390/educsci14030229
Chicago/Turabian StyleReina-Reina, Claudia, Eneko Antón, and Jon Andoni Duñabeitia. 2024. "A Systematic Literature Review of the Impact of Cognitive Stimulation Programs on Reading Skills in Children Aged between 6 and 12 Years Old" Education Sciences 14, no. 3: 229. https://doi.org/10.3390/educsci14030229
APA StyleReina-Reina, C., Antón, E., & Duñabeitia, J. A. (2024). A Systematic Literature Review of the Impact of Cognitive Stimulation Programs on Reading Skills in Children Aged between 6 and 12 Years Old. Education Sciences, 14(3), 229. https://doi.org/10.3390/educsci14030229