Gender Differences in the New Interdisciplinary Subject Informatik, Mathematik, Physik (IMP)—Sticking with STEM?
Abstract
:1. Introduction
1.1. Theory
1.2. State of Research
- (RQ1)
- By which self-concept, motivation, interests, vocational orientation, and factors influencing educational choices can IMP students in the 10th grade be characterized?
- (RQ2)
- What gender-specific differences in the self-concept, motivation, interests, vocational orientation, and factors influencing the educational choices of IMP students exist between male and female IMP students?
2. Materials and Methods
2.1. Participants and Procedure
2.2. Instruments
3. Results
3.1. Gender Differences
3.2. No Gender Differences
3.3. Gender Differences in the Choice of CS in Higher Grades
3.4. Educational Choices of IMP Students
3.5. Motivation and Interests of IMP Students
4. Discussion
4.1. Limitations
4.2. Research Desideratum
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Happe, L.; Buhnova, B.; Koziolek, A.; Wagner, I. Effective measures to foster girls’ interest in secondary computer science education. Educ. Inf. Technol. 2021, 26, 2811–2829. [Google Scholar] [CrossRef]
- Anger, C.; Kohlisch, E.; Plünnecke, A. MINT-Herbstreport 2021. Mehr Frauen für MINT Gewinnen: Herausforderungen von Dekarbonisierung, Digitalisierung und Demografie Meistern; Institut der deutschen Wirtschaft: Cologne, Germany, 2021. [Google Scholar]
- United Nations Educational. UNESCO Science Report: Towards 2030; Second Revised Edition; UNESCO: Paris, France, 2016; ISBN 978-92-3-100129-1. [Google Scholar]
- Eurostat. More Women Join Science and Engineering Ranks. Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/-/edn-20220211-2 (accessed on 9 September 2022).
- Statistik der Bundesagentur für Arbeit. Berichte: Blickpunkt Arbeitsmarkt—Fachkräfteengpassanalyse 2019; Berichte: Blickpunkt Arbeitsmarkt, Bundesagentur für Arbeit, Nürnberg; 2020; Available online: https://statistik.arbeitsagentur.de/Statistikdaten/Detail/201912/arbeitsmarktberichte/fachkraefte-engpassanalyse/fachkraefte-engpassanalyse-d-0-201912-zip.zip?__blob=publicationFile&v=5 (accessed on 9 September 2022).
- Statistik der Bundesagentur für Arbeit. Fachkräfte für Deutschland: Zwischenbilanz und Fortschreibung, Bundesagentur für Arbeit, Nürnberg. 2020. Available online: https://www.arbeitsagentur.de/datei/dok_ba013186.pdf (accessed on 20 December 2022).
- Statistik der Bundesagentur für Arbeit. Berichte: Blickpunkt Arbeitsmarkt MINT-Berufe; Berichte: Blickpunkt Arbeitsmarkt, Bundesagentur für Arbeit, Nürnberg; 2019; Available online: https://statistik.arbeitsagentur.de/DE/Statischer-Content/Statistiken/Themen-im-Fokus/Berufe/Generische-Publikationen/Broschuere-MINT.pdf?__blob=publicationFile#:~:text=Insgesamt%20waren%202018%20durchschnittlich%20259.000,(%2D8%2C7%20Prozent). (accessed on 20 December 2022).
- Autorengruppe Offensive Digitale Schultransformation. Offensive Digitale Schultransformation: 7 Handlungsempfehlungen. Gesellschaft für Informatik e. V., Germany. 2020. Available online: https://offensive-digitale-schultransformation.de/ (accessed on 20 December 2022).
- De Freitas, A.A.; Weingart, T.B. I’m Going to Learn What? Teaching Artificial Intelligence to Freshmen in an Introductory Computer Science Course. In Proceedings of the 52nd ACM Technical Symposium on Computer Science Education, Virtual, 13–20 March 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 198–204, ISBN 9781450380621. [Google Scholar]
- Gadeib, A.; Noller, S. Wichtige Kompetenzen für eine lebenswerte Zukunft. In INFOS 2021-19. GI-Fachtagung Informatik und Schule; Humbert, L., Ed.; Gesellschaft für Informatik: Bonn, Germany, 2021; pp. 21–24. [Google Scholar]
- OECD. OECD Future of Education and Skills. Available online: https://www.oecd.org/education/2030-project (accessed on 9 September 2022).
- Bocconi, S.; Chioccariello, A.; Kampylis, P.; Dagienė, V.; Wastiau, P.; Engelhardt, K.; Earp, K.; Horvath, M.; Jasutė, M.; Malagoli, C.; et al. Reviewing Computational Thinking in Compulsory Education: State of Play and Practices from Computing Education; Publications Office of the European Union: Luxembourg, 2022; ISBN 978-92-76-47208-7. [Google Scholar]
- Schwarz, R.; Hellmig, L.; Friedrich, S. (Eds.) Eine Synopse zum Informatikunterricht in Deutschland im Jahr 2020; Gesellschaft für Informatik: Bonn, Germany, 2021. [Google Scholar]
- Ministerium für Kultus, Jugend und Sport Baden Württemberg. Neues Profilfach “Informatik, Mathematik, Physik” (IMP) Startet zum Neuen Schuljahr an 56 Allgemeinbildenden Gymnasien; Ministerium für Kultus, Jugend und Sport Baden Württemberg: Stuttgart, Germany, 2018. [Google Scholar]
- Ministerium für Kultus, Jugend und Sport Baden Württemberg. Bildungsplan zum Profilfach Informatik, Mathematik, Physik (IMP) 2018. Ministerium für Kultus, Jugend und Sport Baden Württemberg: Stuttgart, Germany. 2018. Available online: http://bildungsplaene-bw.de/site/bildungsplan/get/documents/lsbw/export-pdf/depot-pdf/ALLG/BP2016BW_ALLG_GYM_IMP.pdf (accessed on 20 December 2022).
- Ministerium für Kultus, Jugend und Sport Baden Württemberg. Leitfaden für die gymnasiale Oberstufe: Abitur 2022. Available online: https://km-bw.de/site/pbs-bw-km-root/get/documents_E-763794728/KULTUS.Dachmandant/KULTUS/KM-Homepage/Publikationen%202019/20191113%20Leitfaden_Abitur_2022.pdf (accessed on 13 December 2022).
- Staatsministerium Baden-Württemberg Pressestelle der Landesregierung. Mehr Lehrerstellen im neuen Schuljahr; Staatsministerium Baden-Württemberg: Stuttgart, Germany, 2020; Available online: https://www.baden-wuerttemberg.de/de/service/presse/pressemitteilung/pid/mehr-lehrerstellen-im-neuen-schuljahr-1 (accessed on 20 December 2022).
- Eccles, J.S.; Wigfield, A. From expectancy-value theory to situated expectancy-value theory: A developmental, social cognitive, and sociocultural perspective on motivation. Contemp. Educ. Psychol. 2020, 61, 101859. [Google Scholar] [CrossRef]
- Ertl, B.; Luttenberger, S.; Paechter, M. Stereotype als Einflussfaktoren auf die Motivation und die Einschätzung der eigenen Fähigkeiten bei Studentinnen in MINT-Fächern. Gr. Organ. 2014, 45, 419–440. [Google Scholar] [CrossRef]
- Götsch, M. “Das fängt natürlich an mit irgendwelchen Spielekonsolen”—Oder: Was dazu motiviert, Informatik (nicht) zu studieren. Informatik-Spektrum 2013, 36, 267–273. [Google Scholar] [CrossRef]
- Ihsen, S.; Höhle, E.; Baldin, D. Spurensuche!: Entscheidungskriterien für Natur- bzw. Ingenieurwissenschaften und mögliche Ursachen für frühe Studienabbrüche von Frauen und Männern an TU9-Universitäten; LIT Verlag Münster: Münster, Germany, 2013. [Google Scholar]
- Krapp, A. Interesse, Lernen, Leistung: Neuere Ansätze der Pädagogisch-Psychologischen Interessenforschung; Aschendorff: Münster, Germany, 1992; ISBN 3402045966. [Google Scholar]
- Deci, E.L.; Ryan, R.M. Die Selbstbestimmungstheorie der Motivation und ihre Bedeutung für die Pädagogik. Z. Pädagogik 1993, 39, 223–238. [Google Scholar] [CrossRef]
- Prenzel, M.; Drechsel, B. Ein Jahr kaufmännische Erstausbildung: Veränderungen in Lernmotivation und Interesse. Unterrichtswissenschaft 1996, 24, 217–234. [Google Scholar] [CrossRef]
- Jansen, M.; Schroeders, U.; Lüdtke, O. Academic self-concept in science: Multidimensionality, relations to achievement measures, and gender differences. Learn. Individ. Differ. 2014, 30, 11–21. [Google Scholar] [CrossRef]
- Nagy, G.; Watt, H.M.G.; Eccles, J.S.; Trautwein, U.; Lüdtke, O.; Baumert, J. The Development of Students’ Mathematics Self-Concept in Relation to Gender: Different Countries, Different Trajectories? J. Res. Adolesc. 2010, 20, 482–506. [Google Scholar] [CrossRef]
- Hülsmann, C. Kurswahlmotive im Fach Chemie: Eine Studie zum Wahlverhalten und Erfolg von Schülerinnen und Schülern in der gymnasialen Oberstufe; Hochschulschrift: Berlin, Germany, 2015. [Google Scholar]
- Hoffmann, L.; Häussler, P.; Lehrke, M. Die IPN-Interessenstudie Physik; IPN: Kiel, Germany, 1998; p. 158. ISBN 3-89088-114-9. [Google Scholar]
- Krapp, A. Interesse, Lernen und Leistung. Neue Forschungsansätze in der Pädagogischen Psychologie. Zeitschrift für Pädagogik 1992, 38, 747–770. [Google Scholar] [CrossRef]
- ECCLES, J. Who Am I and What Am I Going to Do with My Life? Personal and Collective Identities as Motivators of Action. Educ. Psychol. 2009, 44, 78–89. [Google Scholar] [CrossRef]
- Mauk, V. Einflussfaktoren der Studienwahl und des Studienverbleibs in MINT-Studienrichtungen an österreichischen Universitäten; FB2 Biologie/Chemie, Universität Bremen: Bremen, Germany, 2016. [Google Scholar]
- Baur, N.; Blasius, J. (Eds.) . Handbuch Methoden der empirischen Sozialforschung; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2014. [Google Scholar]
- Haselmeier, K.; Humbert, L.; Killich, K.; Müller, D. Interesse an Informatik und Informatikselbstkonzept zu Beginn der Sekundarstufe I des Gymnasiums. In Informatik für Alle; Pasternak, A., Ed.; Gesellschaft für Informatik: Bonn, Germany, 2019; pp. 99–108. [Google Scholar]
- Holstermann, N.; Bögeholz, S. Interesse von Jungen und Mädchen an naturwissenschaftlichen Themen am Ende der Sekundarstufe I. Z. Für Didakt. Der Nat. 2007, 13, 71–86. [Google Scholar]
- Daniels, Z. Entwicklung schulischer Interessen im Jugendalter; Waxmann Verlag: Münster, Germany, 2008; ISBN 9783830970224. [Google Scholar]
- Lazarides, R.; Ittel, A.; Juang, L. Wahrgenommene Unterrichtsgestaltung und Interesse im Fach Mathematik von Schülerinnen und Schülern. Unterrichtswissenschaft 2015, 43, 67–82. [Google Scholar]
- Bergmann, A. Mathematisch-Naturwissenschaftliches Fachinteresse durch Profilunterricht Fördern—Theoriebasierte Evaluation Eines Thüringer Schulversuchs in der Sekundarstufe I.; Universitätsbibliothek Leipzig: Leipzig, Germany, 2020. [Google Scholar]
- Krapp, A.; Prenzel, M. Research on Interest in Science: Theories, methods, and findings. Int. J. Sci. Educ. 2011, 33, 27–50. [Google Scholar] [CrossRef] [Green Version]
- Mokhonko, S.; Nickolaus, R.; Windaus, A. Förderung von Mädchen in Naturwissenschaften: Schülerlabore und ihre Effekte. Z. Für Didakt. Der Nat. 2014, 20, 143–159. [Google Scholar] [CrossRef]
- Diethelm, I.; Schneider, N.; Matzner, M.; Brückmann, M.; Zeising, A. Investigation of the Informatics-Based Self-Concept of Primary school Children. In Proceedings of the 15th Workshop on Primary and Secondary Computing Education, Virtual, 28–30 October 2020. [Google Scholar]
- Leifheit, L. The Role of Self-Concept and Motivation within the “Computational Thinking” Approach to Early Computer Science Education; Universität Tübingen: Tübingen, Germany, 2021. [Google Scholar]
- Förtsch, S.; Schmid, U. The Influence of Academic Self-Concept on the Study Program Choice of Computer Scientists; Verlag Barbara Budrich: Leverkusen, 2018; pp. 275–292. [Google Scholar] [CrossRef]
- Janneck, M.; Vincent-Höper, S.; Ehrhardt, J. The Computer-Related Self Concept. Int. J. Soc. Organ. Dyn. IT 2013, 3, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Nagy, G.; Trautwein, U.; Baumert, J.; Köller, O.; Garrett, J. Gender and course selection in upper secondary education: Effects of academic self-concept and intrinsic value. Educ. Res. Eval. 2006, 12, 323–345. [Google Scholar] [CrossRef]
- Saß, S.; Kampa, N. Self-Concept Profiles in Lower Secondary Level—An Explanation for Gender Differences in Science Course Selection? Front. Psychol. 2019, 10, 836. [Google Scholar] [CrossRef] [PubMed]
- Young, D.M.; Rudman, L.A.; Buettner, H.M.; McLean, M.C. The Influence of Female Role Models on Women’s Implicit Science Cognitions. Psychol. Women Q. 2013, 37, 283–292. [Google Scholar] [CrossRef]
- Shin, J.E.L.; Levy, S.R.; London, B. Effects of role model exposure on STEM and non-STEM student engagement. J. Appl. Soc. Psychol. 2016, 46, 410–427. [Google Scholar] [CrossRef]
- Cheryan, S.; Drury, B.J.; Vichayapai, M. Enduring Influence of Stereotypical Computer Science Role Models on Women’s Academic Aspirations. Psychol. Women Q. 2013, 37, 72–79. [Google Scholar] [CrossRef] [Green Version]
- Boston, J.S.; Cimpian, A. How Do We Encourage Gifted Girls to Pursue and Succeed in Science and Engineering? Gift. Child Today 2018, 41, 196–207. [Google Scholar] [CrossRef] [Green Version]
- Lawner, E.K.; Quinn, D.M.; Camacho, G.; Johnson, B.T.; Pan-Weisz, B. Ingroup role models and underrepresented students’ performance and interest in STEM: A meta-analysis of lab and field studies. Soc. Psychol. Educ. 2019, 22, 1169–1195. [Google Scholar] [CrossRef]
- Artelt, C.; Baumert, J.; Julius-McElvany, N.; Peschar, L.J. Das Lernen Lernen: Voraussetzungen für Lebensbegleitendes Lernen; Ergebnisse von PISA 2000; OECD: Paris, France, 2003. [Google Scholar]
- Zinn, B.; Latzel, M. Abschlussbericht zum Projekt “Evaluation des Schulversuchs NwT in den Jahrgangsstufen—Zweistündig (NwT-K2)”; University of Stuttgart: Stuttgart, Germany, 2017; Available online: https://www.ife.uni-stuttgart.de/dokumente/bpt/bpt_forschung/nwtk2_Abschlussbericht-NwT-K2.pdf (accessed on 9 September 2022).
- Waligora, K.; Schöne, C.; Dickhäuser, O.; Spinath, B.; Stiensmeier-Pelster, J. Skalen zur Erfassung des schulischen Selbstkonzepts (SESSKO). Göttingen: Hogrefe. Prax. Der Kinderpsychol. Und Kinderpsychiatr. 2003, 52, 465–467. [Google Scholar] [CrossRef]
- Krapp, A.; Schiefele, U.; Wild, K.P.; Winteler, A. Der “Fragebogen zum Studieninteresse” (FSI). 1993. Available online: https://publishup.uni-potsdam.de/frontdoor/index/index/docId/3179 (accessed on 9 September 2022).
- Eitemüller, C.; Walpuski, M. Wahl- und Abwahlprofile im Fach Chemie: Ergebnisse einer Clusteranalyse zur Charakterisierung von Lernenden am Ende der Sekundarstufe I. Z. Für Didakt. Der Nat. 2018, 24, 251–263. [Google Scholar] [CrossRef]
- Taber, K.S. The Use of Cronbach’s Alpha When Developing and Reporting Research Instruments in Science Education. Res. Sci. Educ. 2018, 48, 1273–1296. [Google Scholar] [CrossRef] [Green Version]
- Mayring, P. Qualitative Inhaltsanalyse: Grundlagen und Techniken; 12., überarb. Aufl.; Beltz: Weinheim, Germany, 2015; ISBN 3407293933. [Google Scholar]
- MacPhail, C.; Khoza, N.; Abler, L.; Ranganathan, M. Process guidelines for establishing Intercoder Reliability in qualitative studies. Qual. Res. 2016, 16, 198–212. [Google Scholar] [CrossRef]
- Burla, L.; Knierim, B.; Barth, J.; Liewald, K.; Duetz, M.; Abel, T. From text to codings: Intercoder reliability assessment in qualitative content analysis. Nurs. Res. 2008, 57, 113–117. [Google Scholar] [CrossRef]
- Fritz, C.O.; Morris, P.E.; Richler, J.J. Effect size estimates: Current use, calculations, and interpretation. J. Exp. Psychol. Gen. 2012, 141, 2–18. [Google Scholar] [CrossRef] [Green Version]
- Tomczak, M.; Tomczak, E. The need to report effect size estimates revisited. An overview of some recommended measures of effect size. Trends Sport Sci. 2014, 21, 19–25. [Google Scholar]
- Mann, H.B.; Whitney, D.R. On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other. Ann. Math. Statist. 1947, 18, 50–60. [Google Scholar] [CrossRef]
- Stonehouse, J.M.; Forrester, G.J. Robustness of the t and U tests under combined assumption violations. J. Appl. Stat. 1998, 25, 63–74. [Google Scholar] [CrossRef]
- Kühnel, S.; Krebs, D. Statistik für die Sozialwissenschaften: Grundlagen, Methoden, Anwendungen, Orig.-Ausg; Rowohlt-Taschenbuch-Verl.: Reinbek bei Hamburg, Germany, 2001; ISBN 978-3-499-55639-5. [Google Scholar]
- Dengel, A.; Heuer, U. Motivation, Fachinteresse und Schulleistung in Informatik. In INFOS 2021-19. GI-Fachtagung Informatik und Schule; Humbert, L., Ed.; Gesellschaft für Informatik: Bonn, Germany, 2021; pp. 113–122. [Google Scholar]
- Heyder, A.; Weidinger, A.F.; Steinmayr, R. Only a Burden for Females in Math? Gender and Domain Differences in the Relation Between Adolescents’ Fixed Mindsets and Motivation. J. Youth Adolesc. 2021, 50, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Watt, H.M.G. The role of motivation in gendered educational and occupational trajectories related to maths. Educ. Res. Eval. 2006, 12, 305–322. [Google Scholar] [CrossRef]
- Barbara, S. Mehr Frauen in die Informatik: Den Gender-Gap in der Informatik schließen! Was zeigt Wirkung? In INFORMATIK 2022; Demmler, D., Krupka, D., Federrath, H., Eds.; Gesellschaft für Informatik: Hamburg, Germany, 28 September 2022. [Google Scholar]
- Pearson, K.X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1900, 50, 157–175. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y. Deconstructing the “Leaky Pipeline”: Three Studies to Describe and Explain STEM Career Trajectories with Gender Differences; UC Irvine: Irvine, CA, USA, 2022. [Google Scholar]
- Nash, J. Understanding How to Interest Girls in Stem Education: A Look at How Lego® Education Ambassador Teachers Engage Female Students in Stem Learning. Ph.D. Thesis, University of Florida, Gainesville, FL, USA, 2017. [Google Scholar]
- Main, J.B.; Schimpf, C. The Underrepresentation of Women in Computing Fields: A Synthesis of Literature Using a Life Course Perspective. IEEE Trans. Educ. 2017, 60, 296–304. [Google Scholar] [CrossRef]
- Annis, B.; Nesbitt, R. Results at the Top: Using Gender Intelligence to Create Breakthrough Growth; 1. Auflage; John Wiley & Sons: New York, NY, USA, 2017; ISBN 1119384087. [Google Scholar]
- García-Peñalvo, F.J.; Reimann, D.; Tuul, M.; Rees, A.; Jormanainen, I. An Overview of the Most Relevant Literature on Coding and Computational Thinking with Emphasis on the Relevant Issues for Teachers; TACCLE3 Consortium: Hasselt, Belgium, 2016. [Google Scholar] [CrossRef]
- Labudde, P. Fächer übergreifender Unterricht in und mit Physik: Eine zu wenig genutzte Chance. PhyDid A-Phys. Und Didakt. Sch. Und Hochsch. 2003, 1, 48–66. [Google Scholar]
- Seidel, T. Angebots-Nutzungs-Modelle in der Unterrichtspsychologie. Integration von Struktur- und Prozessparadigma: Utilization-of-learning-opportunities models in the psychology of Instruction: Integration of the paradigms of structure and of process. Z. Pädagogik 2014, 60, 850–866. [Google Scholar]
- Mackenzie, E.; Berger, N.; Holmes, K. Predicting adolescent girls’ intentions to study science in senior high school. Issues Educ. Res. 2021, 31, 2021. [Google Scholar]
- Häußler, P.; Hoffmann, L. Chancengleichheit für Mädchen im Physikunterricht—Ergebnisse eines erweiterten BLK-Modellversuchs. Z. Didakt. Nat. 1998, 4, 51–67. [Google Scholar]
Scale | Subscale | Cronbach’s α | Number of Items | M | SD | n |
---|---|---|---|---|---|---|
Subject-specific self-concept | 0.950 | 10 | 3.05 | 0.78 | 321 | |
Academic self-concept | 0.964 | 11 | 3.43 | 0.93 | 331 | |
Performance-related attitudes towards CS in higher grades | 0.945 | 7 | 2.71 | 0.88 | 225 | |
Motivation | Amotivated | 0.820 | 3 | 2.38 | 1.17 | 333 |
Extrinsic | 0.684 | 3 | 2.28 | 1.04 | 333 | |
Introjected | 0.751 | 3 | 3.22 | 1.05 | 332 | |
Identified | 0.757 | 3 | 3.37 | 1.08 | 331 | |
Intrinsic | 0.816 | 3 | 2.70 | 1.15 | 332 | |
Interested | 0.886 | 3 | 2.84 | 1.20 | 333 | |
Area-specific interest | Linguistic–literary–artistic | 0.893 | 4 | 2.27 | 0.85 | 331 |
Social science | 0.884 | 4 | 2.74 | 0.79 | 329 | |
STEM | 0.890 | 4 | 3.18 | 0.77 | 330 | |
Subject interest in IMP | 0.916 | 18 | 2.37 | 0.67 | 299 |
Shapiro–Wilk Test | Levene’s Test | Mann–Whitney U Test/ t-Test/Chi-Squared Test | Gender n (Male, Female) | |
---|---|---|---|---|
Subject-specific self-concept | p < 0.001 | p = 0.887 | U = 7803, p = 0.030, Z = −2.165, r = −0.124 | 226, 83 |
Academic self-concept | p < 0.001 | p = 0.179 | U = 7263, p < 0.001, Z = −3.768, r = −0.211 | 232, 87 |
Performance-related expectations towards CS in higher grades | p < 0.001 | p = 0.120 | U = 2758, p = 0.006, Z = −2.733, r = −0.186 | 172, 44 |
Amotivated | p < 0.001 | p = 0.241 | U = 9055, p = 0.155, Z = −1.422 | 234, 87 |
Extrinsic motivation | p < 0.001 | p = 0.158 | U = 9189, p = 0.253, Z = −1.143 | 235, 86 |
Introjected motivation | p < 0.001 | p = 0.227 | U = 8554, p = 0.050, Z = −1.961 | 234, 86 |
Identified motivation | p < 0.001 | p = 0.442 | U = 9801, p = 0.855, Z = −0.182 | 233, 86 |
Intrinsic motivation | p < 0.001 | p = 0.675 | U = 9272, p = 0.286, Z = −1.066 | 233, 87 |
Interested | p < 0.001 | p = 0.775 | U = 8855, p = 0.091, Z = −1.693 | 234, 87 |
Interest in linguistic– literary–artistic areas | p < 0.001 | p = 0.392 | U = 5570, p < 0.001, Z = −6.193, r = −0.348 | 231, 88 |
Interest in social science areas | p < 0.001 | p = 0.045 | U = 7600, p = 0.001, Z = −3.275, r = −0.184 | 231, 87 |
Interest in STEM areas | p < 0.001 | p = 0.406 | U = 8888, p = 0.135, Z = −1.495 | 231, 87 |
Subject interest in IMP | p = 0.122 | p = 0.733 | t (287) = 1.794, p = 0.074 | 210, 79 |
Interest in CS | p < 0.001 | p = 0.186 | U = 7303, p < 0.001, Z = −3.531, r = −0.200 | 266, 87 |
Interest in mathematics | p < 0.001 | p = 0.996 | U = 10176, p = 0.864, Z = −0.172 | 236, 88 |
Interest in physics | p < 0.001 | p = 0.050 | U = 8018, p = 0.002, Z = −3.131, r = −0.175 | 235, 88 |
Interest in biology | p < 0.001 | p = 0.512 | U = 7413, p < 0.001, Z = −3.930, r = −0.219 | 235, 88 |
Interest in implementing code | p < 0.001 | p = 0.917 | U = 7802, p = 0.002, Z = −3.065, r = −0.172 | 230, 86 |
Interest in algorithms | p < 0.001 | p = 0.187 | U = 6948, p < 0.001, Z = −4.074, r = −0.229 | 231, 87 |
Interest in requirement analysis | p < 0.001 | p = 0.359 | U = 7814, p = 0.002, Z = −3.029, r = −0.170 | 231, 87 |
Interest in software projects | p < 0.001 | p = 0.917 | U = 7151, p < 0.001, Z = −3.845, r = −0.217 | 231, 86 |
Vocational orientation: pursuing a career or study in mathematics or CS | p < 0.001 | p = 0.130 | U = 8264, p = 0.018, Z = −2.360, r = −0.133 | 230, 87 |
Vocational orientation: pursuing a career or study in science or engineering/technology | p < 0.001 | p = 0.189 | U = 8700, p = 0.088, Z = −1.706 | 229, 87 |
Factors influencing the educational choice: career prospects | p < 0.001 | p = 0.148 | U = 9146, p = 0.038, Z = −2.079, r = −0.118 | 225, 86 |
Choice of CS in higher grades | p < 0.001 | p = 0.008 | X2(1, n = 313) = 6.278, p = 0.012, ϕ = −0.142, p = 0.012 | 231, 86 |
Constructs | Shapiro–Wilk Test | Levene’s Test | Mann–Whitney U Test | n (a, b) |
---|---|---|---|---|
Subject-specific self-concept | p < 0.001 | p < 0.001 | U = 5507, p < 0.001, Z = −8.038, r = −0.455 | 129, 183 |
Academic self-concept | p < 0.001 | p = 0.494 | U = 5934, p < 0.001, Z = −8.071, r = −0.450 | 133, 189 |
Performance-related expectations towards CS in higher grades | p < 0.001 | p < 0.581 | U = 1787, p < 0.001, Z = −8.653, r = −0.586 | 129, 89 |
IMP grade | p < 0.001 | p < 0.001 | U = 8481, p < 0.001, Z = −5.438, r = −0.300 | 133, 194 |
Intrinsic motivation | p < 0.001 | p = 0.466 | U = 6038, p < 0.001, Z = −8.010, r = −0.445 | 131, 193 |
Interest | p < 0.001 | p = 0.030 | U = 7202, p < 0.001, Z = −6.631, r = −0.368 | 132, 192 |
Subject-specific interest | p = 0.432 | p = 0.791 | U = 4630, p < 0.001, Z = −8.117, r = −0.474 | 122, 171 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bahr, T.; Zinn, B. Gender Differences in the New Interdisciplinary Subject Informatik, Mathematik, Physik (IMP)—Sticking with STEM? Educ. Sci. 2023, 13, 478. https://doi.org/10.3390/educsci13050478
Bahr T, Zinn B. Gender Differences in the New Interdisciplinary Subject Informatik, Mathematik, Physik (IMP)—Sticking with STEM? Education Sciences. 2023; 13(5):478. https://doi.org/10.3390/educsci13050478
Chicago/Turabian StyleBahr, Tobias, and Bernd Zinn. 2023. "Gender Differences in the New Interdisciplinary Subject Informatik, Mathematik, Physik (IMP)—Sticking with STEM?" Education Sciences 13, no. 5: 478. https://doi.org/10.3390/educsci13050478
APA StyleBahr, T., & Zinn, B. (2023). Gender Differences in the New Interdisciplinary Subject Informatik, Mathematik, Physik (IMP)—Sticking with STEM? Education Sciences, 13(5), 478. https://doi.org/10.3390/educsci13050478