Using Video-Based Simulations to Foster pPCK/ePCK—New Thoughts on the Refined Consensus Model of PCK
Abstract
1. Introduction
2. Theoretical Background
2.1. The Refined Consensus Model (RCM) of PCK
2.1.1. The Collective PCK (cPCK)
2.1.2. The Personal PCK (pPCK)
2.1.3. The Enacted PCK (ePCK)
2.2. Simulation-Based Tools in Teacher Education
The Learning Environment DiKoBi
2.3. Scaffolding
3. Research Questions and Objectives
4. Method
4.1. Sample
4.2. The cPCK-Test
4.3. Development of Scaffolds
4.4. Study Design
4.5. Measurements and Data Analyses
5. Results
5.1. RQ1: The Learning Environment
5.2. RQ2: Pre-Service Teachers’ cPCK
6. Discussion
6.1. Effects of Scaffolding on pPCK/Macro-ePCKReflect + Plan
6.2. Development of cPCK when Training pPCK/macro-ePCKReflect + Plan
6.3. Limitations
6.4. Implications
6.5. Implications for the RCM of PCK—Knowledge Acquisition
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
| Abbreviation | |
|---|---|
| PK | Pedagogical knowledge |
| CK | Content knowledge |
| PCK | Pedagogical content knowledge |
| CM | Consensus model of PCK |
| RCM | Refined consensus model of PCK |
| cPCK | Collective PCK |
| pPCK | Personal PCK |
| ePCK | Enacted PCK |
| ePCKTeach | Enacted PCK, step “teach” |
| ePCKPlan | Enacted PCK, step “plan” |
| ePCKReflect | Enacted PCK, step “reflect” |
| ePCKReflect + Plan | Enacted PCK, steps “reflect” and “plan” |
| DiKoBi | Name of the video-based learning environment |
| DiKoBiIAssess | Video-based learning environment, the first lesson in the assess version (used for measuring pPCK/ePCKReflect + Plan in the pre-test) |
| DiKoBiIILearn | Video-based learning environment, the second lesson in the learn version (with scaffolds included as an intervention) |
| DiKoBiIIIAssess | Video-based learning environment, the third lesson in the assess version (used for measuring pPCK/ePCKReflect + Plan in the post-test) |
References
- Carlson, J.; Daehler, K.R.; Alonzo, A.C.; Barendsen, E.; Berry, A.; Borowski, A.; Carpendale, J.; Kam Ho Chan, K.; Cooper, R.; Friedrichsen, P.; et al. The Refined Consensus Model of Pedagogical Content Knowledge in Science Education. In Repositioning Pedagogical Content Knowledge in Teachers’ Knowledge for Teaching Science; Hume, A., Cooper, R., Borowski, A., Eds.; Springer: Singapore, 2019; pp. 77–94. ISBN 978-981-13-5897-5. [Google Scholar]
- Mientus, L.; Hume, A.; Wulff, P.; Meiners, A.; Borowski, A. Modelling STEM Teachers’ Pedagogical Content Knowledge in the Framework of the Refined Consensus Model: A Systematic Literature Review. Educ. Sci. 2022, 12, 385. [Google Scholar] [CrossRef]
- Shulman, L.S. Those who understand: Knowledge growth in teaching. Educ. Reseacher 1986, 15, 4–14. [Google Scholar] [CrossRef]
- Blömeke, S.; Hsieh, F.-J.; Kaiser, G.; Schmidt, W.H. International Perspectives on Teacher Knowledge, Beliefs and Opportunities to Learn; Springer: Dordrecht, The Netherlands, 2014; ISBN 978-94-007-6436-1. [Google Scholar]
- Baumert, J.; Kunter, M. The COACTIV Model of Teachers’ Professional Competence. In Cognitive Activation in the Mathematics Classroom and Professional Competence of Teachers; Kunter, M., Baumert, J., Blum, W., Klusmann, U., Krauss, S., Neubrand, M., Eds.; Springer: Boston, MA, USA, 2013; pp. 25–48. ISBN 978-1-4614-5148-8. [Google Scholar]
- Voss, T.; Kunter, M. Teachers’ General Pedagogical/Psychological Knowledge. In Cognitive Activation in the Mathematics Classroom and Professional Competence of Teachers; Kunter, M., Baumert, J., Blum, W., Klusmann, U., Krauss, S., Neubrand, M., Eds.; Springer: Boston, MA, USA, 2013; pp. 207–227. ISBN 978-1-4614-5148-8. [Google Scholar]
- Schmelzing, S.; van Driel, J.H.; Jüttner, M.; Brandenbusch, S.; Sandmann, A.; Neuhaus, B.J. Development, Evaluation, and Validation of a Paper-pencil Test for Measuring two Components of Biology Teachers’ Pedagogical Content Knowledge Concerning the “Cardiovascular System”. Int. J. Sci. Math. Educ. 2013, 11, 1369–1390. [Google Scholar] [CrossRef]
- Kramer, M.; Förtsch, C.; Boone, W.J.; Seidel, T.; Neuhaus, B.J. Investigating Pre-Service Biology Teachers’ Diagnostic Competences: Relationships between Professional Knowledge, Diagnostic Activities, and Diagnostic Accuracy. Educ. Sci. 2021, 11, 89. [Google Scholar] [CrossRef]
- Förtsch, C.; Werner, S.; von Kotzebue, L.; Neuhaus, B.J. Effects of biology teachers’ professional knowledge and cognitive activation on students’ achievement. Int. J. Sci. Educ. 2016, 38, 2642–2666. [Google Scholar] [CrossRef]
- Baumert, J.; Kunter, M.; Blum, W.; Brunner, M.; Voss, T.; Jordan, A.; Klusmann, U.; Krauss, S.; Neubrand, M.; Tsai, Y.-M. Teachers’ Mathematical Knowledge, Cognitive Activation in the Classroom, and Student Progress. Am. Educ. Res. J. 2010, 47, 133–180. [Google Scholar] [CrossRef]
- Grossman, P.; McDonald, M. Back to the Future: Directions for Research in Teaching and Teacher Education. Am. Educ. Res. J. 2008, 45, 184–205. [Google Scholar] [CrossRef]
- Cauet, E.; Liepertz, S.; Borowski, A.; Fischer, H.E. Does it matter what we measure? Domain-specific professional knowledge of physics teachers. Schweiz. Z. Für Bild. 2015, 37, 462–479. [Google Scholar] [CrossRef]
- Gartmeier, M.; Bauer, J.; Fischer, M.R.; Hoppe-Seyler, T.; Karsten, G.; Kiessling, C.; Möller, G.E.; Wiesbeck, A.; Prenzel, M. Fostering professional communication skills of future physicians and teachers: Effects of e-learning with video cases and role-play. Instr. Sci. 2015, 43, 443–462. [Google Scholar] [CrossRef]
- Südkamp, A.; Möller, J.; Pohlmann, B. Der simulierte Klassenraum. Z. Für Pädagogische Psychol. 2008, 22, 293–309. [Google Scholar] [CrossRef]
- Blömeke, S.; Gustafsson, J.-E.; Shavelson, R.J. Beyond Dichotomies. Z. Für Psychol. 2015, 223, 3–13. [Google Scholar] [CrossRef]
- Kramer, M.; Förtsch, C.; Stürmer, J.; Förtsch, S.; Seidel, T.; Neuhaus, B.J. Measuring Biology Teachers’ Professional Vision: Development and Validation of a Video-based Assessment Tool. Cogent. J. 2020, 7, 1823155. [Google Scholar] [CrossRef]
- Irmer, M.; Traub, D.; Kramer, M.; Förtsch, C.; Neuhaus, B.J. Scaffolding pre-service biology teachers’ diagnostic competences in a video-based Learning environment: Measuring the effect of different types of scaffolds. Int. J. Sci. Educ. 2022, 44, 1506–1526. [Google Scholar] [CrossRef]
- Fischer, J.; Machts, N.; Bruckermann, T.; Möller, J.; Harms, U. The Simulated Classroom Biology—A simulated classroom environment for capturing the action-oriented professional knowledge of pre-service teachers about evolution. Comput. Assist. Learn. 2022, 38, 1765–1778. [Google Scholar] [CrossRef]
- Codreanu, E.; Sommerhoff, D.; Huber, S.; Ufer, S.; Seidel, T. Between authenticity and cognitive demand: Finding a balance in designing a video-based simulation in the context of mathematics teacher education. Teach. Teach. Educ. 2020, 95, 103146. [Google Scholar] [CrossRef]
- Richter, E.; Hußner, I.; Huang, Y.; Richter, D.; Lazarides, R. Video-based reflection in teacher education: Comparing virtual reality and real classroom videos. Comput. Educ. 2022, 190, 104601. [Google Scholar] [CrossRef]
- Chernikova, O.; Heitzmann, N.; Fink, M.C.; Timothy, V.; Seidel, T.; Fischer, F. Facilitating Diagnostic Competences in Higher Education—a Meta-Analysis in Medical and Teacher Education. Educ. Psychol. Rev. 2020, 32, 157–196. [Google Scholar] [CrossRef]
- Berry, A.; Friedrichsen, P.; Loughran, J. Re-Examining Pedagogical Content Knowledge in Science Education; Routledge: London, UK, 2015; ISBN 9781315735665. [Google Scholar]
- Alonzo, A.C.; Berry, A.; Nilsson, P. Unpacking the Complexity of Science Teachers’ PCK in Action: Enacted and Personal PCK. In Repositioning Pedagogical Content Knowledge in Teachers’ Knowledge for Teaching Science; Hume, A., Cooper, R., Borowski, A., Eds.; Springer: Singapore, 2019; pp. 273–288. ISBN 978-981-13-5897-5. [Google Scholar]
- Grossmann, P.; Compton, C.; Igra, D.; Ronfeldt, M.; Shahan, E.; Williamson, P.W. Teaching Practice: A Cross-Professional Perspectie. Teach. Coll. Rec. 2009, 111, 2055–2100. [Google Scholar] [CrossRef]
- Roth, K.J.; Bintz, J.; Wickler, N.I.Z.; Hvidsten, C.; Taylor, J.; Beardsley, P.M.; Caine, A.; Wilson, C.D. Design principles for effective video-based professional development. Int. J. Stem. Educ. 2017, 4, 31. [Google Scholar] [CrossRef]
- Seidel, T.; Stürmer, K. Modeling and Measuring the Structure of Professional Vision in Preservice Teachers. Am. Educ. Res. J. 2014, 51, 739–771. [Google Scholar] [CrossRef]
- Behling, F.; Förtsch, C.; Neuhaus, B.J. Sprachsensibler Biologieunterricht—Förderung professioneller Handlungskompetenz und professioneller Wahrnehmung durch videogestützte live-Unterrichtsbeobachtung. Eine Projektbeschreibung. ZfDN 2019, 25, 307–316. [Google Scholar] [CrossRef]
- Gaudin, C.; Chaliès, S. Video viewing in teacher education and professional development: A literature review. Educ. Res. Rev. 2015, 16, 41–67. [Google Scholar] [CrossRef]
- Santagata, R.; Guarino, J. Using video to teach future teachers to learn from teaching. ZDM Math. Educ. 2011, 43, 133–145. [Google Scholar] [CrossRef]
- Wood, D.; Bruner, J.S.; Ross, G. The role of tutoring in problem solving. J. Child Psychol. Psychiatry 1976, 17, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Vygotskij, L.S. Interaction between learning and development. In Mind in Society: The Development of Higher Psychological Processes, 2nd ed.; Cole, M., Vygotskij, L.S., Eds.; Harvard University Press: Cambridge, MA, USA, 1979; pp. 79–91. ISBN 0674576284. [Google Scholar]
- Hannafin, M.; Land, S.; Oliver, K. Open Learning Environments: Foundations, methods, and models. In Instructional Design Theories and Models: A New Paradigm of Instructional Theory; Reigeluth, C.M., Ed.; Lawrence Erlbaum Associates, Inc.: Mahwah, NJ, USA, 1999; pp. 115–140. [Google Scholar]
- Belland, B.R. Computer-Based Scaffolding Strategy. In Instructional Scaffolding in STEM Education; Belland, B.R., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 107–126. ISBN 978-3-319-02564-3. [Google Scholar]
- Quintana, C.; Reiser, B.J.; Davis, E.A.; Krajcik, J.; Fretz, E.; Duncan, R.G.; Kyza, E.; Edelson, D.; Soloway, E. A Scaffolding Design Framework for Software to Support Science Inquiry. J. Learn. Sci. 2004, 13, 337–386. [Google Scholar] [CrossRef]
- Simons, K.D.; Klein, J.D. The Impact of Scaffolding and Student Achievement Levels in a Problem-based Learning Environment. Instr. Sci. 2007, 35, 41–72. [Google Scholar] [CrossRef]
- Chernikova, O.; Heitzmann, N.; Stadler, M.; Holzberger, D.; Seidel, T.; Fischer, F. Simulation-Based Learning in Higher Education: A Meta-Analysis. Rev. Educ. Res. 2020, 90, 499–541. [Google Scholar] [CrossRef]
- Park, S.; Oliver, J.S. Revisiting the Conceptualisation of Pedagogical Content Knowledge (PCK): PCK as a Conceptual Tool to Understand Teachers as Professionals. Res. Sci. Educ. 2008, 38, 261–284. [Google Scholar] [CrossRef]
- Nilsson, P. When Teaching Makes a Difference: Developing science teachers’ pedagogical content knowledge through learning study. Int. J. Sci. Educ. 2014, 36, 1794–1814. [Google Scholar] [CrossRef]
- Wilson, C.D.; Borowski, A.; van Driel, J. Perspectives on the Future of PCK Research in Science Education and Beyond. In Repositioning Pedagogical Content Knowledge in Teachers’ Knowledge for Teaching Science; Hume, A., Cooper, R., Borowski, A., Eds.; Springer: Singapore, 2019; pp. 291–302. ISBN 978-981-13-5897-5. [Google Scholar]
- Behling, F.; Förtsch, C.; Neuhaus, B.J. The Refined Consensus Model of Pedagogical Content Knowledge (PCK): Detecting Filters between the Realms of PCK. Educ. Sci. 2022, 12, 592. [Google Scholar] [CrossRef]
- Schmiemann, P.; Linsner, M.; Neuhaus, B.J.; Wenning, S.; Sandmann, A. Kontextorientiertes Lernen in Biologie: Aufgaben und Arbeitsmaterialien. In Aufgaben im Kontext: Biologie: Kontextorientierung; Basiskonzepte; Bildungsstandards & Kompetenzen; naturwissenschaftliche Denk- und Arbeitsweisen; Konzepte, Ideen und Materialien für einen modernen Biologieunterricht, 1st ed.; Schmiemann, P., Sandmann, A., Eds.; Friedrich: Seelze, Germany, 2011; pp. 4–12. [Google Scholar]
- Kattmann, U. Alltagsvorstellungen und Fachwissen-oder: Warum (Um-)Lernen so schwer fällt. Seminar 2007, 13, 9–21. [Google Scholar]
- Nodari, C.; Steinmann, C. Fachdingsda: Fächerorientierter Grundwortschatz für das 5.-9. Schuljahr, 1. Aufl; Lehrmittelverlag des Kantons Aargau: Buchs, Switzerland, 2008; ISBN 9783906738796. [Google Scholar]
- Mayer, J.; Grube, C.; Möller, A. Kompetenzmodell naturwissenschaftlicher Erkenntnisgewinnung. In Lehr- und Lernforschung in der Biologiedidaktik; Harms, U., Sandmann, A., Eds.; Studienverlag: Innsbruck, Austria, 2008; pp. 63–79. [Google Scholar]
- Upmeier zu Belzen, A.; Krüger, D. Modellkompetenz im Biologieunterricht. ZfDN 2010, 16, 41–57. [Google Scholar]
- Wadouh, J.; Liu, N.; Sandmann, A.; Neuhaus, B.J. The Effect of Knowledge Iinking levels in Biology lessons upon students’ knowledge structure. Int. J. Sci. Math. Educ. 2014, 12, 25–47. [Google Scholar] [CrossRef]
- Malec, J.F.; Torsher, L.C.; Dunn, W.F.; Wiegmann, D.A.; Arnold, J.J.; Brown, D.A.; Phatak, V. The mayo high performance teamwork scale: Reliability and validity for evaluating key crew resource management skills. Simul. Healthc. 2007, 2, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Leahy, W.; Sweller, J. Cognitive load theory and the effects of transient information on the modality effect. Instr. Sci. 2016, 44, 107–123. [Google Scholar] [CrossRef]
- Smith, J.P.; diSessa, A.A.; Roschelle, J. Misconceptions Reconceived: A Constructivist Analysis of Knowledge in Transition. J. Learn. Sci. 1994, 3, 115–163. [Google Scholar] [CrossRef]
- Moosbrugger, H.; Kelava, A. (Eds.) Testtheorie und Fragebogenkonstruktion: Mit 66 Abbildungen und 41 Tabellen; 2. Aktualisierte und Überarbeitete Auflage; Springer: Berlin/Heidelberg, Germany, 2012; ISBN 3642200710. [Google Scholar]
- Döring, N.; Bortz, J. Forschungsmethoden und Evaluation in den Sozial- und Humanwissenschaften; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 978-3-642-41088-8. [Google Scholar]
- Squire, L.R. Declarative and nondeclarative memory: Multiple brain systems supporting learning and memory. J. Cogn. Neurosci. 1992, 4, 232–243. [Google Scholar] [CrossRef]
- Gregory, T.R. Understanding Natural Selection: Essential Concepts and Common Misconceptions. Evol. Educ. Outreach 2009, 2, 156–175. [Google Scholar] [CrossRef]






| Classroom Situation | Beginning of the Lesson, Activation of Prior Knowledge and Ideas | ||||
|---|---|---|---|---|---|
| What is happening in the video | The lesson starts with the teacher asking the students what they remember from the last lesson (sensory organs). Afterward, the teacher introduces the topic of the current lesson (skin as a sensory organ). | ||||
| Task describe | Students tell their prior knowledge without dealing with the subject of the previous lesson in more depth. | The teacher names the topic of the lesson instead of letting the students formulate it. | The teacher only asks reproductive questions; no explanations by the students are required. | No problem orientation. | No example, no context, nothing new or surprising, and no relevance for everyday life is pointed out; therefore, the students are not motivated. |
| Task explain | The students are not cognitively activated. They should connect their prior knowledge to subordinated concepts at the beginning of a lesson. | No sufficient activation of the students. There is no catch component to create situational interest. | |||
| Task alternative strategy | The teacher could start the lesson with a cognitive conflict leading to a problem-orientated question that could then serve as the topic of the lesson. The teacher could activate the prior knowledge of the students by asking concept-orientated questions, instead of just letting the students repeat what they remember from the last lesson. | To create situational interest, an experiment, something surprising or something bringing up more relevance for everyday life, could serve as a catch component. | |||
| Construct | Item | Relevant Literature (Example) |
|---|---|---|
| The beginning of a lesson and the activation of prior knowledge and ideas | The use of everyday and real-life context at the beginning of a lesson results in a better understanding, which can generate interest in the students.1 | [41] |
| Dealing with students’ ideas and misconceptions | Knowing about students’ pre-conceptions is only useful for new, very complex content since the students’ pre-conceptions and the scientific concepts are sometimes far apart.2 | [42] |
| Use of technical terms and language | By defining technical terms in class, they are put in context. New terms can be linked to existing concepts making them easier to remember.1 | [43] |
| Use of experiments | According to Mayer, in the first step of the scientific inquiry process, a hypothesis is generated to be tested.2 | [44] |
| Use of models | The purpose of models is not only to provide explanations of relationships and phenomena that are already known, but also to predict future findings.1 | [45] |
| Transfer of knowledge at the end of a lesson | To achieve cognitive activation at the end of a lesson, students can be asked to reproduce the content of the lesson, as this will activate their newly acquired knowledge.2 | [46] |
| Treatment | M | SD | N | |
|---|---|---|---|---|
| Pre-test | cPCK-scaffolds | 13.00 | 10.68 | 35 |
| pPCK-scaffolds | 12.61 | 9.70 | 28 | |
| control (no scaffolds) | 13.00 | 10.32 | 15 | |
| Post-test | cPCK-scaffolds | 15.89 | 12.78 | 35 |
| pPCK-scaffolds | 16.79 | 11.10 | 28 | |
| control (no scaffolds) | 13.07 | 8.05 | 15 |
| Treatment | M | SD | N | |
|---|---|---|---|---|
| Pre-test | cPCK-scaffolds | 34.04 | 4.98 | 35 |
| pPCK-scaffolds | 33.07 | 5.81 | 28 | |
| control (no scaffolds) | 33.87 | 5.63 | 15 | |
| Post-test | cPCK-scaffolds | 33.11 | 6.43 | 35 |
| pPCK-scaffolds | 32.86 | 5.58 | 28 | |
| control (no scaffolds) | 33.07 | 5.05 | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irmer, M.; Traub, D.; Böhm, M.; Förtsch, C.; Neuhaus, B.J. Using Video-Based Simulations to Foster pPCK/ePCK—New Thoughts on the Refined Consensus Model of PCK. Educ. Sci. 2023, 13, 261. https://doi.org/10.3390/educsci13030261
Irmer M, Traub D, Böhm M, Förtsch C, Neuhaus BJ. Using Video-Based Simulations to Foster pPCK/ePCK—New Thoughts on the Refined Consensus Model of PCK. Education Sciences. 2023; 13(3):261. https://doi.org/10.3390/educsci13030261
Chicago/Turabian StyleIrmer, Marie, Dagmar Traub, Marina Böhm, Christian Förtsch, and Birgit J. Neuhaus. 2023. "Using Video-Based Simulations to Foster pPCK/ePCK—New Thoughts on the Refined Consensus Model of PCK" Education Sciences 13, no. 3: 261. https://doi.org/10.3390/educsci13030261
APA StyleIrmer, M., Traub, D., Böhm, M., Förtsch, C., & Neuhaus, B. J. (2023). Using Video-Based Simulations to Foster pPCK/ePCK—New Thoughts on the Refined Consensus Model of PCK. Education Sciences, 13(3), 261. https://doi.org/10.3390/educsci13030261

