Using Video-Based Simulations to Foster pPCK/ePCK—New Thoughts on the Refined Consensus Model of PCK
Abstract
:1. Introduction
2. Theoretical Background
2.1. The Refined Consensus Model (RCM) of PCK
2.1.1. The Collective PCK (cPCK)
2.1.2. The Personal PCK (pPCK)
2.1.3. The Enacted PCK (ePCK)
2.2. Simulation-Based Tools in Teacher Education
The Learning Environment DiKoBi
2.3. Scaffolding
3. Research Questions and Objectives
4. Method
4.1. Sample
4.2. The cPCK-Test
4.3. Development of Scaffolds
4.4. Study Design
4.5. Measurements and Data Analyses
5. Results
5.1. RQ1: The Learning Environment
5.2. RQ2: Pre-Service Teachers’ cPCK
6. Discussion
6.1. Effects of Scaffolding on pPCK/Macro-ePCKReflect + Plan
6.2. Development of cPCK when Training pPCK/macro-ePCKReflect + Plan
6.3. Limitations
6.4. Implications
6.5. Implications for the RCM of PCK—Knowledge Acquisition
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Abbreviation | |
---|---|
PK | Pedagogical knowledge |
CK | Content knowledge |
PCK | Pedagogical content knowledge |
CM | Consensus model of PCK |
RCM | Refined consensus model of PCK |
cPCK | Collective PCK |
pPCK | Personal PCK |
ePCK | Enacted PCK |
ePCKTeach | Enacted PCK, step “teach” |
ePCKPlan | Enacted PCK, step “plan” |
ePCKReflect | Enacted PCK, step “reflect” |
ePCKReflect + Plan | Enacted PCK, steps “reflect” and “plan” |
DiKoBi | Name of the video-based learning environment |
DiKoBiIAssess | Video-based learning environment, the first lesson in the assess version (used for measuring pPCK/ePCKReflect + Plan in the pre-test) |
DiKoBiIILearn | Video-based learning environment, the second lesson in the learn version (with scaffolds included as an intervention) |
DiKoBiIIIAssess | Video-based learning environment, the third lesson in the assess version (used for measuring pPCK/ePCKReflect + Plan in the post-test) |
References
- Carlson, J.; Daehler, K.R.; Alonzo, A.C.; Barendsen, E.; Berry, A.; Borowski, A.; Carpendale, J.; Kam Ho Chan, K.; Cooper, R.; Friedrichsen, P.; et al. The Refined Consensus Model of Pedagogical Content Knowledge in Science Education. In Repositioning Pedagogical Content Knowledge in Teachers’ Knowledge for Teaching Science; Hume, A., Cooper, R., Borowski, A., Eds.; Springer: Singapore, 2019; pp. 77–94. ISBN 978-981-13-5897-5. [Google Scholar]
- Mientus, L.; Hume, A.; Wulff, P.; Meiners, A.; Borowski, A. Modelling STEM Teachers’ Pedagogical Content Knowledge in the Framework of the Refined Consensus Model: A Systematic Literature Review. Educ. Sci. 2022, 12, 385. [Google Scholar] [CrossRef]
- Shulman, L.S. Those who understand: Knowledge growth in teaching. Educ. Reseacher 1986, 15, 4–14. [Google Scholar] [CrossRef]
- Blömeke, S.; Hsieh, F.-J.; Kaiser, G.; Schmidt, W.H. International Perspectives on Teacher Knowledge, Beliefs and Opportunities to Learn; Springer: Dordrecht, The Netherlands, 2014; ISBN 978-94-007-6436-1. [Google Scholar]
- Baumert, J.; Kunter, M. The COACTIV Model of Teachers’ Professional Competence. In Cognitive Activation in the Mathematics Classroom and Professional Competence of Teachers; Kunter, M., Baumert, J., Blum, W., Klusmann, U., Krauss, S., Neubrand, M., Eds.; Springer: Boston, MA, USA, 2013; pp. 25–48. ISBN 978-1-4614-5148-8. [Google Scholar]
- Voss, T.; Kunter, M. Teachers’ General Pedagogical/Psychological Knowledge. In Cognitive Activation in the Mathematics Classroom and Professional Competence of Teachers; Kunter, M., Baumert, J., Blum, W., Klusmann, U., Krauss, S., Neubrand, M., Eds.; Springer: Boston, MA, USA, 2013; pp. 207–227. ISBN 978-1-4614-5148-8. [Google Scholar]
- Schmelzing, S.; van Driel, J.H.; Jüttner, M.; Brandenbusch, S.; Sandmann, A.; Neuhaus, B.J. Development, Evaluation, and Validation of a Paper-pencil Test for Measuring two Components of Biology Teachers’ Pedagogical Content Knowledge Concerning the “Cardiovascular System”. Int. J. Sci. Math. Educ. 2013, 11, 1369–1390. [Google Scholar] [CrossRef]
- Kramer, M.; Förtsch, C.; Boone, W.J.; Seidel, T.; Neuhaus, B.J. Investigating Pre-Service Biology Teachers’ Diagnostic Competences: Relationships between Professional Knowledge, Diagnostic Activities, and Diagnostic Accuracy. Educ. Sci. 2021, 11, 89. [Google Scholar] [CrossRef]
- Förtsch, C.; Werner, S.; von Kotzebue, L.; Neuhaus, B.J. Effects of biology teachers’ professional knowledge and cognitive activation on students’ achievement. Int. J. Sci. Educ. 2016, 38, 2642–2666. [Google Scholar] [CrossRef]
- Baumert, J.; Kunter, M.; Blum, W.; Brunner, M.; Voss, T.; Jordan, A.; Klusmann, U.; Krauss, S.; Neubrand, M.; Tsai, Y.-M. Teachers’ Mathematical Knowledge, Cognitive Activation in the Classroom, and Student Progress. Am. Educ. Res. J. 2010, 47, 133–180. [Google Scholar] [CrossRef] [Green Version]
- Grossman, P.; McDonald, M. Back to the Future: Directions for Research in Teaching and Teacher Education. Am. Educ. Res. J. 2008, 45, 184–205. [Google Scholar] [CrossRef]
- Cauet, E.; Liepertz, S.; Borowski, A.; Fischer, H.E. Does it matter what we measure? Domain-specific professional knowledge of physics teachers. Schweiz. Z. Für Bild. 2015, 37, 462–479. [Google Scholar] [CrossRef]
- Gartmeier, M.; Bauer, J.; Fischer, M.R.; Hoppe-Seyler, T.; Karsten, G.; Kiessling, C.; Möller, G.E.; Wiesbeck, A.; Prenzel, M. Fostering professional communication skills of future physicians and teachers: Effects of e-learning with video cases and role-play. Instr. Sci. 2015, 43, 443–462. [Google Scholar] [CrossRef]
- Südkamp, A.; Möller, J.; Pohlmann, B. Der simulierte Klassenraum. Z. Für Pädagogische Psychol. 2008, 22, 293–309. [Google Scholar] [CrossRef]
- Blömeke, S.; Gustafsson, J.-E.; Shavelson, R.J. Beyond Dichotomies. Z. Für Psychol. 2015, 223, 3–13. [Google Scholar] [CrossRef]
- Kramer, M.; Förtsch, C.; Stürmer, J.; Förtsch, S.; Seidel, T.; Neuhaus, B.J. Measuring Biology Teachers’ Professional Vision: Development and Validation of a Video-based Assessment Tool. Cogent. J. 2020, 7, 1823155. [Google Scholar] [CrossRef]
- Irmer, M.; Traub, D.; Kramer, M.; Förtsch, C.; Neuhaus, B.J. Scaffolding pre-service biology teachers’ diagnostic competences in a video-based Learning environment: Measuring the effect of different types of scaffolds. Int. J. Sci. Educ. 2022, 44, 1506–1526. [Google Scholar] [CrossRef]
- Fischer, J.; Machts, N.; Bruckermann, T.; Möller, J.; Harms, U. The Simulated Classroom Biology—A simulated classroom environment for capturing the action-oriented professional knowledge of pre-service teachers about evolution. Comput. Assist. Learn. 2022, 38, 1765–1778. [Google Scholar] [CrossRef]
- Codreanu, E.; Sommerhoff, D.; Huber, S.; Ufer, S.; Seidel, T. Between authenticity and cognitive demand: Finding a balance in designing a video-based simulation in the context of mathematics teacher education. Teach. Teach. Educ. 2020, 95, 103146. [Google Scholar] [CrossRef]
- Richter, E.; Hußner, I.; Huang, Y.; Richter, D.; Lazarides, R. Video-based reflection in teacher education: Comparing virtual reality and real classroom videos. Comput. Educ. 2022, 190, 104601. [Google Scholar] [CrossRef]
- Chernikova, O.; Heitzmann, N.; Fink, M.C.; Timothy, V.; Seidel, T.; Fischer, F. Facilitating Diagnostic Competences in Higher Education—a Meta-Analysis in Medical and Teacher Education. Educ. Psychol. Rev. 2020, 32, 157–196. [Google Scholar] [CrossRef] [Green Version]
- Berry, A.; Friedrichsen, P.; Loughran, J. Re-Examining Pedagogical Content Knowledge in Science Education; Routledge: London, UK, 2015; ISBN 9781315735665. [Google Scholar]
- Alonzo, A.C.; Berry, A.; Nilsson, P. Unpacking the Complexity of Science Teachers’ PCK in Action: Enacted and Personal PCK. In Repositioning Pedagogical Content Knowledge in Teachers’ Knowledge for Teaching Science; Hume, A., Cooper, R., Borowski, A., Eds.; Springer: Singapore, 2019; pp. 273–288. ISBN 978-981-13-5897-5. [Google Scholar]
- Grossmann, P.; Compton, C.; Igra, D.; Ronfeldt, M.; Shahan, E.; Williamson, P.W. Teaching Practice: A Cross-Professional Perspectie. Teach. Coll. Rec. 2009, 111, 2055–2100. [Google Scholar] [CrossRef]
- Roth, K.J.; Bintz, J.; Wickler, N.I.Z.; Hvidsten, C.; Taylor, J.; Beardsley, P.M.; Caine, A.; Wilson, C.D. Design principles for effective video-based professional development. Int. J. Stem. Educ. 2017, 4, 31. [Google Scholar] [CrossRef] [Green Version]
- Seidel, T.; Stürmer, K. Modeling and Measuring the Structure of Professional Vision in Preservice Teachers. Am. Educ. Res. J. 2014, 51, 739–771. [Google Scholar] [CrossRef] [Green Version]
- Behling, F.; Förtsch, C.; Neuhaus, B.J. Sprachsensibler Biologieunterricht—Förderung professioneller Handlungskompetenz und professioneller Wahrnehmung durch videogestützte live-Unterrichtsbeobachtung. Eine Projektbeschreibung. ZfDN 2019, 25, 307–316. [Google Scholar] [CrossRef]
- Gaudin, C.; Chaliès, S. Video viewing in teacher education and professional development: A literature review. Educ. Res. Rev. 2015, 16, 41–67. [Google Scholar] [CrossRef]
- Santagata, R.; Guarino, J. Using video to teach future teachers to learn from teaching. ZDM Math. Educ. 2011, 43, 133–145. [Google Scholar] [CrossRef] [Green Version]
- Wood, D.; Bruner, J.S.; Ross, G. The role of tutoring in problem solving. J. Child Psychol. Psychiatry 1976, 17, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Vygotskij, L.S. Interaction between learning and development. In Mind in Society: The Development of Higher Psychological Processes, 2nd ed.; Cole, M., Vygotskij, L.S., Eds.; Harvard University Press: Cambridge, MA, USA, 1979; pp. 79–91. ISBN 0674576284. [Google Scholar]
- Hannafin, M.; Land, S.; Oliver, K. Open Learning Environments: Foundations, methods, and models. In Instructional Design Theories and Models: A New Paradigm of Instructional Theory; Reigeluth, C.M., Ed.; Lawrence Erlbaum Associates, Inc.: Mahwah, NJ, USA, 1999; pp. 115–140. [Google Scholar]
- Belland, B.R. Computer-Based Scaffolding Strategy. In Instructional Scaffolding in STEM Education; Belland, B.R., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 107–126. ISBN 978-3-319-02564-3. [Google Scholar]
- Quintana, C.; Reiser, B.J.; Davis, E.A.; Krajcik, J.; Fretz, E.; Duncan, R.G.; Kyza, E.; Edelson, D.; Soloway, E. A Scaffolding Design Framework for Software to Support Science Inquiry. J. Learn. Sci. 2004, 13, 337–386. [Google Scholar] [CrossRef]
- Simons, K.D.; Klein, J.D. The Impact of Scaffolding and Student Achievement Levels in a Problem-based Learning Environment. Instr. Sci. 2007, 35, 41–72. [Google Scholar] [CrossRef]
- Chernikova, O.; Heitzmann, N.; Stadler, M.; Holzberger, D.; Seidel, T.; Fischer, F. Simulation-Based Learning in Higher Education: A Meta-Analysis. Rev. Educ. Res. 2020, 90, 499–541. [Google Scholar] [CrossRef]
- Park, S.; Oliver, J.S. Revisiting the Conceptualisation of Pedagogical Content Knowledge (PCK): PCK as a Conceptual Tool to Understand Teachers as Professionals. Res. Sci. Educ. 2008, 38, 261–284. [Google Scholar] [CrossRef]
- Nilsson, P. When Teaching Makes a Difference: Developing science teachers’ pedagogical content knowledge through learning study. Int. J. Sci. Educ. 2014, 36, 1794–1814. [Google Scholar] [CrossRef]
- Wilson, C.D.; Borowski, A.; van Driel, J. Perspectives on the Future of PCK Research in Science Education and Beyond. In Repositioning Pedagogical Content Knowledge in Teachers’ Knowledge for Teaching Science; Hume, A., Cooper, R., Borowski, A., Eds.; Springer: Singapore, 2019; pp. 291–302. ISBN 978-981-13-5897-5. [Google Scholar]
- Behling, F.; Förtsch, C.; Neuhaus, B.J. The Refined Consensus Model of Pedagogical Content Knowledge (PCK): Detecting Filters between the Realms of PCK. Educ. Sci. 2022, 12, 592. [Google Scholar] [CrossRef]
- Schmiemann, P.; Linsner, M.; Neuhaus, B.J.; Wenning, S.; Sandmann, A. Kontextorientiertes Lernen in Biologie: Aufgaben und Arbeitsmaterialien. In Aufgaben im Kontext: Biologie: Kontextorientierung; Basiskonzepte; Bildungsstandards & Kompetenzen; naturwissenschaftliche Denk- und Arbeitsweisen; Konzepte, Ideen und Materialien für einen modernen Biologieunterricht, 1st ed.; Schmiemann, P., Sandmann, A., Eds.; Friedrich: Seelze, Germany, 2011; pp. 4–12. [Google Scholar]
- Kattmann, U. Alltagsvorstellungen und Fachwissen-oder: Warum (Um-)Lernen so schwer fällt. Seminar 2007, 13, 9–21. [Google Scholar]
- Nodari, C.; Steinmann, C. Fachdingsda: Fächerorientierter Grundwortschatz für das 5.-9. Schuljahr, 1. Aufl; Lehrmittelverlag des Kantons Aargau: Buchs, Switzerland, 2008; ISBN 9783906738796. [Google Scholar]
- Mayer, J.; Grube, C.; Möller, A. Kompetenzmodell naturwissenschaftlicher Erkenntnisgewinnung. In Lehr- und Lernforschung in der Biologiedidaktik; Harms, U., Sandmann, A., Eds.; Studienverlag: Innsbruck, Austria, 2008; pp. 63–79. [Google Scholar]
- Upmeier zu Belzen, A.; Krüger, D. Modellkompetenz im Biologieunterricht. ZfDN 2010, 16, 41–57. [Google Scholar]
- Wadouh, J.; Liu, N.; Sandmann, A.; Neuhaus, B.J. The Effect of Knowledge Iinking levels in Biology lessons upon students’ knowledge structure. Int. J. Sci. Math. Educ. 2014, 12, 25–47. [Google Scholar] [CrossRef]
- Malec, J.F.; Torsher, L.C.; Dunn, W.F.; Wiegmann, D.A.; Arnold, J.J.; Brown, D.A.; Phatak, V. The mayo high performance teamwork scale: Reliability and validity for evaluating key crew resource management skills. Simul. Healthc. 2007, 2, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Leahy, W.; Sweller, J. Cognitive load theory and the effects of transient information on the modality effect. Instr. Sci. 2016, 44, 107–123. [Google Scholar] [CrossRef]
- Smith, J.P.; diSessa, A.A.; Roschelle, J. Misconceptions Reconceived: A Constructivist Analysis of Knowledge in Transition. J. Learn. Sci. 1994, 3, 115–163. [Google Scholar] [CrossRef]
- Moosbrugger, H.; Kelava, A. (Eds.) Testtheorie und Fragebogenkonstruktion: Mit 66 Abbildungen und 41 Tabellen; 2. Aktualisierte und Überarbeitete Auflage; Springer: Berlin/Heidelberg, Germany, 2012; ISBN 3642200710. [Google Scholar]
- Döring, N.; Bortz, J. Forschungsmethoden und Evaluation in den Sozial- und Humanwissenschaften; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 978-3-642-41088-8. [Google Scholar]
- Squire, L.R. Declarative and nondeclarative memory: Multiple brain systems supporting learning and memory. J. Cogn. Neurosci. 1992, 4, 232–243. [Google Scholar] [CrossRef]
- Gregory, T.R. Understanding Natural Selection: Essential Concepts and Common Misconceptions. Evol. Educ. Outreach 2009, 2, 156–175. [Google Scholar] [CrossRef] [Green Version]
Classroom Situation | Beginning of the Lesson, Activation of Prior Knowledge and Ideas | ||||
---|---|---|---|---|---|
What is happening in the video | The lesson starts with the teacher asking the students what they remember from the last lesson (sensory organs). Afterward, the teacher introduces the topic of the current lesson (skin as a sensory organ). | ||||
Task describe | Students tell their prior knowledge without dealing with the subject of the previous lesson in more depth. | The teacher names the topic of the lesson instead of letting the students formulate it. | The teacher only asks reproductive questions; no explanations by the students are required. | No problem orientation. | No example, no context, nothing new or surprising, and no relevance for everyday life is pointed out; therefore, the students are not motivated. |
Task explain | The students are not cognitively activated. They should connect their prior knowledge to subordinated concepts at the beginning of a lesson. | No sufficient activation of the students. There is no catch component to create situational interest. | |||
Task alternative strategy | The teacher could start the lesson with a cognitive conflict leading to a problem-orientated question that could then serve as the topic of the lesson. The teacher could activate the prior knowledge of the students by asking concept-orientated questions, instead of just letting the students repeat what they remember from the last lesson. | To create situational interest, an experiment, something surprising or something bringing up more relevance for everyday life, could serve as a catch component. |
Construct | Item | Relevant Literature (Example) |
---|---|---|
The beginning of a lesson and the activation of prior knowledge and ideas | The use of everyday and real-life context at the beginning of a lesson results in a better understanding, which can generate interest in the students.1 | [41] |
Dealing with students’ ideas and misconceptions | Knowing about students’ pre-conceptions is only useful for new, very complex content since the students’ pre-conceptions and the scientific concepts are sometimes far apart.2 | [42] |
Use of technical terms and language | By defining technical terms in class, they are put in context. New terms can be linked to existing concepts making them easier to remember.1 | [43] |
Use of experiments | According to Mayer, in the first step of the scientific inquiry process, a hypothesis is generated to be tested.2 | [44] |
Use of models | The purpose of models is not only to provide explanations of relationships and phenomena that are already known, but also to predict future findings.1 | [45] |
Transfer of knowledge at the end of a lesson | To achieve cognitive activation at the end of a lesson, students can be asked to reproduce the content of the lesson, as this will activate their newly acquired knowledge.2 | [46] |
Treatment | M | SD | N | |
---|---|---|---|---|
Pre-test | cPCK-scaffolds | 13.00 | 10.68 | 35 |
pPCK-scaffolds | 12.61 | 9.70 | 28 | |
control (no scaffolds) | 13.00 | 10.32 | 15 | |
Post-test | cPCK-scaffolds | 15.89 | 12.78 | 35 |
pPCK-scaffolds | 16.79 | 11.10 | 28 | |
control (no scaffolds) | 13.07 | 8.05 | 15 |
Treatment | M | SD | N | |
---|---|---|---|---|
Pre-test | cPCK-scaffolds | 34.04 | 4.98 | 35 |
pPCK-scaffolds | 33.07 | 5.81 | 28 | |
control (no scaffolds) | 33.87 | 5.63 | 15 | |
Post-test | cPCK-scaffolds | 33.11 | 6.43 | 35 |
pPCK-scaffolds | 32.86 | 5.58 | 28 | |
control (no scaffolds) | 33.07 | 5.05 | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irmer, M.; Traub, D.; Böhm, M.; Förtsch, C.; Neuhaus, B.J. Using Video-Based Simulations to Foster pPCK/ePCK—New Thoughts on the Refined Consensus Model of PCK. Educ. Sci. 2023, 13, 261. https://doi.org/10.3390/educsci13030261
Irmer M, Traub D, Böhm M, Förtsch C, Neuhaus BJ. Using Video-Based Simulations to Foster pPCK/ePCK—New Thoughts on the Refined Consensus Model of PCK. Education Sciences. 2023; 13(3):261. https://doi.org/10.3390/educsci13030261
Chicago/Turabian StyleIrmer, Marie, Dagmar Traub, Marina Böhm, Christian Förtsch, and Birgit J. Neuhaus. 2023. "Using Video-Based Simulations to Foster pPCK/ePCK—New Thoughts on the Refined Consensus Model of PCK" Education Sciences 13, no. 3: 261. https://doi.org/10.3390/educsci13030261
APA StyleIrmer, M., Traub, D., Böhm, M., Förtsch, C., & Neuhaus, B. J. (2023). Using Video-Based Simulations to Foster pPCK/ePCK—New Thoughts on the Refined Consensus Model of PCK. Education Sciences, 13(3), 261. https://doi.org/10.3390/educsci13030261