Culturo-Scientific Storytelling
Abstract
:1. Introduction
2. Theoretical Framework
2.1. The Structure of Disciplinary Knowledge
2.2. Scientific Skills of the Modern Day: Culturo-Scientific Thinking
3. Storytelling for Culturo-Scientific Thinking
4. The Field of Quantum Science and Technologies
4.1. QST in the Discipline-Culture Framework
4.2. Culturo-Scientific Storytelling for QST
4.3. Outreach Design for QST
4.4. Discussion: The Culturo-Scientific Narrative in QST
5. Concluding Thoughts
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosa, H. Beschleunigung und Entfremdung—Entwurf einer Kritischen Theorie Spätmoderner Zeitlichkeit, Suhrkamp [Acceleration and Alienation—Towards a Critical Theory of Late-Modern Temporality]; Nordic Summer University Press: Aarhus, Denmark, 2010. [Google Scholar]
- Future-Oriented Science Education to Enhance Responsibility and Engagement in the Society of Acceleration and Uncertainty (FEDORA); Oxford University: Oxford, UK, 2020; Available online: http://www.education.ox.ac.uk/research/future-oriented-science-education-to-enhance-responsibility-and-engagement-in-the-society-of-acceleration-and-uncertainty-fedora/ (accessed on 18 March 2022).
- Sen, A. Nobel Lecture. 1998. Available online: https://www.nobelprize.org/uploads/2018/06/sen-lecture.pdf (accessed on 18 March 2022).
- Cohn, J.P. Citizen science: Can volunteers do real research? BioScience 2008, 58, 192–197. [Google Scholar] [CrossRef] [Green Version]
- Duiveman, R. Making research relevant to policymaking: From brokering boundaries to drawing on practices. Policy Stud. 2020, 41, 23–41. [Google Scholar] [CrossRef]
- Mackay, S.M.; Tan, E.W.; Warren, D.S. Developing a new generation of scientist communicators through effective public outreach. Commun. Chem. 2020, 3, 76. [Google Scholar] [CrossRef]
- Leshner, A.I. Outreach Training Needed. Science 2007, 315, 161. [Google Scholar] [CrossRef] [Green Version]
- Science outreach in the post-truth age. Nature Nanotech. 2017, 12, 929. [CrossRef]
- Gregory, T.R. Understanding Natural Selection: Essential Concepts and Common Misconceptions. Evol. Educ. Outreach 2009, 2, 156–175. [Google Scholar] [CrossRef] [Green Version]
- Bohlin, G.; Göransson, A.; Höst, G.E.; Tibell, L.A.E. A Conceptual Characterization of Online Videos Explaining Natural Selection. Sci. Educ. 2017, 26, 975–999. [Google Scholar] [CrossRef] [Green Version]
- Acín, A.; Bloch, I.; Buhrman, H.; Calarco, T.; Eichler, C.; Eisert, J.; Esteve, D.; Gisin, N.; Glaser, S.J.; Jelezko, F.; et al. The quantum technologies roadmap: A European community view. New J. Phys. 2018, 20, 080201. [Google Scholar] [CrossRef]
- Fukai, R.; Sakai, Y.; Fujita, T.; Kiyama, H.; Ludwig, A.; Wieck, A.D.; Oiwa, A. Detection of photogenerated single electrons in a lateral quantum dot with a surface plasmon antenna. Appl. Phys. Express 2021, 14, 125001. [Google Scholar] [CrossRef]
- MetaboliQs. A Breakthrough in Cardiac Metabolic MR Imaging’, Fraunhofer Institute for Applied Solid State Physics IAF. Available online: https://www.metaboliqs.eu/en/news-events/MetaboliQs_Kick-off.html (accessed on 18 March 2022).
- Riedel, M.; Kovacs, M.; Zoller, P.; Mlynek, J.; Calarco, T. Europe’s Quantum Flagship initiative. Quantum Sci. Technol. 2019, 4, 020501. [Google Scholar] [CrossRef]
- Strategic Research Agenda. Quantum Flagship, EU Publications. Available online: https://ec.europa.eu/newsroom/dae/document.cfm?doc_id=65402 (accessed on 18 March 2022).
- Wilk, A.; Spindler, M.; Scherer, H. Scholar Development: A Conceptual Guide for Outreach and Teaching. NACTA J. 2016, 60, 385–397. [Google Scholar]
- National Science Foundation. Perspectives on Broader Impacts. 2014. Available online: https://www.nsf.gov/od/oia/publications/Broader_Impacts.pdf (accessed on 18 March 2022).
- European Commission. Outreach and Communication Activities in the MSCA under Horizon. 2020. Available online: https://ec.europa.eu/assets/eac/msca/documents/documentation/publications/outreach_activities_en.pdf (accessed on 18 March 2022).
- Rajput, A.S.D. India’s Ph.D. Scholar Outreach Requirement. Science 2018, 359, 1343. [Google Scholar] [PubMed]
- Public Outreach Project. Department of Astronomy, Harvard University. Available online: https://astronomy.fas.harvard.edu/public-outreach-project (accessed on 18 March 2022).
- de Koven, A.; Trumbull, D.J. Science Graduate Students Doing Science Outreach: Participation Effects and Perceived Barriers to Participation. Electron. J. Res. Sci. Math. Educ. 2002, 7, 1. [Google Scholar]
- St Angelo, S.K. Encouraging the Art of Communicating Science to Nonexperts with Don’t Be Such a Scientist. J. Chem. Educ. 2018, 95, 804–809. [Google Scholar] [CrossRef]
- McCartney, M.; Childers, C.; Baiduc, R.R.; Barnicle, K. Annotated Primary Literature: A Professional Development Opportunity in Science Communication for Graduate Students and Postdocs. J. Microbiol. Biol. Educ. 2018, 19, 1–19. [Google Scholar] [CrossRef] [Green Version]
- QuTE4E Quantum Technologies Education for Everyone. Available online: https://qtedu.eu/project/quantum-technologies-education-everyone (accessed on 18 March 2022).
- Gardner, H. Five Minds for the Future; Harvard Business School Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Schwab, J. Structure of the Disciplines: Meanings and Significances; Ford, G.W., Pugno, L., Eds.; The Structure of Knowledge and the Curriculum; Rand McNally: Chicago, IL, USA, 1964; pp. 6–30. [Google Scholar]
- Tseitlin, M.; Galili, I. Physics Teaching in the Search for Its Self: From Physics as a Discipline to Physics as a Discipline-Culture. Sci. Educ. 2005, 14, 235–261. [Google Scholar] [CrossRef]
- University of Cophenhagen, Niels Bohr Institute, Course: “Fluid Mechanics”. Available online: https://kurser.ku.dk/course/NFYB21003U/ (accessed on 18 March 2022).
- Griffiths, D.J. Introduction to Quantum Mechanics; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2005. [Google Scholar]
- IOP Publishing. Laser Physics; IOP Publishing: Bristol, UK, 2013. [Google Scholar]
- Grimellini Tomasini, N. Teaching Physics from a Cultural Perspective: Examples from Research on Physics Education. In Proceedings of the International School of Physics ‘‘E. Fermi’’, Course CLVI ‘‘Research on Physics Education’’, Bologna, Italy, 15–25 July 2003; Redish, E.F., Vicentini, M., Eds.; IOS Press: Amsterdam, The Netherlands, 2004; pp. 559–582. [Google Scholar]
- Levrini, O. Teaching Modern Physics from a Cultural Perspective: An Example of Educational Reconstruction of Spacetime Theories. In Proceedings of the International School of Physics ‘‘E. Fermi’’, Course CLVI ‘‘Research on Physics Education’’, Bologna, Italy, 8–13 July 2017; Redish, E.F., Vicentini, M., Eds.; IOS Press: Amsterdam, The Netherlands, 2004; pp. 621–628. [Google Scholar]
- McKagan, S.B.; Perkins, K.K.; Wieman, C.E. Why we should teach the Bohr model and how to teach it effectively. Phys. Rev. Spéc. Top. Phys. Educ. Res. 2008, 4, 010103. [Google Scholar] [CrossRef] [Green Version]
- Svidzinsky, A.A.; Scully, M.O.; Herschbach, D.R. Bohr’s 1913 molecular model revisited. Proc. Natl. Acad. Sci. USA 2005, 102, 11985–11988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuhn, D. What is Scientific Thinking and How Does it Develop? In The Wiley-Blackwell Handbook of Childhood Cognitive Development; Goswami, U., Ed.; Wiley-Blackwell: Oxford, UK, 2010. [Google Scholar]
- Privitera, G.J.; Ahlgrim-Delzell, L. Research Methods for Education; SAGE Publications: Thousand Oaks, CA, USA, 2018. [Google Scholar]
- Chiofalo, M. The Physics of Everyday Life Toolbox for Basic Physics Courses. In Proceedings of the Higher Education Learning Methodologies and Technologies Online. HELMeTO 2021, Pisa, Italy, 9–10 September 2021; Communications in Computer and Information Science. Springer: Cham, Switzerland, 2022; Volume 1542. [Google Scholar] [CrossRef]
- Stathopoulou, C.; Vosniadou, S. Exploring the relationship between physics-related epistemological beliefs and physics understanding. Contemp. Educ. Psychol. 2007, 32, 255–281. [Google Scholar] [CrossRef]
- Hammer, D. Epistemological beliefs in introductory physics. Cogn. Instr. 1994, 12, 151–183. [Google Scholar] [CrossRef]
- Lising, L.; Elby, A. The impact of epistemology on learning: A case study from introductory physics. Am. J. Phys. 2005, 73, 372–382. [Google Scholar] [CrossRef] [Green Version]
- May, D.B.; Etkina, E. College physics students’ epistemological self-reflection and its relationship to conceptual learning. Am. J. Phys. 2002, 70, 1249–1258. [Google Scholar] [CrossRef]
- Ryder, J.; Leach, J. University science students’ experiences of investigative project work and their images of science. Int. J. Sci. Educ. 1999, 21, 945–956. [Google Scholar] [CrossRef]
- Madsen, A.; McKagan, S.B.; Sayre, E.C. Best Practices for Administering Attitudes and Beliefs Surveys in Physics. Phys. Teach. 2020, 58, 90–93. [Google Scholar] [CrossRef] [Green Version]
- Elby, A. Helping physics students learn how to learn. Am. J. Phys. 2001, 69, S54–S64. [Google Scholar] [CrossRef]
- Mamlok-Naaman, R.; Ben-Zvi, R.; Hofstein, A.; Menis, J.; Erduran, S. Learning Science through a Historical Approach: Does It Affect the Attitudes of Non-Science-Oriented Students towards Science? Int. J. Sci. Math. Educ. 2005, 3, 485–507. [Google Scholar] [CrossRef]
- Galili, I. Teaching Optics: A Historico-Philosophical Perspective. In International Handbook of Research in History, Philosophy and Science Teaching; Matthews, M.R., Ed.; Springer: Heidelberg/Berlin, Germany, 2014; pp. 97–128. [Google Scholar]
- Levrini, O. The Role of History and Philosophy in Research on Teaching and Learning of Relativity. In International Handbook of Research in History, Philosophy and Science Teaching; Matthews, M.R., Ed.; Springer: Dordrecht, The Netherlands, 2014; pp. 157–181. [Google Scholar]
- Einstein, A.; Infeld, L. The Evolution of Physics; Cambridge University Press: Cambridge, UK, 1938. [Google Scholar]
- Kind, P.M.; Kind, V. Creativity in Science Education: Perspectives and Challenges for Developing School Science. Stud. Sci. Educ. 2007, 43, 1–37. [Google Scholar] [CrossRef]
- Hadzigeorgiou, Y.; Fokialis, P.; Kabouropoulou, M. Thinking about Creativity in Science Education. Creative Educ. 2012, 03, 603–611. [Google Scholar] [CrossRef] [Green Version]
- Hadzigeorgiou, Y. Narrative Thinking and Storytelling in Science Education. In Imaginative Science Education: The Central Role of Imagination in Science Education; Hadzigeorgiou, Y., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 83–119. [Google Scholar]
- Plakitsi, K.; Kokkotas, V. Time for Education: Ontology, Epistemology and Discursiveness in Teaching Fundamental Scientific Topics. AIP Conf. Proc. 2010, 1203, 1347. [Google Scholar]
- Bruner, J.S. Frames for Thinking: Ways of Making Meaning. In Modes of Thought: Explorations in Culture and Cognition; Olson, D., Torrance, N., Eds.; Cambridge University Press: New York, NY, USA, 1996; pp. 93–105. [Google Scholar]
- McCloskey, D.N. Storytelling in Economics. In Narrative in Culture: The Uses of Storytelling in the Sciences, Philosophy, and Literature; Nash, C., Ed.; Routledge: London, UK, 1990; pp. 5–22. [Google Scholar]
- Levrini, O.; Tasquier, G.; Branchetti, L.; Barelli, E. Developing future-scaffolding skills through science education. Int. J. Sci. Educ. 2019, 41, 2647–2674. [Google Scholar] [CrossRef]
- Levrini, O.; Tasquier, G.; Barelli, E.; Laherto, A.; Palmgren, E.; Branchetti, L.; Wilson, C. Recognition and operationalization of Future-Scaffolding Skills: Results from an empirical study of a teaching–learning module on climate change and futures thinking. Sci. Educ. 2021, 105, 281–308. [Google Scholar] [CrossRef]
- Rasa, T.; Palmgren, E.; Laherto, A. Futurising science education: Students’ experiences from a course on futures thinking and quantum computing. Instr. Sci. 2022, 50, 425–447. [Google Scholar] [CrossRef]
- Kaput, K. Evidence for Student-Centered Learning. Educ. Evol. 2018, 12, 28. [Google Scholar]
- Asoodeh, M.H.; Zarepour, M. The Impact of Student—Centered Learning on Academic Achievement and Social Skills. Procedia Soc. Behav. Sci. 2012, 46, 560–564. [Google Scholar] [CrossRef] [Green Version]
- Granger, E.M.; Bevis, T.H.; Saka, Y.; Southerland, S.A.; Sampson, V.; Tate, R.L. The Efficacy of Student-Centered Instruction in Supporting Science Learning. Science 2012, 338, 105–108. [Google Scholar] [CrossRef] [Green Version]
- Komoroske, L.M.; Hameed, S.O.; Szoboszlai, A.I.; Newsom, A.J.; Williams, S.L. A Scientist’s Guide to Achieving Broader Impacts through K–12 STEM Collaboration. BioScience 2015, 65, 313–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weissman, E.Y.; Merzel, A.; Katz, N.; Galili, I. Teaching quantum mechanics in high-school—Discipline-Culture approach. J. Phys. Conf. Ser. 2019, 1287, 012003. [Google Scholar] [CrossRef] [Green Version]
- Levrini, O.; Bertozzi, E.; Gagliardi, M.; Tomasini, N.G.; Pecori, B.; Tasquier, G.; Galili, I. Meeting the Discipline-Culture Framework of Physics Knowledge: A Teaching Experience in Italian Secondary School. Sci. Educ. 2014, 23, 1701–1731. [Google Scholar] [CrossRef]
- Faye, J. Copenhagen Interpretation of Quantum Mechanics. Stanf. Encycl. Philos. 2019. Available online: https://plato.stanford.edu/archives/win2019/entries/qm-copenhagen (accessed on 18 March 2022).
- Tik, M.; Sladky, R.; Luft, C.D.B.; Willinger, D.; Hoffmann, A.; Banissy, M.J.; Bhattacharya, J.; Windischberger, C. Ultra-high-field fMRI insights on insight: Neural correlates of the Aha!-moment. Hum. Brain Mapp. 2018, 39, 3241–3252. [Google Scholar] [CrossRef]
- Danek, A.H.; Fraps, T.; von Müller, A.; Grothe, B.; Öllinger, M. Aha! experiences leave a mark: Facilitated recall of insight solutions. Psychol. Res. 2013, 77, 659–669. [Google Scholar] [CrossRef]
- Auble, P.M.; Franks, J.J.; Soraci, S.A.; Soraci, S.A.; Soraci, S.A. Effort toward comprehension: Elaboration or “aha”? Mem. Cogn 1979, 7, 426–434. [Google Scholar] [CrossRef] [Green Version]
- Laukkonen, R.; Webb, M.E.; Salvi, C.; Tangen, J.M.; Schooler, J. Eureka Heuristic: How feelings of insight signal the quality of a new idea. PsyArXiv 2018. [Google Scholar] [CrossRef]
- Bouchée, T.; Thurlings, M.; de Putter-Smits, L.; Pepin, B. Investigating teachers’ and students’ experiences of quantum physics lessons: Opportunities and challenges. Res. Sci. Technol. Educ. 2021, 1–23. [Google Scholar] [CrossRef]
- Krijtenburg-Lewerissa, K.; Pol, H.J.; Brinkman, A.; van Joolingen, W.R. Insights into teaching quantum mechanics in secondary and lower undergraduate education. Phys. Rev. Phys. Educ. Res. 2017, 13, 010109. [Google Scholar] [CrossRef] [Green Version]
- Di Mauro, M.; Naddeo, A. Introducing Quantum Mechanics in High Schools: A Proposal Based on Heisenberg’s Umdeutung’. Phys. Sci. Forum 2021, 2, 8. [Google Scholar]
- Stadermann, H.K.E.; Berg, E.V.D.; Goedhart, M.J. Analysis of secondary school quantum physics curricula of 15 different countries: Different perspectives on a challenging topic. Phys. Rev. Phys. Educ. Res. 2019, 15, 010130. [Google Scholar] [CrossRef] [Green Version]
- Quantum Moves 2. Science at Home. Available online: https://www.scienceathome.org/games/quantum-moves-2/ (accessed on 18 March 2022).
- Quarks Interactive. Quantum Odyssey. Available online: https://www.quarksinteractive.com/quantum-odyssey-presentation-at-ieee/ (accessed on 18 March 2022).
- Psi and Delta. Georgia Institute of Technology. Available online: https://gvu.gatech.edu/research/projects/psi-and-delta-collaborative-digital-game-learning-quantum-mechanics (accessed on 18 March 2022).
- Particle in a Box. Georgia Institute of Technology. Available online: https://gvu.gatech.edu/research/projects/particle-box-experiential-approach-quantum-mechanics-education (accessed on 18 March 2022).
- Fein, Y.Y.; Geyer, P.; Zwick, P.; Kiałka, F.; Pedalino, S.; Mayor, M.; Gerlich, S.; Arndt, M. Quantum superposition of molecules beyond 25 kDa. Nat. Phys. 2019, 15, 1242–1245. [Google Scholar] [CrossRef]
- Seskir, Z.C.; Migdał, P.; Weidner, C.; Anupam, A.; Case, N.; Davis, N.; Decaroli, C.; Ercan, İ.; Foti, C.; Gora, P.; et al. Quantum Games and Interactive Tools for Quantum Technologies Outreach and Education: A Review and Experiences from the Field. Available online: https://arxiv.org/abs/2202.07756 (accessed on 18 March 2022).
- The Quantum Flytrap. Available online: https://quantumflytrap.com/ (accessed on 18 March 2022).
- Virtual Quantum Optics Lab. Available online: https://www.vqol.org/ (accessed on 18 March 2022).
- The Quantum Mechanics Visualisation Project, QuVis. University of St. Andrews. Available online: https://www.st-andrews.ac.uk/physics/quvis/ (accessed on 18 March 2022).
- Labster. Available online: https://www.labster.com/ (accessed on 18 March 2022).
- Wootton, J. Making Games with Quantum Computers. Available online: https://decodoku.medium.com/games-computers-and-quantum-84bfdd2c0fe0 (accessed on 18 March 2022).
- Mapping the Landscape of Quantum Games. QWorld. Available online: https://anantsharma3728.github.io/Quantum-games/ (accessed on 18 March 2022).
- Qplaylearn. Available online: www.qplaylearn.com (accessed on 18 March 2022).
- Finnish Game Jam. Available online: http://www.finnishgamejam.com/quantumjam2015/games/2014-games/ (accessed on 18 March 2022).
- Lets Talk Quantum Games. Available online: https://qturkey.org/lets-talk-quantum-games/ (accessed on 18 March 2022).
- Toutestquantique Animations. Available online: http://toutestquantique.fr/en/101/ (accessed on 18 March 2022).
- MinutePhysics. Available online: https://www.youtube.com/user/minutephysics (accessed on 18 March 2022).
- Quantum Computing through Comics. Available online: https://artbyphysicistkittyyeung.com/2020/05/24/quantum-computing-through-comics/ (accessed on 18 March 2022).
- Baumgartner, R. The Quantum Jungle, Qplaylearn. Available online: https://qplaylearn.com/quantum-jungle (accessed on 18 March 2022).
- D Space. Available online: https://www.youtube.com/watch?v=imdFhDbWDyM (accessed on 18 March 2022).
- Qiskit. Available online: https://qiskit.org/learn/ (accessed on 18 March 2022).
- de Touzalin, A.; Marcus, C.; Heijman, F.; Cirac, I.; Murray, R.; Calarco, T. Quantum Manifesto: A New Era of Technology. 2016. Available online: https://time.tno.nl/media/7638/quantum_manifesto.pdf (accessed on 18 March 2022).
- Platania, M.C.B.; Bucolo, C. Molecular dynamics simulation techniques as tools in drug discovery and pharmacology: A focus on allosteric drugs. In Allostery; Humana: New York, NY, USA, 2021; pp. 245–254. [Google Scholar]
- Jeon, S. Feeding the World with Die Rolls: Potential Applications of Quantum Computing. Dartm. Undergrad. J. Sci. 2017, 20, 9. [Google Scholar]
- Wei, D.; Tang, W.; Gan, Y.; Xu, X. Graphene quantum dot-sensitized Zn-MOFs for efficient visible-light-driven carbon dioxide reduction. Catal. Sci. Technol. 2020, 10, 5666–5676. [Google Scholar] [CrossRef]
- Hogg, T.; Fattal, D.A.; Chen, K.-Y.; Guha, S. Economic Applications of Quantum Information Processing. In Econophysics and Economics of Games, Social Choices and Quantitative Techniques; Basu, B., Chakravarty, S.R., Chakrabarti, B.K., Gangopadhyay, K., Eds.; Springer: Milano, Italy, 2010; pp. 32–43. [Google Scholar]
- Kop, M. Establishing a Legal-Ethical Framework for Quantum Technology; Social Science Research Network: Rochester, NY, USA, 2021; SSRN; Scholarly Paper ID 3814422; Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3814422 (accessed on 18 March 2022).
- Deutsch, D. Physics, Philosophy and Quantum Technology. In Proceedings of the Sixth International Conference on Quantum Communication, Measurement and Computing, Cambridge, MA, USA, 22–26 July 2002; Rinton Press: Princeton, NJ, USA, 2003. [Google Scholar]
- Earnshaw, R. Interdisciplinary Research and Development—Opportunities and Challenges. In Technology, Design and the Arts—Opportunities and Challenges; Earnshaw, R., Liggett, S., Excell, P., Thalmann, D., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 373–387. [Google Scholar]
- Coenen, C.; Grunwald, A. Responsible research and innovation (RRI) in quantum technology. Ethic Inf. Technol. 2017, 19, 277–294. [Google Scholar] [CrossRef] [Green Version]
- Gosling, C.; Gonsalves, A.J. Lessons from Research Exploring the Underrepresentation of Women in Physics. Phys. Teach. 2020, 58, 342–344. [Google Scholar] [CrossRef]
- Pew Research Center. STEM Jobs See Uneven Progress in Increasing Gender, Racial and Ethnic Diversity. Available online: https://www.pewresearch.org/science/2021/04/01/stem-jobs-see-uneven-progress-in-increasing-gender-racial-and-ethnic-diversity/ (accessed on 18 March 2022).
- The Decide Game. ICFO. Available online: https://www.cccb.org/en/activities/file/decide-game-quantum-technologies/231224 (accessed on 18 March 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goorney, S.; Foti, C.; Santi, L.; Sherson, J.; Yago Malo, J.; Chiofalo, M.L. Culturo-Scientific Storytelling. Educ. Sci. 2022, 12, 474. https://doi.org/10.3390/educsci12070474
Goorney S, Foti C, Santi L, Sherson J, Yago Malo J, Chiofalo ML. Culturo-Scientific Storytelling. Education Sciences. 2022; 12(7):474. https://doi.org/10.3390/educsci12070474
Chicago/Turabian StyleGoorney, Simon, Caterina Foti, Lorenzo Santi, Jacob Sherson, Jorge Yago Malo, and Maria Luisa Chiofalo. 2022. "Culturo-Scientific Storytelling" Education Sciences 12, no. 7: 474. https://doi.org/10.3390/educsci12070474
APA StyleGoorney, S., Foti, C., Santi, L., Sherson, J., Yago Malo, J., & Chiofalo, M. L. (2022). Culturo-Scientific Storytelling. Education Sciences, 12(7), 474. https://doi.org/10.3390/educsci12070474