Fabrication of Maize-Based Nanoparticles at Home: A Research-Based Learning Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Logistics of the Research-Based Activity
2.2. Group of Students
2.3. Quantitative Assessment of Learnings
3. Results
3.1. Fabrication Strategies Adopted by Students
3.2. Qualitative Assessment of Learnings
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mostafavi, E.; Soltantabar, P.; Webster, T.J. Nanotechnology and Picotechnology: A New Arena for Translational Medicine. Biomater. In Biomaterials in Translational Medicine; Academic Press: Cambridge, MA, USA, 2019; pp. 191–212. [Google Scholar] [CrossRef]
- He, X.; Deng, H.; Hwang, H.M. The Current Application of Nanotechnology in Food and Agriculture. J. Food Drug Anal. 2019, 27, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofmann, T.; Lowry, G.V.; Ghoshal, S.; Tufenkji, N.; Brambilla, D.; Dutcher, J.R.; Gilbertson, L.M.; Giraldo, J.P.; Kinsella, J.M.; Landry, M.P.; et al. Technology Readiness and Overcoming Barriers to Sustainably Implement Nanotechnology-Enabled Plant Agriculture. Nat. Food 2020, 1, 416–425. [Google Scholar] [CrossRef]
- Zhao, J.; Lee, V.E.; Liu, R.; Priestley, R.D. Responsive Polymers as Smart Nanomaterials Enable Diverse Applications. Annu. Rev. Chem. Biomol. Eng. 2019, 10, 361–382. [Google Scholar] [CrossRef] [PubMed]
- Bolívar-Monsalve, E.J.; Alvarez, M.M.; Hosseini, S.; Espinosa-Hernandez, M.A.; Ceballos-González, C.F.; Sanchez-Dominguez, M.; Shin, S.R.; Cecen, B.; Hassan, S.; Di Maio, E.; et al. Engineering Bioactive Synthetic Polymers for Biomedical Applications: A Review with Emphasis on Tissue Engineering and Controlled Release. Mater. Adv. 2021, 2, 4447–4478. [Google Scholar] [CrossRef]
- Hussain, N.; Mehdi, M.; Siyal, S.H.; Wassan, R.K.; Hashemikia, S.; Sarwar, M.N.; Yamaguchi, T.; Kim, I.S. Conductive and Antibacterial Cellulose Nanofibers Decorated with Copper Nanoparticles for Potential Application in Wearable Devices. J. Appl. Polym. Sci. 2021, 138, 51381. [Google Scholar] [CrossRef]
- Hussain, N.; Hussain, S.; Mehdi, M.; Khatri, M.; Ullah, S.; Khatri, Z.; Van Langenhove, L.; Kim, I.S. Introducing Deep Eutectic Solvents as a Water-Free Dyeing Medium for Poly (1,4-CYclohexane Dimethylene Isosorbide Terephthalate) PICT Nanofibers. Polymers 2021, 13, 2594. [Google Scholar] [CrossRef]
- Alvarez, M.M.; Aizenberg, J.; Analoui, M.; Andrews, A.M.; Bisker, G.; Boyden, E.S.; Kamm, R.D.; Karp, J.M.; Mooney, D.J.; Oklu, R.; et al. Emerging Trends in Micro- and Nanoscale Technologies in Medicine: From Basic Discoveries to Translation. ACS Nano 2017, 11, 5195–5214. [Google Scholar] [CrossRef]
- Modena, M.M.; Rühle, B.; Burg, T.P.; Wuttke, S. Nanoparticle Characterization: What to Measure? Adv. Mater. 2019, 31, 1901556. [Google Scholar] [CrossRef]
- Qin, L.; Zeng, G.; Lai, C.; Huang, D.; Xu, P.; Zhang, C.; Cheng, M.; Liu, X.; Liu, S.; Li, B.; et al. “Gold Rush” in Modern Science: Fabrication Strategies and Typical Advanced Applications of Gold Nanoparticles in Sensing. Coord. Chem. Rev. 2018, 359, 1–31. [Google Scholar] [CrossRef]
- Abedini-nassab, R.; Pouryosef Miandoab, M.; Şaşmaz, M. Microfluidic Synthesis, Control, and Sensing of Magnetic Nanoparticles: A Review. Micromachines 2021, 12, 768. [Google Scholar] [CrossRef]
- Zhang, T.; Tian, T.; Zhou, R.; Li, S.; Ma, W.; Zhang, Y.; Liu, N.; Shi, S.; Li, Q.; Xie, X.; et al. Design, Fabrication and Applications of Tetrahedral DNA Nanostructure-Based Multifunctional Complexes in Drug Delivery and Biomedical Treatment. Nat. Protoc. 2020, 15, 2728–2757. [Google Scholar] [CrossRef]
- Jain, A.; Singh, S.K.; Arya, S.K.; Kundu, S.C.; Kapoor, S. Protein Nanoparticles: Promising Platforms for Drug Delivery Applications. ACS Biomater. Sci. Eng. 2018, 4, 3939–3961. [Google Scholar] [CrossRef]
- Larm, N.E.; Essner, J.B.; Thon, J.A.; Bhawawet, N.; Adhikari, L.; St. Angelo, S.K.; Baker, G.A. Single Laboratory Experiment Integrating the Synthesis, Optical Characterization, and Nanocatalytic Assessment of Gold Nanoparticles. J. Chem. Educ. 2020, 97, 1454–1459. [Google Scholar] [CrossRef]
- Amaris, Z.N.; Freitas, D.N.; Mac, K.; Gerner, K.T.; Nameth, C.; Wheeler, K.E. Nanoparticle Synthesis, Characterization, and Ecotoxicity: A Research-Based Set of Laboratory Experiments for a General Chemistry Course. J. Chem. Educ. 2017, 94, 1939–1945. [Google Scholar] [CrossRef]
- Schneider, E.M.; Bärtsch, A.; Stark, W.J.; Grass, R.N. Safe One-Pot Synthesis of Fluorescent Carbon Quantum Dots from Lemon Juice for a Hands-On Experience of Nanotechnology. J. Chem. Educ. 2019, 96, 540–545. [Google Scholar] [CrossRef]
- Cooke, J.; Hebert, D.; Kelly, J.A. Sweet Nanochemistry: A Fast, Reliable Alternative Synthesis of Yellow Colloidal Silver Nanoparticles Using Benign Reagents. J. Chem. Educ. 2014, 92, 345–349. [Google Scholar] [CrossRef]
- Shukla, R.; Cheryan, M. Zein: The Industrial Protein from Corn. Ind. Crops Prod. 2001, 13, 171–192. [Google Scholar] [CrossRef]
- Dong, J.; Sun, Q.; Wang, J.Y. Basic Study of Corn Protein, Zein, as a Biomaterial in Tissue Engineering, Surface Morphology and Biocompatibility. Biomaterials 2004, 25, 4691–4697. [Google Scholar] [CrossRef]
- Tavares-Negrete, J.A.; Aceves-Colin, A.E.; Rivera-Flores, D.C.; Díaz-Armas, G.G.; Mertgen, A.S.; Trinidad-Calderón, P.A.; Olmos-Cordero, J.M.; Gómez-López, E.G.; Pérez-Carrillo, E.; Escobedo-Avellaneda, Z.J.; et al. Three-Dimensional Printing Using a Maize Protein: Zein-Based Inks in Biomedical Applications. ACS Biomater. Sci. Eng. 2021, 7, 3964–3979. [Google Scholar] [CrossRef]
- Chen, Y.; Ye, R.; Liu, J. Effects of Different Concentrations of Ethanol and Isopropanol on Physicochemical Properties of Zein-Based Films. Ind. Crops Prod. 2014, 53, 140–147. [Google Scholar] [CrossRef]
- Ye, W.; Zhang, G.; Liu, X.; Ren, Q.; Huang, F.; Yan, Y. Fabrication of Polysaccharide-Stabilized Zein Nanoparticles by Flash Nanoprecipitation for Doxorubicin Sustained Release. J. Drug Deliv. Sci. Technol. 2022, 70, 103183. [Google Scholar] [CrossRef]
- Wei, Y.; Yao, J.; Shao, Z.; Chen, X. Water-Resistant Zein-Based Adhesives. ACS Sustain. Chem. Eng. 2020, 8, 7668–7679. [Google Scholar] [CrossRef]
- Kasaai, M.R. Zein and Zein -Based Nano-Materials for Food and Nutrition Applications: A Review. Trends Food Sci. Technol. 2018, 79, 184–197. [Google Scholar] [CrossRef]
- Gagliardi, A.; Froiio, F.; Salvatici, M.C.; Paolino, D.; Fresta, M.; Cosco, D. Characterization and Refinement of Zein-Based Gels. Food Hydrocoll. 2020, 101, 105555. [Google Scholar] [CrossRef]
- Babazadeh, A.; Tabibiazar, M.; Hamishehkar, H.; Shi, B. Zein-CMC-PEG Multiple Nanocolloidal Systems as a Novel Approach for Nutra-Pharmaceutical Applications. Adv. Pharm. Bull. 2019, 9, 262. [Google Scholar] [CrossRef]
- Corradini, E.; Curti, P.S.; Meniqueti, A.B.; Martins, A.F.; Rubira, A.F.; Muniz, E.C. Recent Advances in Food-Packing, Pharmaceutical and Biomedical Applications of Zein and Zein-Based Materials. Int. J. Mol. Sci. 2014, 15, 22438–22470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Santiago, G.T.; Portales-Cabrera, C.G.; Portillo-Lara, R.; Araiz-Hernández, D.; Del Barone, M.C.; García-López, E.; De Gante, C.R.; De Los Angeles De Santiago-Miramontes, M.; Segoviano-Ramírez, J.C.; García-Lara, S.; et al. Supercritical CO2 Foaming of Thermoplastic Materials Derived from Maize: Proof-of- Concept Use in Mammalian Cell Culture Applications. PLoS ONE 2015, 10, e0122489. [Google Scholar] [CrossRef] [Green Version]
- Kimna, C.; Tamburaci, S.; Tihminlioglu, F. Novel Zein-based Multilayer Wound Dressing Membranes with Controlled Release of Gentamicin. J. Biomed. Mater. Res. Part. B Appl. Biomater. 2019, 107, 2057–2070. [Google Scholar] [CrossRef] [PubMed]
- Silva, P.M.; Torres-Giner, S.; Vicente, A.A.; Cerqueira, M.A. Electrohydrodynamic Processing for the Production of Zein-Based Microstructures and Nanostructures. Curr. Opin. Colloid Interface Sci. 2021, 56, 101504. [Google Scholar] [CrossRef]
- Khatri, M.; Khatri, Z.; El-Ghazali, S.; Hussain, N.; Qureshi, U.A.; Kobayashi, S.; Ahmed, F.; Kim, I.S. Zein Nanofibers via Deep Eutectic Solvent Electrospinning: Tunable Morphology with Super Hydrophilic Properties. Sci. Rep. 2020, 10, 15307. [Google Scholar] [CrossRef] [PubMed]
- Pascoli, M.; de Lima, R.; Fraceto, L.F. Zein Nanoparticles and Strategies to Improve Colloidal Stability: A Mini-Review. Front. Chem. 2018, 6, 6. [Google Scholar] [CrossRef] [PubMed]
- Camara, M.C.; Monteiro, R.A.; Carvalho, L.B.; Oliveira, J.L.; Fraceto, L.F. Enzyme Stimuli-Responsive Nanoparticles for Bioinsecticides: An Emerging Approach for Uses in Crop Protection. ACS Sustain. Chem. Eng. 2021, 9, 106–112. [Google Scholar] [CrossRef]
- Chauhan, D.S.; Arunkumar, P.; Prasad, R.; Mishra, S.K.; Reddy, B.P.K.; De, A.; Srivastava, R. Facile Synthesis of Plasmonic Zein Nanoshells for Imaging-Guided Photothermal Cancer Therapy. Mater. Sci. Eng. C 2018, 90, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Croxford, C.J.; Kaur, R.; Singh, K.; Bakshi, M.S. Temperature Induced Phase Transition in Fluorescence Active Zein Nanoparticles. Can. J. Chem. 2021, 99, 18–23. [Google Scholar] [CrossRef]
- Li, F.; Chen, Y.; Liu, S.; Qi, J.; Wang, W.; Wang, C.; Zhong, R.; Chen, Z.; Li, X.; Guan, Y.; et al. Size-Controlled Fabrication of Zein Nano/Microparticles by Modified Anti-Solvent Precipitation with/without Sodium Caseinate. Int. J. Nanomed. 2017, 12, 8197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, R.; Wu, Z.; Xie, Q.T.; Cheng, J.S.; Zhang, B. Preparation and Characterization of Zein/Carboxymethyl Dextrin Nanoparticles to Encapsulate Curcumin: Physicochemical Stability, Antioxidant Activity and Controlled Release Properties. Food Chem. 2021, 340, 127893. [Google Scholar] [CrossRef] [PubMed]
- Palazzo, I.; Campardelli, R.; Scognamiglio, M.; Reverchon, E. Zein/Luteolin Microparticles Formation Using a Supercritical Fluids Assisted Technique. Powder Technol. 2019, 356, 899–908. [Google Scholar] [CrossRef]
- Bisharat, L.; Berardi, A.; Perinelli, D.R.; Bonacucina, G.; Casettari, L.; Cespi, M.; AlKhatib, H.S.; Palmieri, G.F. Aggregation of Zein in Aqueous Ethanol Dispersions: Effect on Cast Film Properties. Int. J. Biol. Macromol. 2018, 106, 360–368. [Google Scholar] [CrossRef] [PubMed]
- Coelho, S.C.; Benaut, P.; Laget, S.; Estevinho, B.N.; Rocha, F. Optimization of Electrospinning Parameters for the Production of Zein Microstructures for Food and Biomedical Applications. Micron. 2022, 152, 103164. [Google Scholar] [CrossRef]
- Phan, H.T.; Haes, A.J. What Does Nanoparticle Stability Mean? J. Phys. Chem. C 2019, 123, 16495–16507. [Google Scholar] [CrossRef] [PubMed]
Zein/Solvent | Solvent | Antisolvent | Method of Preparation | Temperature | Size (nm) | Z Potential (mV) | Reference |
---|---|---|---|---|---|---|---|
50 mg/5 mL | ethanol: water (80/20 v/v) | water | Addition of antisolvent to solvent at a flow rate of 60 mL/min under stirring at 1200 rpm for 3 h | 25 °C | 165 nm | NR | [36] |
25 mg/5 mL | ethanol: water (80/20 v/v) | water | Addition of antisolvent to solvent at a flow rate of 30 mL/min under stirring at 1200 rpm for 3 h | 25 °C | 169.2 ± 0.70 nm | (+) 37.1 ± 2.97 | [36] |
50 mg/5 mL | ethanol: water (80/20 v/v) | water | Addition of antisolvent to solvent at a flow rate of 30 mL/min under stirring at 1200 rpm for 3 h | 25 °C | 197.4 ± 3.73 nm | (+) 40.2 ± 0.26 | [36] |
65 mg/5 mL | ethanol: water (80/20 v/v) | water | Addition of antisolvent to solvent at a flow rate of 30 mL/min under stirring at 1200 rpm for 3 h | 25 °C | 209.6 ± 1.08 nm | (+) 45.8 ± 0.44 | [36] |
50 mg/5 mL | ethanol: water (80/20 v/v) | water | Addition of antisolvent to solvent at a flow rate of 30 mL/min under stirring at 1200 rpm for 3 h | 37 °C | 210.0 nm | NR | [36] |
50 mg/5 mL | ethanol: water (80/20 v/v) | water | Addition of antisolvent to solvent at a flow rate of 20 mL/min under stirring at 1200 rpm for 3 h | 25 °C | 210 nm | NR | [36] |
50 mg/5 mL | ethanol: water (80/20 v/v) | water | Addition of antisolvent to solvent at a flow rate of 15 mL/min under stirring at 1200 rpm for 3 h | 25 °C | 275 nm | NR | [36] |
100 mg/5 mL | ethanol: water (85/15 v/v) | water with 2% pluronic at pH 8.0 | Quick addition of antisolvent to solvent under stirring | ~75 °C | 101.0 ± 1.00 nm | (−) 30.0 ± 1.1 | [33] |
100 mg/5 mL | ethanol: water (80/20 v/v) | water | Zein solution was added dropwise to antisolvent for 60 min under stirring | RT | 70 nm | (−) 33.14 ± 1.37 | [34] |
100 mg/5 mL | ethanol: water (80/20 v/v) | water | 5 mL of zein solution was added dropwise to 20 mL of water at 800 RPM at pH 4.0 | RT | 98 ± 3.00 nm | (+) 34.2 @ pH = 4.0 | [37] |
500 mg/5 mL | DMSO | 1.0 % Alginate solution | Rapid and continuous mixing of zein solution and antisolvent in an on-line (impinging yet mixer) @pH4 | RT | 191.4 ± 2.6 nm | NR | [22] |
500 mg/5 mL | DMSO | 1.0 % Alginate solution | Rapid and continuous mixing of zein solution and antisolvent in an on-line (impinging yet mixer) @pH7 | RT | 219.4 ± 5.4 nm | NR | [22] |
250 mg/5 mL | ethanol: water (70/30 v/v) | water: ethanol (70:30 v/v) | Dropwise addition of zein solution into antisolvent under mixing at 200 RPM. | RT | 284 ± 15 nm | (−) 29.0 ± 8.98 | This work |
500 mg/7.5 mL | ethanol: water (70/30 v/v) | water | Quick addition of antisolvent to zein solution under mixing at high speed (15,000 RPM) using a homogenizer | ~65 °C | 348 ± 30 nm | (−) 6.73 ± 4.38 | This work |
T1—Synthesis of zein nanoparticles | SZN |
T2—Methods of synthesis of nanoparticles | MSN |
T3—Types of nanoparticles | TNP |
T4—Heating element | HTE |
T5—Techniques of characterization of nanoparticles | TCN |
T6—The structure of proteins | SPT |
T7—Assembling do-it-yourself devices | DIY |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alvarez, M.M.; del Carmen Flores-Cruz, L.; Pedroza-González, S.C.; Trujillo-de Santiago, G. Fabrication of Maize-Based Nanoparticles at Home: A Research-Based Learning Activity. Educ. Sci. 2022, 12, 307. https://doi.org/10.3390/educsci12050307
Alvarez MM, del Carmen Flores-Cruz L, Pedroza-González SC, Trujillo-de Santiago G. Fabrication of Maize-Based Nanoparticles at Home: A Research-Based Learning Activity. Education Sciences. 2022; 12(5):307. https://doi.org/10.3390/educsci12050307
Chicago/Turabian StyleAlvarez, Mario Moisés, Lilia del Carmen Flores-Cruz, Sara Cristina Pedroza-González, and Grissel Trujillo-de Santiago. 2022. "Fabrication of Maize-Based Nanoparticles at Home: A Research-Based Learning Activity" Education Sciences 12, no. 5: 307. https://doi.org/10.3390/educsci12050307
APA StyleAlvarez, M. M., del Carmen Flores-Cruz, L., Pedroza-González, S. C., & Trujillo-de Santiago, G. (2022). Fabrication of Maize-Based Nanoparticles at Home: A Research-Based Learning Activity. Education Sciences, 12(5), 307. https://doi.org/10.3390/educsci12050307