Domain-Specific Stimulation of Executive Functioning in Low-Performing Students with a Roma Background: Cognitive Potential of Mathematics
Abstract
:1. Introduction
2. The Current Study
2.1. Theoretical Framework
2.1.1. The Influence of Executive Functioning on Achievement in Mathematics
2.1.2. Executive Function Training
2.2. Materials and Methods
2.2.1. Participants
2.2.2. Design and Procedure
2.2.3. Materials
- Application of tasks and tasks for developing mathematical thinking (sequences, combinatorics, propositional logic);
- Numbers and operations involving natural numbers;
- Geometry (basic geometric shapes, two-dimensional and three-dimensional orientation).
2.3. Results
2.3.1. Effects of Training on Executive Functions
2.3.2. Effects of Training on Math Performance
2.3.3. Effects of Training on Relationship with Math School Results
3. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grigorenko, E.; O’Keefe, P. What Do Children Do When They Cannot Go to School? In Culture and Competence: Contexts of Life Success; Sternberg, R., Grigorenko, E., Eds.; American Psychological Association: Washington, WA, USA, 2004; pp. 23–53. [Google Scholar]
- Foster, M.E.; Anthony, J.L.; Clements, D.H.; Sarama, J.; Williams, J.M. Improving Mathematics Learning of Kindergarten Students Through Computer-Assisted Instruction. J. Res. Math. Educ. 2016, 47, 206–232. [Google Scholar] [CrossRef]
- Jordan, N.; Kaplan, D.; Ramineni, C.; Locuniak, M. Early math matters: Kindergarten number competence and later mathematics outcomes. Dev. Psychol. 2009, 45, 850–867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubayová, M. Rómovia v Procesoch Kultúrnej Zmeny; Filozofická Fakulta Prešovskej Univerzity: Prešov, Slovakia, 2001. [Google Scholar]
- Dejiny Rómov, O Pravlasti Rómov. Available online: https://archiv.vlada.gov.sk/romovia/3632/dejiny-romov.html (accessed on 18 February 2021).
- Kovalčíková, I.; Sternberg, R. Kultúra a Kompetencie: Adaptívne Schopnosti Rómskych Žiakov; Prešovská Univerzita v Prešove: Prešov, Slovakia, 2009. [Google Scholar]
- Ferjenčík, J. Diagnostika rómskych detí zo sociálne znevýhodňujúceho prostredia. Psychol. Patopsychol. Dieťaťa 2018, 52, 127–139. [Google Scholar]
- Kovalčíková, I. Záverečná Správa z Riešenie Projektu APVV-15-0273: Experimentálne Overovanie Programov na Stimuláciu Exekutívnych Funkcií Slaboprospievajúceho Žiaka—Kognitívny Stimulačný Potenciál Matematiky a Slovenského Jazyka, 2019.
- Horňák, L. Individuálny vzdelávací program ako prostriedok akcelerácie kognitívneho vývinu rómskych žiakov na špeciál-nych základných školách. In Rómske Etnikum v Systéme Multikultúrnej Edukácie; Pedagogická Fakulta Prešovskej Univerzity v Prešove: Prešov, Slovakia, 2001; pp. 37–50. [Google Scholar]
- Kovalčíková, I. Diagnostikovanie schopnosti kognitívneho plánovania u detí zo sociálne znevýhodňujúceho prostredia. In Acta Paedagogicae Presoves—Nova Sandes. Annus VII; Prešovská Univerzita v Prešove: Prešov, Slovakia, 2012; pp. 68–77. [Google Scholar]
- Zelina, M. Možnosti akcelerácie rómskych žiakov. In Rómske Etnikum v Systéme Multikultúrnej Edukácie; Prešovská Univerzita v Prešove: Prešov, Slovakia, 2001; pp. 10–21. [Google Scholar]
- Jameel, H.; Ali, H. Causes of poor performance in Mathematics from the perspective of students, teachers and parents. Am. Sci. Res. J. Eng. Technol. Sci. 2016, 15, 122–136. [Google Scholar]
- Bull, R.; Lee, K. Executive Functioning and Mathematics Achievement. Child Dev. Perspect. 2014, 8, 36–41. [Google Scholar] [CrossRef]
- Verdine, B.N.; Irwin, C.M.; Golinkoff, R.M.; Hirsh-Pasek, K. Contributions of executive function and spatial skills to preschool mathematics achievement. J. Exp. Child Psychol. 2014, 126, 37–51. [Google Scholar] [CrossRef] [Green Version]
- Bull, R.; Espy, K.A.; Wiebe, S. Short-Term Memory, Working Memory, and Executive Functioning in Preschoolers: Longitudinal Predictors of Mathematical Achievement at Age 7 Years. Dev. Neuropsychol. 2008, 33, 205–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samuels, W.E.; Tournaki, N.; Blackman, S.; Zilinski, C. Executive functioning predicts academic achievement in middle school: A four-year longitudinal study. J. Educ. Res. 2016, 109, 1–13. [Google Scholar] [CrossRef]
- Ferjenčík, J.; Slavkovská, M.; Kresila, J. Executive functioning in three groups of pupils in D-KEFS: Selected issues in adapting the test battery for Slovakia. J. Pedagog. 2015, 6, 73–92. [Google Scholar] [CrossRef] [Green Version]
- Cragg, L.; Gilmore, C. Skills underlying mathematics: The role of executive function in the development of mathematics proficiency. Trends Neurosci. Educ. 2014, 3, 63–68. [Google Scholar] [CrossRef]
- Diamond, A. Activities and Programs That Improve Children’s Executive Functions. Curr. Dir. Psychol. Sci. 2012, 21, 335–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diamond, A.; Barnett, W.S.; Thomas, J.; Munro, S. THE EARLY YEARS: Preschool Program Improves Cognitive Control. Science 2007, 318, 1387–1388. [Google Scholar] [CrossRef] [Green Version]
- Diamond, A.; Lee, K. Interventions Shown to Aid Executive Function Development in Children 4 to 12 Years Old. Science 2011, 333, 959–964. [Google Scholar] [CrossRef] [Green Version]
- Kroesbergen, E.; van ’t Noordende, J.; Kolkman, M. Training working memory in kindergarten children: Effects on working memory and early numeracy: Effects on working memory and early numeracy. Child Neuropsychol. 2014, 20, 23–37. [Google Scholar] [CrossRef] [PubMed]
- Cruz, S.G.R.; Pérez, T.O.; Expósito, S.H.; Barón, H.D.B.; Dowens, M.G.; Montesinos, M.B. Efficacy of a computer-based cognitive training program to enhance planning skills in 5 to 7-year-old normally-developing children. Appl. Neuropsychol. Child 2018, 9, 21–30. [Google Scholar] [CrossRef]
- Dias, N.M.; Seabra, A.G. Intervention for executive functions development in early elementary school children: Effects on learning and behaviour, and follow-up maintenance. Educ. Psychol. 2016, 37, 468–486. [Google Scholar] [CrossRef]
- Pennequin, V.; Sorel, O.; Mainguy, M. Metacognition, Executive Functions and Aging: The Effect of Training in the Use of Metacognitive Skills to Solve Mathematical Word Problems. J. Adult Dev. 2010, 17, 168–176. [Google Scholar] [CrossRef]
- Caviola, S.; Mammarella, I.; Cornoldi, C.; Lucangeli, D. The involvement of working memory in children’s exact and ap-proximate mental addition. J. Exp. Child Psychol. 2012, 112, 141–160. [Google Scholar] [CrossRef]
- Holmes, J.; Gathercole, S.E.; Dunning, D.L. Adaptive training leads to sustained enhancement of poor working memory in children. Dev. Sci. 2009, 12, F9–F15. [Google Scholar] [CrossRef]
- Clair-Thompson, H.; Stevens, R.; Hunt, A.; Bolder, E. Improving children’s working memory and classroom performance. Educ. Psychol. 2010, 30, 203–219. [Google Scholar] [CrossRef]
- Baddeley, A. Working Memory; Oxford University Press: New York, NY, USA, 1986. [Google Scholar]
- Diamond, A. Executive Functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blair, C. How similar are fluid cognition and general intelligence? A developmental neuroscience perspective on fluid cognition as an aspect of human cognitive ability. Behav. Brain Sci. 2006, 29, 109–125. [Google Scholar] [CrossRef] [PubMed]
- Duckworth, A.L.; Seligman, M.E. Self-Discipline Outdoes IQ in Predicting Academic Performance of Adolescents. Psychol. Sci. 2005, 16, 939–944. [Google Scholar] [CrossRef]
- Andersson, U.; Lyxell, B. Working memory deficit in children with mathematical difficulties: A general or specific deficit? J. Exp. Child Psychol. 2007, 96, 197–228. [Google Scholar] [CrossRef]
- Cragg, L.; Keeble, S.; Richardson, S.; Roome, H.; Gilmore, C. Direct and indirect influences of executive functions on mathematics achievement. Cognition 2017, 162, 12–26. [Google Scholar] [CrossRef] [Green Version]
- Magalhães, S.; Carneiro, L.; Limpo, T.; Filipe, M. Executive functions predict literacy and mathematics achievements: The unique contribution of cognitive flexibility in grades 2, 4, and 6. Child Neuropsychol. 2020, 26, 934–952. [Google Scholar] [CrossRef]
- Fuchs, L.; Compton, D.; Fuchs, D.; Paulsen, K.; Bryant, J.; Hamlett, C. The Prevention, Identification, and Cognitive Determinants of Math Difficulty. J. Educ. Psychol. 2005, 97, 493–513. [Google Scholar] [CrossRef]
- Fuchs, L.S.; Geary, D.C.; Compton, D.L.; Fuchs, D.; Schatschneider, C.; Hamlett, C.L.; Deselms, J.; Seethaler, P.M.; Wilson, J.; Craddock, C.F.; et al. Effects of first-grade number knowledge tutoring with contrasting forms of practice. J. Educ. Psychol. 2013, 105, 58–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Posner, M.I.; Rothbart, M.K.; Tang, Y. Developing self-regulation in early childhood. Trends Neurosci. Educ. 2013, 2, 107–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rueda, M.R.; Checa, P.; Cómbita, L.M. Enhanced efficiency of the executive attention network after training in preschool children: Immediate changes and effects after two months. Dev. Cogn. Neurosci. 2012, 2, S192–S204. [Google Scholar] [CrossRef] [PubMed]
- Goldin, A.P.; Hermida, M.J.; Shalom, D.E.; Costa, M.E.; Lopez-Rosenfeld, M.; Segretin, M.S.; Fernández-Slezak, D.; Lipina, S.J.; Sigman, M. Far transfer to language and math of a short software-based gaming intervention. Proc. Natl. Acad. Sci. USA 2014, 111, 6443–6448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorndike, R.; Hagen, E. Measurement and Evaluation in Psychology and Education, 4th ed.; Wiley: New York, NY, USA, 1986. [Google Scholar]
- Ferjenčík, J. Úvod do Metodológie Psychologického Výskumu; Portál: Praha, Czech Republic, 2000. [Google Scholar]
- The Code of Ethics of the American Educational Research Association. Available online: https://www.aera.net/About-AERA/AERA-Rules-Policies/Professional-Ethics (accessed on 6 April 2016).
- Delis, D.; Kaplan, E.; Kramer, J. The Delis–Kaplan Executive Function System; The Psychological Corporation: San Antonio, TX, USA, 2001. [Google Scholar]
- Ferjenčík, J.; Bobáková, M.; Kovalčíková, I.; Ropovik, I.; Slavkovská, M. Proces a vybrané výsledky slovenskej adaptácie Delis-Kaplanovej systému exekutívnych funkcií D-KEF. Česk. Psychol. 2014, 58, 543–558. [Google Scholar]
- Thorndike, R.; Hagen, E. Test kognitívnych schopností. In Príručka; Psychodiagnostika: Bratislava, Slovakia, 1997. [Google Scholar]
- Von Aster, M.; Weinhold-Zulauf, M.; Horn, R. Neuropsychologická Batéria Testov na Spracovávanie Čísiel a Počítanie u Detí (ZAREKI-R); Psychodiagnostika: Bratislava, Slovakia, 2006. [Google Scholar]
- Von Aster, M.; Shalev, R. Number development and developmental dyscalculia. Dev. Med. Child Neurol. 2007, 49, 868–873. [Google Scholar] [CrossRef] [PubMed]
- Von Aster, M.; Weinhold, M. Neuropsychologická batéria testov na spracovávanie čísiel a počítanie u detí. In Príručka; Psychodiagnostika: Bratislava-Brno, Slovakia, 2008. [Google Scholar]
- Ashman, A.F.; Conway, R.N. Cognitive Strategies for Special Education; Routledge: London, UK, 2017. [Google Scholar]
- Ashman, A.; Conway, R. Cognitive Strategies for Special Education: Process Based Instruction; Routledge: London, UK, 2017. [Google Scholar]
- Brown, A.; Campione, J. Psychological theory and the study of learning disabilities. Am. Psychol. 1986, 41, 1059–1068. [Google Scholar] [CrossRef]
- Cross, C.; Woods, T.; Schweingruber, H. Mathematics Learning in Early Childhood: Paths toward Excellence and Equity; National Academies Press: Washington, DC, USA, 2009. [Google Scholar]
- Stein, M.; Smith, M.; Henningsen, M.; Silver, E. Implementing Standards-Based Mathematics Instruction: A Casebook for Professional Development, 2nd ed.; Teachers College Press: New York, NY, USA, 2009. [Google Scholar]
- Bruner, J.S.; Lufburrow, R.A. The Process of Education. Am. J. Phys. 1963, 31, 468–469. [Google Scholar] [CrossRef]
- Clements, D.H.; Sarama, J.; Germeroth, C. Learning executive function and early mathematics: Directions of causal relations. Early Child. Res. Q. 2016, 36, 79–90. [Google Scholar] [CrossRef]
- Iseman, J.S.; Naglieri, J.A. A Cognitive Strategy Instruction to Improve Math Calculation for Children with ADHD and LD: A Randomized Controlled Study. J. Learn. Disabil. 2011, 44, 184–195. [Google Scholar] [CrossRef] [PubMed]
- Naglieri, J.A.; Gottling, S.H. Mathematics Instruction and PASS Cognitive Processes. J. Learn. Disabil. 1997, 30, 513–520. [Google Scholar] [CrossRef]
- Ramani, G.B.; Jaeggi, S.M.; Daubert, E.N.; Buschkuehl, M. Domain-specific and domain-general training to improve kindergarten children’s mathematics. J. Numer. Cogn. 2017, 3, 468–495. [Google Scholar] [CrossRef] [Green Version]
- Rupley, W.H.; Capraro, R.M.; Capraro, M.M. Theorizing an Integration of Reading and Mathematics: Solving Mathematical Word Problems in the Elementary Grades. Learn. Landsc. 2011, 5, 227–250. [Google Scholar] [CrossRef]
- Corte, E.; Depaepe, F.; Eynde, P.; Verschaffel, L. Students’ self-regulation of emotions in mathematics: An analysis of meta-emotional knowledge and skills. ZDM 2011, 43, 483–495. [Google Scholar] [CrossRef]
- Jacob, R.; Parkinson, J. The Potential for School-Based Interventions That Target Executive Function to Improve Academic Achievement. Rev. Educ. Res. 2015, 85, 512–552. [Google Scholar] [CrossRef]
- Čerešníková, M. Akú úlohu zohráva materinský jazyk pri diagnostike komunikačnej kompetencie dieťaťa? Škol. Psychol. 2017, 18, 127–133. [Google Scholar]
- McDonald, P.A.; Berg, D.H. Identifying the nature of impairments in executive functioning and working memory of children with severe difficulties in arithmetic. Child Neuropsychol. 2017, 24, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Orbach, L.; Herzog, M.; Fritz, A. State- and trait-math anxiety and their relation to math performance in children: The role of core executive functions. Cognition 2020, 200, 104271. [Google Scholar] [CrossRef]
- Pizzie, R.G.; Raman, N.; Kraemer, D.J. Math anxiety and executive function: Neural influences of task switching on arithmetic processing. Cogn. Affect. Behav. Neurosci. 2020, 20, 309–325. [Google Scholar] [CrossRef] [PubMed]
- Hackman, D.A.; Gallop, R.; Evans, G.W.; Farah, M.J. Socioeconomic status and executive function: Developmental trajectories and mediation. Dev. Sci. 2015, 18, 686–702. [Google Scholar] [CrossRef] [PubMed]
- Blakey, E.; Matthews, D.; Cragg, L.; Buck, J.; Cameron, D.; Higgins, B.; Pepper, L.; Ridley, E.; Sullivan, E.; Carroll, D.J. The Role of Executive Functions in Socioeconomic Attainment Gaps: Results from a Randomized Controlled Trial. Child Dev. 2020, 91, 1594–1614. [Google Scholar] [CrossRef] [PubMed]
- Ardila, A.; Rosselli, M.; Matute, E.; Guajardo, S. The Influence of the Parents’ Educational Level on the Development of Executive Functions. Dev. Neuropsychol. 2005, 28, 539–560. [Google Scholar] [CrossRef]
- Li-Grining, C.P. Effortful control among low-income preschoolers in three cities: Stability, change, and individual differences. Dev. Psychol. 2007, 43, 208–221. [Google Scholar] [CrossRef] [Green Version]
- Noble, K.; Norman, M.F.; Farah, M.J. Neurocognitive correlates of socioeconomic status in kindergarten children. Dev. Sci. 2005, 8, 74–87. [Google Scholar] [CrossRef] [PubMed]
- Naglieri, J.A.; Johnson, D. Effectiveness of a Cognitive Strategy Intervention in Improving Arithmetic Computation Based on the PASS Theory. J. Learn. Disabil. 2000, 33, 591–597. [Google Scholar] [CrossRef] [PubMed]
- Liégeios, J. Rómovia, Cigáni, Kočovníci; Charis: Bratislava, Slovakia, 1997. [Google Scholar]
- Resing, W.C.M.; Elliott, J.G.; Vogelaar, B. Assessing Potential for Learning in School Children; Oxford University Press: Oxford, UK, 2020. [Google Scholar]
- Demo, H.; Garzetti, M.; Santi, G.; Tarini, G. Learning Mathematics in an Inclusive and Open Environment: An Interdisciplinary Approach. Educ. Sci. 2021, 11, 199. [Google Scholar] [CrossRef]
Condition | Boy | Girl | Total |
---|---|---|---|
experimental | 19 | 21 | 40 |
(active) control 1 | 19 | 23 | 42 |
(passive) control 2 | 19 | 21 | 40 |
total | 57 | 65 | 122 |
Level of Difficulty 1 Three Elements, Enactive Mode | |
---|---|
Item 1 | We built three-color towers of three cubes (red, yellow and blue). Check that all solutions are correct. (Towers built as the illustration shows). |
[…] 2nd and 3rd level of difficulty | |
Item 4 | Level of difficulty 4 Four elements, iconic mode |
Check which buildings in the picture are built according to this rule: The building has three floors and cubes of three colors—red, blue and yellow. | |
Item 5 | Level of difficulty 5 Three elements, enactive mode |
You have a green, yellow and purple square. Draw all the ways you can order them side by side. | |
Item 6 | Level of difficulty 6 Three elements, symbolic mode |
Three children, Janka, Adam and Beata, went to the cinema. They sat side by side in one row. Write down all the options/combinations for how they could sit down. | |
[…] 7th level of difficulty | |
Item 8 | Level of difficulty 8 Three elements, symbolic mode |
Make all three-digit numbers from digits 4, 7, 5. | |
[…] |
Wilks’ λ | F | p | ηp2 | |
---|---|---|---|---|
Multivariate effects | ||||
Time | 0.40 | 27.26 | <0.001 | 0.60 |
Time × Condition | 0.89 | 1.12 | 0.346 | 0.06 |
Univariate effects (Time) | ||||
TMT Motor Speed | 18.24 | <0.001 | 0.14 | |
Letter Fluency | 15.13 | <0.001 | 0.12 | |
Category Fluency | 39.89 | <0.001 | 0.26 | |
Switching Fluency | 8.25 | 0.005 | 0.07 | |
Design Fluency | 80.17 | <0.001 | 0.41 | |
Stroop Interference | 36.45 | <0.001 | 0.24 |
Pretest | Posttest | |||||
---|---|---|---|---|---|---|
Experimental M (SD) | Active Control M (SD) | Passive Control M (SD) | Experimental M (SD) | Active Control M (SD) | Passive Control M (SD) | |
Executive Functions | ||||||
TMT Motor Speed | 73.15 (30.51) | 74.40 (33.07) | 75.20 (33.19) | 57.82 (25.90) | 64.41 (34.86) | 60.42 (30.50) |
Letter Fluency | 8.77 (4.07) | 8.18 (4.83) | 6.57 (4.28) | 10.00 (4.65) | 10.08 (4.64) | 7.82 (4.74) |
Category Fluency | 17.38 (4.07) | 18.31 (4.61) | 14.90 (5.23) | 20.25 (5.36) | 19.77 (4.87) | 16.80 (4.14) |
Switching Fluency | 6.57 (2.22) | 5.79 (2.46) | 5.62 (1.93) | 7.32 (2.07) | 6.08 (2.36) | 6.22 (2.11) |
Design Fluency | 3.35 (1.87) | 3.59 (2.01) | 2.28 (1.59) | 4.55 (1.97) | 3.79 (1.98) | 3.22 (2.07) |
Stroop Interference | 106.18 (23.54) | 109.92 (30.78) | 110.79 (25.75) | 93.70 (22.65) | 95.28 (24.30) | 98.10 (20.56) |
Math Abilities | ||||||
Quantitative Reasoning | 12.08 (4.31) | 11.00 (4.56) | 9.75 (4.72) | 13.82 (4.53) | 12.25 (3.93) | 10.42 (5.03) |
Inductive Reasoning | 6.92 (4.38) | 7.08 (4.60) | 4.16 (2.83) | 9.27 (4.64) | 7.55 (4.91) | 5.63 (3.20) |
Arithmetical Ability Total | 5.38 (2.95) | 4.20 (2.51) | 2.61 (1.64) | 6.25 (3.25) | 4.92 (3.15) | 3.21 (2.59) |
Enumeration | 1.71 (0.57) | 1.77 (0.60) | 1.83 (0.38) | 1.92 (0.27) | 1.89 (0.40) | 1.69 (0.67) |
Counting Backward | 1.45 (0.80) | 1.58 (0.77) | 1.50 (0.62) | 1.58 (0.79) | 1.56 (0.81) | 1.65 (0.70) |
Writing Numbers | 9.42 (2.97) | 9.08 (3.33) | 9.41 (3.03) | 8.82 (3.23) | 8.61 (3.42) | 8.37 (3.61) |
Mental Calculation | 8.45 (3.09) | 8.11 (3.29) | 8.37 (3.57) | 8.82 (3.23) | 8.61 (3.42) | 8.37 (3.61) |
Mental Calculation Deduction | 5.68 (3.92) | 7.11 (3.86) | 6.44 (3.60) | 6.47 (3.90) | 6.53 (4.02) | 7.28 (4.36) |
Reading Numbers | 10.16 (2.52) | 10.39 (2.85) | 10.53 (2.24) | 11.00 (2.36) | 10.61 (2.53) | 10.53 (2.35) |
Number Line Estimation | 5.74 (2.42) | 6.50 (2.88) | 5.25 (2.82) | 7.16 (2.89) | 7.56 (2.49) | 5.88 (2.92) |
Magnitude Words | 10.84 (4.15) | 12.22 (2.83) | 12.12 (2.14) | 11.95 (3.46) | 12.44 (2.69) | 12.56 (1.81) |
Perception Quantity | 3.11 (1.52) | 2.94 (1.31) | 1.75 (1.81) | 3.05 (1.29) | 3.28 (2.40) | 2.25 (1.59) |
Context Magnitude | 5.47 (3.80) | 4.89 (2.81) | 3.75 (2.63) | 6.42 (3.89) | 5.39 (3.48) | 4.25 (2.77) |
Problem-Solving | 1.74 (1.69) | 1.78 (1.84) | 2.12 (1.61) | 2.34 (2.07) | 2.25 (1.75) | 2.22 (1.34) |
Magnitude Arabic Numbers | 12.95 (3.34) | 13.11 (3.56) | 12.87 (2.92) | 13.53 (2.52) | 13.17 (3.33) | 13.06 (2.73) |
Wilks’ λ | F | p | ηp2 | |
---|---|---|---|---|
Multivariate effects | ||||
Time | 0.57 | 4.40 | <0.001 | 0.43 |
Time × Condition | 0.75 | 0.88 | 0.657 | 0.13 |
Univariate effects (Time) | ||||
Quantitative Reasoning | 22.28 | <0.001 | 0.18 | |
Inductive Reasoning | 3.79 | 0.054 | 0.04 | |
Arithmetical Ability Total | 30.92 | <0.001 | 0.24 | |
Enumeration | 5.42 | 0.022 | 0.05 | |
Counting Backward | 0.98 | 0.325 | 0.01 | |
Writing Numbers | 7.97 | 0.006 | 0.07 | |
Mental Calculation | 0.99 | 0.322 | 0.01 | |
Mental Calculation Deduction | 0.62 | 0.434 | 0.01 | |
Reading Numbers | 6.10 | 0.015 | 0.06 | |
Number Line Estimation | 11.83 | 0.001 | 0.11 | |
Magnitude Words | 4.39 | 0.039 | 0.04 | |
Perception Quantity | 1.14 | 0.288 | 0.01 | |
Context Magnitude | 3.74 | 0.056 | 0.04 | |
Problem-Solving | 4.73 | 0.032 | 0.05 | |
Magnitude Arabic Numbers | 2.37 | 0.127 | 0.02 |
Correlation Pretest × School Result | Correlation Posttest × School Result | |||
---|---|---|---|---|
Total (n = 102) | Experimental Condition (n = 38) | Control Condition 1 (n = 35) | Control Condition 2 (n = 29) | |
Executive functions | ||||
TMT Motor Speed | −0.01 | −0.02 | −0.06 | 0.08 |
Letter Fluency | −0.02 | −0.08 | −0.27 | 0.05 |
Category Fluency | −0.07 | −0.17 | −0.17 | 0.02 |
Switching Fluency | −0.08 | −0.07 | −0.30 | −0.02 |
Design Fluency | −0.29 ** | −0.48 ** | −0.10 | −0.28 |
Stroop Interference | −0.23 * | −0.03 | −0.13 | 0.08 |
Math abilities | ||||
Quantitative Reasoning | −0.38 *** | −0.25 | −0.68 *** | −0.16 |
Inductive Reasoning | −0.26 ** | −0.23 | −0.09 | −0.21 |
Arithmetical Ability | −0.52 *** | −0.36 * | −0.67 *** | −0.37 * |
Enumeration | −0.16 | −0.05 | −0.41 * | −0.23 |
Counting Backward | −0.27 ** | 0.08 | −0.47 ** | −0.19 |
Writing Numbers | −0.50 *** | −0.26 | −0.63 *** | −0.33 |
Mental Calculation | −0.55 *** | −0.30 | −0.66 *** | −0.30 |
Mental Calculation Deduction | −0.38 *** | −0.39 * | −0.48 ** | −0.33 |
Reading Numbers | −0.41 *** | −0.24 | −0.65 *** | −0.17 |
Number line Estimation | −0.32 ** | −0.24 | −0.20 | −0.30 |
Magnitude Words | −0.37 *** | −0.32 | −0.50 ** | −0.35 |
Perception Quantity | −0.13 | −0.29 | −0.50 ** | −0.04 |
Context Magnitude | 0.09 | 0.09 | −0.10 | 0.35 |
Problem-Solving | −0.33 ** | −0.22 | −0.58 *** | −0.04 |
Magnitude Arabic Numbers | −0.40 *** | −0.31 | −0.55 ** | −0.40 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovalčíková, I.; Veerbeek, J.; Vogelaar, B.; Prídavková, A.; Ferjenčík, J.; Šimčíková, E.; Tomková, B. Domain-Specific Stimulation of Executive Functioning in Low-Performing Students with a Roma Background: Cognitive Potential of Mathematics. Educ. Sci. 2021, 11, 285. https://doi.org/10.3390/educsci11060285
Kovalčíková I, Veerbeek J, Vogelaar B, Prídavková A, Ferjenčík J, Šimčíková E, Tomková B. Domain-Specific Stimulation of Executive Functioning in Low-Performing Students with a Roma Background: Cognitive Potential of Mathematics. Education Sciences. 2021; 11(6):285. https://doi.org/10.3390/educsci11060285
Chicago/Turabian StyleKovalčíková, Iveta, Jochanan Veerbeek, Bart Vogelaar, Alena Prídavková, Ján Ferjenčík, Edita Šimčíková, and Blanka Tomková. 2021. "Domain-Specific Stimulation of Executive Functioning in Low-Performing Students with a Roma Background: Cognitive Potential of Mathematics" Education Sciences 11, no. 6: 285. https://doi.org/10.3390/educsci11060285
APA StyleKovalčíková, I., Veerbeek, J., Vogelaar, B., Prídavková, A., Ferjenčík, J., Šimčíková, E., & Tomková, B. (2021). Domain-Specific Stimulation of Executive Functioning in Low-Performing Students with a Roma Background: Cognitive Potential of Mathematics. Education Sciences, 11(6), 285. https://doi.org/10.3390/educsci11060285