The Impact of Narrative Feedback, E-Learning Modules and Realistic Video and the Reduction of Misconception
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Design and Sample
2.2. Research Instrument and Data Collection
2.3. Treatments
2.4. Data Analysis
3. Results
3.1. The Contribution of the Pretest to the Posttest Score
3.1.1. The Pretest of Narrative Feedback Class
3.1.2. The Pretest of E-learning Module Class
3.1.3. The Pretest of Realistic Video Class
3.2. The Contribution of the Treatment to the Posttest Score
3.2.1. Treatment of Narrative Feedback
3.2.2. Treatment of E-Learning Module
3.2.3. Treatment of Realistic Video
3.3. The Result of the Items Analysis
4. Discussion
4.1. The Contribution of the Pretest Score to the Posttest Scores (Q1)
4.2. The Impact of Treatments toward the Posttest Score (Q2)
4.3. The Impact of Treatments to the Reduction of Misconception (Q3)
4.4. The Treatments vs. Subconcepts of Free-Fall Motion (Q4)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Styer, D.F. Common misconceptions regarding quantum mechanics. Am. J. Phys. 1996, 64, 31–34. [Google Scholar] [CrossRef]
- Brown, D.E.; Clement, J. Overcoming misconceptions via analogical reasoning: Abstract transfer versus explanatory model construction. Instr. Sci. 1989, 18, 237–261. [Google Scholar] [CrossRef]
- Fast, G.R. Using analogies to overcome student teachers’ probability misconceptions. J. Math. Behav. 1997, 16, 325–344. [Google Scholar] [CrossRef]
- Slotta, J.D.; Chi, M.T. How Physics Novices Can Overcome Robust Misconception through Ontology Training. Manuscript Submitted for Publication. 1999. Available online: http://www.public.asu.edu/~mtchi/papers/Slottaandchi.pdf (accessed on 24 March 2021).
- Quijas, P.G.; Aguilar, L.A. Overcoming misconception in quantum mechanics with the time evolution operator. Eur. J. Phys. 2007, 28, 147–165. [Google Scholar] [CrossRef]
- Marshall, H.A. Countering Astronomy Misconception in High School Students; University of Texas at Dallas: Richardson, TX, USA, 2003; pp. 1–14. [Google Scholar]
- Podolner, A.S. Eradicating Physics Misconception Using the Conceptual Change Method. Ph.D. Thesis, Kalamazoo College, Kalamazoo, MI, USA, 2000. [Google Scholar]
- Halim, A.; Meerah, T.S.; Halim, L. Pembinaan dan Penggunaan Ujian Diagnostik ke Arah Mengenal Pasti Salah Konsep Pelajar dalam Kursus Fizik kuantum. Sains Malays. 2009, 38, 543–551. [Google Scholar]
- Halim, A.; Elmi Elisa Wahyuni, A.; Ngadimin Musdar Balqis, N.N. Development of concept maps diagnostic test for identification of students’ misconception. AIP Conf. Proc. 2020, 2215, 05003. [Google Scholar]
- Halim, A.; Mahzum, E.; Zanaton; Humairah, H. Impact of the EduPlasa interactive media on reducing misconceptions of static fluid in high school students. J. Phys. Conf. Ser. 2020, 1521, 022026. [Google Scholar] [CrossRef]
- Halim, A.; Meerah, S.; Halim, L. Pengembangan dan Pengesahan Modul Pembelajaran Mandiri Berbasiskan Perubahan Kon-septual Radikal. J. Pendidik. Pembelajaran 2011, 18, 127–132. [Google Scholar]
- Brown, D.; Clement, J. Overcoming misconception via analogical reasoning: Factors influencing understanding in a teaching experiment. Instr. Sci. 1989, 18, 237–261. [Google Scholar] [CrossRef]
- Stavy, R. Using analogy to overcome misconceptions about conservation of matter. J. Res. Sci. Teach. 1991, 28, 305–313. [Google Scholar] [CrossRef]
- Tsai, C.-C. Overcoming Junior High School Students’ Misconceptions about Microscopic Views of Phase Change: A Study of an Analogy Activity. J. Sci. Educ. Technol. 1999, 8, 83–91. [Google Scholar] [CrossRef]
- Pekmez, E.S. Using analogies to prevent misconception about chemical equilibrium. Asia-Pac. Forum Sci. Learn. Teach. 2010, 11, 1–35. [Google Scholar]
- Dilber, R. The effects of analogy on students’ understanding of direct current circuits and attitudes towards physics lessons. Eur. J. Educ. Res. 2012, 1, 211–223. [Google Scholar] [CrossRef]
- Maulana, P. Usaha Mengurangi Terjadinya Miskonsepsi Fisika Melalui Pembelajaran Dengan Pendekatan Konflik Kognitif. J. Pendidik. Fis. Indones. 2012, 6, 98–103. [Google Scholar]
- Leinonen, R.; Asikainen, M.A.; Hirvonen, P.E. Overcoming students’ misconceptions concerning thermal physics with the aid of hints and peer interaction during a lecture course. Phys. Rev. Spec. Top. Phys. Educ. Res. 2013, 9, 020112. [Google Scholar] [CrossRef] [Green Version]
- Qian, Y.; Lehman, J.D. Using Targeted Feedback to Address Common Student Misconceptions in Introductory Programming: A Data-Driven Approach. SAGE Open 2019, 9, 1–20. [Google Scholar] [CrossRef]
- Rodgers, C.R. Attending to Student Voice: The Impact of Descriptive Feedback on Learning and Teaching. Curric. Inq. 2006, 36, 209–237. [Google Scholar] [CrossRef]
- Hattie, J.; Timperley, H. The power of feedback. Rev. Educ. Res. 2007, 77, 81–112. [Google Scholar] [CrossRef]
- Hattie, J.; Biggs, A.J.; Purdie, N. Effects of learning skills intervention on student learning: A meta-analysis. Rev. Res. Educ. 1996, 66, 99–136. [Google Scholar] [CrossRef]
- Owen, L. The Impact of Feedback as Formative Assessment on Student Performance. Int. J. Teach. Learn. High. Educ. 2016, 28, 168–175. [Google Scholar]
- Zhu, M.; Lee, H.-S.; Wang, T.; Liu, O.L.; Belur, V.; Pallant, A. Investigating the impact of automated feedback on students’ scientific argumentation. Int. J. Sci. Educ. 2017, 39, 1648–1668. [Google Scholar] [CrossRef]
- Skipper, Y.; Douglas, K. The influence of teacher feedback on children’s perceptions of student–teacher relationships. Br. J. Educ. Psychol. 2015, 85, 276–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flodén, J. The impact of student feedback on teaching in higher education. Assess. Eval. High. Educ. 2017, 42, 1054–1068. [Google Scholar] [CrossRef]
- Cutumisu, M.; Schwartz, D.L. The impact of critical feedback choice on students’ revision, performance, learning, and memory. Comput. Hum. Behav. 2018, 78, 351–367. [Google Scholar] [CrossRef]
- Wieling, M.B.; Hofman, W.H.A. The impact of online video lecture recordings and automated feedback on student perfor-mance. Comput. Educ. 2010, 54, 992–998. [Google Scholar] [CrossRef]
- Borup, J.; West, R.E.; Thomas, R. The impact of text versus video communication on instructor feedback in blended courses. Educ. Technol. Res. Dev. 2015, 63, 161–184. [Google Scholar] [CrossRef]
- Crook, A.; Mauchline, A.; Maw, S.; Lawson, C.; Drinkwater, R.; Lundqvist, K.; Orsmond, P.; Gomez, S.; Park, J. The use of video technology for providing feedback to students: Can it enhance the feedback experience for staff and students? Comput. Educ. 2012, 58, 386–396. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, M.; Carvalho, P.S. Teaching optical phenomena with Tracker. Phys. Educ. 2014, 49, 671–677. [Google Scholar] [CrossRef]
- Halim, A.; Safitri, R.; Nurfadilla, E. The development of multi representation practicum modules with PhET in Hooke’s law concept. J. Phys. Conf. Ser. 2020, 1460, 012124. [Google Scholar]
- Cidral, W.A.; Oliveira, T.; Di Felice, M.; Aparicio, M. E-learning success determinants: Brazilian empirical study. Comput. Educ. 2018, 122, 273–290. [Google Scholar] [CrossRef] [Green Version]
- Halim, A.; Wahyuni, A.; Yani, E. The impact of the use of the internet on the learning outcomes in physics for high school student. J. Phys. Conf. Ser. 2020, 1521, 1–10. [Google Scholar] [CrossRef]
- Al-Juda, M.Q.B. Distance Learning Students’ Evaluation of E-learning System in University of Tabuk, Saudi Arabia. J. Educ. Learn. 2017, 6, 324–335. [Google Scholar] [CrossRef] [Green Version]
- Shute, V.J.; Rahimi, S. Review of computer-based assessment for learning in elementary and secondary education. J. Comput. Assist. Learn. 2017, 33, 1–19. [Google Scholar] [CrossRef]
- Ikram, U.Z.; Essink-Bot, M.-L.; Suurmond, J. How we developed an effective e-learning module for medical students on using professional interpreters. Med. Teach. 2015, 37, 422–427. [Google Scholar] [CrossRef] [PubMed]
- Lahti, M.; Hätönen, H.; Välimäki, M. Impact of e-learning on nurses’ and student nurses knowledge, skills, and satisfaction: A systematic review and meta-analysis. Int. J. Nurs. Stud. 2014, 51, 136–149. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, J.G.; Mintzer, M.J.; Leipzig, R.M. The Impact of E-Learning in Medical Education. Acad. Med. 2006, 81, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Shah, R.K.; Barkas, L.A. Analysing the impact of e-learning technology on students’ engagement, attendance and per-formance. Res. Learn. Technol. 2018, 26, 1–18. [Google Scholar] [CrossRef] [Green Version]
- El-Seoud, S.; Taj-Eddin, I.; Seddiek, N.; Ghenghesh, P.; El-Khouly, M. The impact of e-learning on Egyptian higher education and its effect on learner’s motivation: A case study. Comput. Sci. Inf. Technol. 2014, 2, 179–187. [Google Scholar]
- Suppan, L.; Stuby, L.; Gartner, B.; Larribau, R.; Iten, A.; Abbas, M.; Harbarth, S.; Suppan, M. Impact of an e-learning module on personal protective equipment knowledge in student paramedics: A randomized controlled trial. Antimicrob. Resist. Infect. Control. 2020, 9, 185. [Google Scholar] [CrossRef]
- Visker, J.D.; Welker, K.; Rhodes, D.; Forsyth, E.; Melvin, P.; Cox, C. Effect of a rapid e-learning module and brief interprofes-sional simulation event on medical and nursing student collaborative attitudes and behaviors. Int. J. Nurs. Educ. Scholarsh. 2020, 17, 24–45. [Google Scholar] [CrossRef]
- Erdil, N.O.; Harichandran, R.S.; Nocito-Gobel, J.; Li, C.Q.; Carnasciali, M. Impact of Integrated e-learning Modules in Developing an Entrepreneurial Mindset based on Deployment at 25 Institutions. In Proceedings of the 2017 ASEE Annual Conference & Exposition, Columbus, OH, USA, 25–28 June 2017. [Google Scholar]
- Diana, N.; Karyanto, P.; Sudarisman, S.; Indriyati, I. The Application of E-Module Based on Problem-Based Learning to Improve Critical Thinking Ability and Reduce Misconception on Ecology Material. Proc. Biol. Educ. Conf. Biol. Sci. Environ. Learn. 2016, 12, 242–247. [Google Scholar]
- Imaningtya, C.D.; Karyanto, P.; Nurmiyati, N.; Asriayni, L. Penerapan e-module berbasis problem based learning untuk meningkatkan literasi sains dan mengurangi miskonsepsi pada materi ekologi siswa kelas. Bioedukasi J. Pendidik. Biol. 2016, 9, 4–10. [Google Scholar]
- Halim, A. Improvement of High Order Thinking Skill of Physics Student to Prepare Human Resources In Order To Face of Global Competition in ASEAN Economic Community. J. Phys. Conf. Ser. 2018, 1116, 032009. [Google Scholar] [CrossRef]
- Nuning, H.; Karyanto, P.; Fatmawati, U.; Mujiyati, M. The Application of E-Module Based on Problem-Based Learning to Im-prove Creative Thinking Ability and Reduce Misconception on Ecology. Proc. Biol. Educ. Conf. Biol. Sci. Environ. Learn. 2015, 12, 240–241. [Google Scholar]
- Kaniraras, D.A.; Karyanto, P.; Nurmiyati, N.; Kusumawati, L. The Application of E-module Using Problem Based Learning to Increase Higher Order Thinking Skill and Decrease Misconception in Ecosystem. Proc. Biol. Educ. Conf. Biol. Sci. Environ. Learn. 2015, 12, 186–192. [Google Scholar]
- Wati, S.; Halim, A. The impact of the media tracker on student critical thinking skills. J. Phys. Conf. Ser. 2020, 1460, 012139. [Google Scholar] [CrossRef]
- Wee, L.K.; Tan, K.K.; Leong, T.K.; Tan, C. Using Tracker to understand ‘toss up’ and free fall motion: A case study. Phys. Educ. 2015, 50, 436. [Google Scholar] [CrossRef] [Green Version]
- Sulisworo, D.; Maruto, G. Tracker Application to Determine the Moment of Inertia in a Video-Based Laboratory to Improve Students’ Learning Activity. In International Conference on Community Development; Atlantis Press: Dordrecht, The Netherlands, 2020; pp. 538–541. [Google Scholar]
- Stadlbauer, J.M.; Kehrer, L.; Bauer, S. Using history to foster critical scientific thinking: Aristotle and Galileo’s debate resolved through high-speed motion tracking in the classroom. Am. J. Phys. 2018, 86, 903–908. [Google Scholar] [CrossRef]
- Hockicko, P.; Trpišová, B.; Ondrus, J. Correcting Students’ Misconceptions about Automobile Braking Distances and Video Analysis Using Interactive Program Tracker. J. Sci. Educ. Technol. 2014, 23, 763–776. [Google Scholar] [CrossRef]
- Mufit, F.; Fauzan, A. The application of real experiments video analysis in the CCBL model to remediate the misconceptions about motion’s concept. J. Phys. Conf. Ser. 2019, 1317, 012156. [Google Scholar] [CrossRef]
- Wee, L.K.; Chew, C.; Goh, G.H.; Tan, S.; Lee, T.L. Using Tracker as a pedagogical tool for understanding projectile motion. Phys. Educ. 2012, 47, 448–455. [Google Scholar] [CrossRef] [Green Version]
- Mufit, F. The Study of Misconception on Motion’s Concept and Remediate Using Real Experiment Video Analysis. INA-Rxiv 2018. [Google Scholar] [CrossRef]
- Kuhn, C.; Zlatkin-Troitschanskaia, O.; Brückner, S.; Saas, H. A new video-based tool to enhance teaching economics. Int. Rev. Econ. Educ. 2018, 27, 24–33. [Google Scholar] [CrossRef]
- Hockicko, P.; Krišt′ák, L.U.; Němec, M. Development of students’ conceptual thinking by means of video analysis and interactive simulations at technical universities. Eur. J. Eng. Educ. 2015, 40, 145–166. [Google Scholar] [CrossRef]
- Subali, B.; Rusdiana, D.; Firman, H.; Kaniawati, I.; Ellianawati, E. Computer-Based Experiment of Free Fall Movement to Im-prove the Graphical Literacy. J. Pend. IPA Ind. 2017, 6, 23–46. [Google Scholar]
- Halim, A.; Mustafa; Nurulwati; Soewarno; Nanda, N. Development of Two-Tier Diagnostic Test Based On E-Learning. J. Phys. Conf. Ser. 2018, 1120, 012030. [Google Scholar] [CrossRef]
- Resta, N.N.; Halim, A.; Mustafa; Huda, I. Development of e-learning-based three-tier diagnostics test on the basic physics course. J. Phys. Conf. Ser. 2020, 1460, 012131. [Google Scholar] [CrossRef]
- Bonate, P.L. Analysis of Pretest-Posttest Designs; CRC Press: New York, NY, USA, 2000. [Google Scholar]
- Gliner, J.A.; Morgan, G.A.; Harmon, R.J. Pretest-Posttest Comparison Group Designs: Analysis and Interpretation. J. Am. Acad. Child Adolesc. Psychiatry 2003, 42, 500–503. [Google Scholar] [CrossRef] [PubMed]
- Hasan, S.; Bagayoko, D.; Kelley, E.L. Misconceptions and the Certainty of Response Index (CRI). Phys. Educ. 1999, 34, 294–299. [Google Scholar] [CrossRef]
- Hakim, A.; Liliasari; Kadarohman, A. Student Concept Understanding of Natural Products Chemistry in Primary and Sec-ondary Metabolites Using the Data Collecting Technique of Modified CRI. Int. Online J. Educ. Sci. 2012, 4, 544–553. [Google Scholar]
- Bao, L. Theoretical comparisons of average normalized gain calculations. Am. J. Phys. 2006, 74, 917–922. [Google Scholar] [CrossRef]
- Hake, R.R. Interactive-engagement versus traditional methods: A six-thousand-student survey of mechanics test data for in-troductory physics courses. Am. J. Phys. 1998, 66, 64–74. [Google Scholar] [CrossRef] [Green Version]
- Laird, N. Further Comparative Analyses of Pretest-Posttest Research Designs. Am. Stat. 1983, 37, 329–330. [Google Scholar]
- Dimitrov, D.M.; Rumrill, P.D., Jr. Pretest-posttest designs and measurement of change. Work 2003, 20, 159–165. [Google Scholar] [PubMed]
- Von Korff, J.; Archibeque, B.; Gomez, K.A.; Heckendorf, T.; McKagan, S.B.; Sayre, E.C.; Schenk, E.W.; Shepherd, C.; Sorell, L. Secondary analysis of teaching methods in introductory physics: A 50 k-student study. Am. J. Phys. 2016, 84, 969–974. [Google Scholar] [CrossRef]
- Coletta, V.P.; Phillips, J.A. Interpreting FCI scores: Normalized gain, reinstruction scores, and scientific reasoning ability. Am. J. Phys. 2005, 73, 1172–1182. [Google Scholar] [CrossRef] [Green Version]
- Miller, K.; Lasry, N.; Reshef, O.; Dowd, J.; Araujo, I.; Mazur, E. Losing it: The Influence of Losses on Individuals’ Normalized Gains. AIP Conf. Proc. 2010, 1289, 229–232. [Google Scholar]
- Finney, M.J. The Role of Print and Video in Changing Science Misconception. Electron. J. Lit. Sci. 2002, 1, 1–25. [Google Scholar]
Groups | Amount | Pretest | Treatment | Posttest |
---|---|---|---|---|
Phys.1 | 38 | Q1 | X1 (video) | Q2 |
Phys.2 | 32 | Q1 | X1 (video) | Q2 |
Phys.3 | 24 | Q1 | X1 (video) | Q2 |
Phys.4 | 29 | Q1 | X2 (feedback) | Q2 |
Phys.5 | 25 | Q1 | X2 (feedback) | Q2 |
Phys.6 | 23 | Q1 | X2 (feedback) | Q2 |
Phys.7 | 41 | Q1 | X3 (module) | Q2 |
Phys.8 | 30 | Q1 | X3 (module) | Q2 |
Phys.9 | 39 | Q1 | X3 (module) | Q2 |
Validity Design and Media Expert | Reliability | ||||||||
---|---|---|---|---|---|---|---|---|---|
Contents Experts | Design and Media Experts | ||||||||
Content Feasibility | Present. of Questions | Lang. Asses | Test contents | Form. & display | Lay. outline | Pack. & eval. Active. | Mean | Category | Cronbach’s Alpha |
85% | 86% | 85% | 93% | 79% | 83% | 85% | 85.14% | Very Decent | 0.827 |
Topic | Sub-Concept | Three-Tier Diagnostic Test | |||
---|---|---|---|---|---|
One-Tier | Two-Tier | Three-Tier | Items | ||
The concept of free-falling object weight | Stimulus (1a) | CRI (1b) | Reason (1c) | 1 | |
The concept of free-falling object size | Stimulus (2a) | CRI (2b) | Reason (2c) | 2 | |
Free-fall | The concept of free-falling object shape | Stimulus (3a) | CRI (3b) | Reason (3c) | 3 |
motion | The concept of free-falling object action-reaction | Stimulus (4a) | CRI (4b) | Reason (4c) | 4 |
The concept of free-falling object acceleration | Stimulus (5a, 6a) | CRI (5b,6b) | Reason (5c, 6c) | 5,6 | |
The concept of free-falling object trajectory | Stimulus (7a) | CRI (7b) | Reason (7c) | 7 | |
The concept of free-falling object gravity force | Stimulus (8a) | CRI (8b) | Reason (8c) | 8 |
Questions and Students’ Answers | Narrative Feedback |
---|---|
Q1: Two metal balls (A and B) are the same size, but the weight of ball A is twice the weight of ball B. Both are dropped from a building with the same height. The time it takes for the two balls to reach the ground is: A1: The time for ball B is about half that of ball A. Q2: Two metal balls (C and D) weigh the same, but the size of ball C is 10 times the area of ball D. Both are dropped from a building with the same height. The time it takes for the two balls to reach the ground is: A2: Time for ball C is 1/10 of the time that ball D falls. | F1: The answer is incorrect, because it is theoretically and practically impossible for light objects to fall faster than heavy objects F2: The answer is incorrect, because ball C falls faster, while the plane of ball C is wider than ball D. In this problem, there is no information ignoring air friction, meaning that air friction is still taken into account. Thus it is impossible for ball C to fall faster than ball D, while the cross-sectional area of ball C is wider than ball D, this is not according to everyday experience. Meanwhile, according to the theory, the size and weight of the object has no correlation with the time it fell. |
Items | Sub-Concepts | Feedback | Module | Video | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Pre | Post | <g> | Pre | Post | <g> | Pre | Post | <g> | ||
1 | Weight in free falling objects | 1.07 | 3.48 | 0.55 | 1.15 | 3.07 | 0.50 | 0.28 | 0.77 | 0.10 |
2 | Size in free falling objects | 2.62 | 4.48 | 0.73 | 2.29 | 2.63 | 0.12 | 1.22 | 2.95 | 0.46 |
3 | Shape in free falling objects | 1.85 | 4.16 | 0.74 | 2.58 | 3.48 | 0.37 | 1.36 | 2.93 | 0.43 |
4 | Action–reaction force in free falling objects | 0.00 | 2.27 | 0.45 | 0.06 | 1.90 | 0.03 | 0.15 | 0.24 | 0.02 |
5 | Falling acceleration in free falling objects | 2.92 | 4.42 | 0.65 | 2.80 | 3.75 | 0.43 | 0.70 | 3.76 | 0.71 |
6 | A trajectory in free falling objects | 0.40 | 2.27 | 0.39 | 1.39 | 2.72 | 0.37 | 0.28 | 1.09 | 0.17 |
7 | Force of gravity on free falling objects | 0.87 | 2.71 | 0.41 | 0.20 | 0.47 | 0.06 | 0.19 | 0.61 | 0.09 |
8 | Force of drag on falling objects | 2.85 | 3.66 | 0.42 | 3.32 | 3.50 | 0.11 | 0.74 | 3.69 | 0.69 |
Average | 1.57 | 3.43 | 0.54 | 1.72 | 2.47 | 0.25 | 0.61 | 2.01 | 0.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halim, A.; Mahzum, E.; Yacob, M.; Irwandi, I.; Halim, L. The Impact of Narrative Feedback, E-Learning Modules and Realistic Video and the Reduction of Misconception. Educ. Sci. 2021, 11, 158. https://doi.org/10.3390/educsci11040158
Halim A, Mahzum E, Yacob M, Irwandi I, Halim L. The Impact of Narrative Feedback, E-Learning Modules and Realistic Video and the Reduction of Misconception. Education Sciences. 2021; 11(4):158. https://doi.org/10.3390/educsci11040158
Chicago/Turabian StyleHalim, Abdul, Elmi Mahzum, Muhammad Yacob, Irwandi Irwandi, and Lilia Halim. 2021. "The Impact of Narrative Feedback, E-Learning Modules and Realistic Video and the Reduction of Misconception" Education Sciences 11, no. 4: 158. https://doi.org/10.3390/educsci11040158
APA StyleHalim, A., Mahzum, E., Yacob, M., Irwandi, I., & Halim, L. (2021). The Impact of Narrative Feedback, E-Learning Modules and Realistic Video and the Reduction of Misconception. Education Sciences, 11(4), 158. https://doi.org/10.3390/educsci11040158