# A Model of Damage for Brittle and Ductile Adhesives in Glued Butt Joints

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Analytical Method for Damage Prediction

#### 2.1. Classical Solution for Perfect Contact between the Adherents

#### 2.2. Generalized Equilibrium Solution for Imperfect Contact between the Adherents

- The stress field (1), which is continuous across the adhesive and equilibrated by the applied loads;

#### 2.3. Micro-Cracking Damaging Adhesive Model

#### 2.4. Damage Evolution

#### 2.5. Stress–Strain Response

## 3. Numerical Implementation

## 4. Results and Discussion

#### 4.1. Simulation of Pure Tensile Tests

- ${\rho}_{0}=1.14$ for the QS case;
- ${\rho}_{0}=1.07$ for the HR case.

#### 4.2. Simulation of Pure Torsion Tests

- $a=1.58\times {10}^{-3}$ MPa${}^{-1},$ $b=1.05\times {10}^{-6}$ MPa${}^{-4},$ ${\tau}_{0}=50.25$ MPa for the QS case;
- $a=1.50\times {10}^{-3}$ MPa${}^{-1},$ $b=1.78\times {10}^{-7}$ MPa${}^{-4},$ ${\tau}_{0}=64.97$ MPa for the HR case.

- ${\rho}_{0}=0.55,$$\eta =2296.70$ Ns/m, $\omega =-679.34$ N/m for the QS case;
- ${\rho}_{0}=0.51,$$\eta =0.90$ Ns/m, $\omega =-1135.64$ N/m for the HR case.

#### 4.3. Simulation of Combined Tensile–Torsion Tests

## 5. Summary

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## Appendix A

## References

- Higgins, A. Adhesive bonding of aircraft structures. Int. J. Adhes. Adhes.
**2000**, 20, 367–376. [Google Scholar] [CrossRef] - Maurel-Pantel, A.; Lamberti, M.; Raffa, M.L.; Suarez, C.; Ascione, F.; Lebon, F. Modelling of a GFRP adhesive connection by an imperfect soft interface model with initial damage. Compos. Struct.
**2020**, 239, 112034. [Google Scholar] [CrossRef] - Kawecki, B.; Podgórski, J. The Effect of Glue Cohesive Stiffness on the Elastic Performance of Bent Wood–CFRP Beams. Materials
**2020**, 13, 5075. [Google Scholar] [CrossRef] - Cavezza, F.; Boehm, M.; Terryn, H.; Hauffman, T. A Review on Adhesively Bonded Aluminium Joints in the Automotive Industry. Metals
**2020**, 10, 730. [Google Scholar] [CrossRef] - Sokolowski, G.; Krasowski, M.; Szczesio-Wlodarczyk, A.; Konieczny, B.; Sokolowski, J.; Bociong, K. The Influence of Cement Layer Thickness on the Stress State of Metal Inlay Restorations—Photoelastic Analysis. Materials
**2021**, 14, 599. [Google Scholar] [CrossRef] - Ramalho, L.D.C.; Campilho, R.D.S.G.; Belinha, J.; Da Silva, L.F.M. Static strength prediction of adhesive joints: A review. Int. J. Adhes. Adhes.
**2020**, 96, 102451. [Google Scholar] [CrossRef] - Rucka, M.; Wojtczak, E.; Lachowicz, J. Damage imaging in Lamb wave-based inspection of adhesive joints. Appl. Sci.
**2018**, 8, 522. [Google Scholar] [CrossRef] [Green Version] - Chai, H. Observation of deformation and damage at the tip of cracks in adhesive bonds loaded in shear and assessment of a criterion for fracture. Int. J. Fract.
**1993**, 60, 311–326. [Google Scholar] - Murakami, S.; Sekiguchi, Y.; Sato, C.; Yokoi, E.; Furusawa, T. Strength of cylindrical butt joints bonded with epoxy adhesives under combined static or high-rate loading. Int. J. Adhes. Adhes.
**2016**, 67, 86–93. [Google Scholar] [CrossRef] - Kosmann, J.; Klapp, O.; Holzhüter, D.; Schollerer, M.J.; Fiedler, A.; Nagel, C.; Hühne, C. Measurement of epoxy film adhesive properties in torsion and tension using tubular butt joints. Int. J. Adhes. Adhes.
**2018**, 83, 50–58. [Google Scholar] [CrossRef] - Spaggiari, A.; Castagnetti, D.; Dragoni, E. Mixed-mode strength of thin adhesive films: Experimental characterization through a tubular specimen with reduced edge effect. J. Adhes.
**2013**, 89, 660–675. [Google Scholar] [CrossRef] - Zhang, J.; Wang, J.; Yuan, Z.; Jia, H. Effect of the cohesive law shape on the modelling of adhesive joints bonded with brittle and ductile adhesives. Int. J. Adhes. Adhes.
**2018**, 85, 37–43. [Google Scholar] [CrossRef] - Campilho, R.D.; Banea, M.D.; Neto, J.A.B.P.; da Silva, L.F. Modelling adhesive joints with cohesive zone models: Effect of the cohesive law shape of the adhesive layer. Int. J. Adhes. Adhes.
**2013**, 44, 48–56. [Google Scholar] [CrossRef] [Green Version] - Hu, C.; Huang, G.; Li, C. Experimental and Numerical Study of Low-Velocity Impact and Tensile after Impact for CFRP Laminates Single-Lap Joints Adhesively Bonded Structure. Materials
**2021**, 14, 1016. [Google Scholar] [CrossRef] [PubMed] - Yu, G.; Chen, X.; Zhang, B.; Pan, K.; Yang, L. Tensile-Shear Mechanical Behaviors of Friction Stir Spot Weld and Adhesive Hybrid Joint: Experimental and Numerical Study. Metals
**2020**, 10, 1028. [Google Scholar] [CrossRef] - Liljedahl, C.D.M.; Crocombe, A.D.; Wahab, M.A.; Ashcroft, I.A. Modelling the environmental degradation of adhesively bonded aluminium and composite joints using a CZM approach. Int. J. Adhes. Adhes.
**2007**, 27, 505–518. [Google Scholar] [CrossRef] - Pirondi, A.; Moroni, F. Improvement of a Cohesive Zone Model for Fatigue Delamination Rate Simulation. Materials
**2019**, 12, 181. [Google Scholar] [CrossRef] [Green Version] - Lebon, F.; Dumont, S.; Rizzoni, R.; López-Realpozo, J.C.; Guinovart-Díaz, R.; Rodríguez-Ramos, R.; Bravo-Castillero, J.; Sabina, F.J. Soft and hard anisotropic interface in composite materials. Compos. Part Eng.
**2016**, 90, 58–68. [Google Scholar] [CrossRef] [Green Version] - Dumont, S.; Lebon, F.; Raffa, M.L.; Rizzoni, R. Towards nonlinear imperfect interface models including microcracks and smooth roughness. Ann. Solid Struct. Mech.
**2017**, 9, 13–27. [Google Scholar] [CrossRef] [Green Version] - Benveniste, Y.; Miloh, T. Imperfect soft and stiff interfaces in two-dimensional elasticity. Mech. Mater.
**2001**, 33, 309–323. [Google Scholar] [CrossRef] - Furtsev, A.; Rudoy, E. Variational approach to modeling soft and stiff interfaces in the Kirchhoff-Love theory of plates. Int. J. Solids Struct.
**2020**, 202, 562–574. [Google Scholar] [CrossRef] - Rizzoni, R.; Dumont, S.; Lebon, F.; Sacco, S. Higher order model for soft and hard interfaces. Int. J. Solids Struct.
**2014**, 51, 4137–4148. [Google Scholar] [CrossRef] - Raffa, M.L.; Lebon, F.; Rizzoni, R. A micromechanical model of a hard interface with micro-cracking damage. 2021; In Preparation. [Google Scholar]
- Kachanov, M. Elastic solids with many cracks and related problems. Adv. Appl. Mech.
**1994**, 30, 259–445. [Google Scholar] - Kachanov, M.; Sevostianov, I. Micromechanics of Materials, with Applications; Springer: Cham, Switzerland, 2018; Volume 249. [Google Scholar]
- Weng, C.; Yang, J.; Yang, D.; Jiang, B. Molecular Dynamics Study on the Deformation Behaviors of Nanostructures in the Demolding Process of Micro-Injection Molding. Polymers
**2019**, 11, 470. [Google Scholar] [CrossRef] [Green Version] - Wolfram Research, Inc. Mathematica; Version 12.2; Wolfram Research, Inc.: Champaign, IL, USA, 2020. [Google Scholar]
- Ankit Rohatgi. WebPlotDigitizer. Version: 4.4. November 2020. Available online: https://automeris.io/WebPlotDigitizer (accessed on 28 December 2020).
- Costa-Mattos, H.S.; Monteiro, A.H.; Sampaio, E.M. Modelling the strength of bonded butt-joints. Compos. Part B Eng.
**2010**, 41, 654–662. [Google Scholar] [CrossRef]

**Figure 1.**(

**a**) Sketch of the tube-to-tube joint with the loading configuration. (

**b**) Longitudinal and traversal sections with dimensions.

**Figure 2.**Stress–strain curves in pure loading conditions: (

**a**) Stress–strain curves of the adhesive layer under a pure tensile load obtained with the proposed model for quasi-static and high-rate loading (solid lines) compared with experimental curves by [9] (dashed lines). (

**b**) Stress–strain curves of the adhesive layer under a pure torsion load obtained with the proposed model for quasi-static and high-rate loading (solid lines) compared with experimental curves by [9] (dashed lines).

**Figure 3.**Stress–strain curves in combined tensile–torsion loading conditions: (

**a**) Tensile stress–strain curves of the adhesive layer obtained with the proposed model for quasi-static and high-rate loading. (

**b**) Torsion stress–strain curves of the adhesive layer obtained with the proposed model for quasi-static and high-rate loading.

**Table 1.**Geometrical parameters of the joint specimen [9].

Quantity | Symbol | Value | Unit |
---|---|---|---|

Outer diameter | D | 26.0 | mm |

Inner diameter | d | 20.0 | mm |

Adhesive thickness | $\epsilon $ | 0.3 | mm |

**Table 2.**Mechanical properties of the joint materials [9].

Quantity | Symbol | Value | Unit |
---|---|---|---|

Adhesive Young’s modulus | ${E}_{0}$ | 4.53 | GPa |

Adhesive Poisson’s ratio | ${\nu}_{0}$ | 0.36 | – |

Adherents’ Young’s modulus | E | 200.00 | GPa |

Adherents’ Poisson’s ratio | $\nu $ | 0.30 | – |

**Table 3.**Experimentally estimated tensile and torsional (shear) strengths of butt-joint specimens studied in [9].

Loading Rate | Loading Angle [deg.] | Tensile Strength [MPa] | Shear Strength [MPa] | Failure Strain in Tension [%] | Failure Strain in Shear [%] |
---|---|---|---|---|---|

QS | 0 | 61.8 | – | 4.0 | – |

HR | 0 | 90.0 | – | 6.1 | – |

QS | 90 | – | 53.2 | – | 37.0 |

HR | 90 | – | 70.0 | – | 32.0 |

QS | $18.0$ | 61.0 | 19.9 | 2.15 | 2.85 |

HR | $15.5$ | 92.1 | 25.5 | 3.55 | 3.69 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Raffa, M.L.; Rizzoni, R.; Lebon, F.
A Model of Damage for Brittle and Ductile Adhesives in Glued Butt Joints. *Technologies* **2021**, *9*, 19.
https://doi.org/10.3390/technologies9010019

**AMA Style**

Raffa ML, Rizzoni R, Lebon F.
A Model of Damage for Brittle and Ductile Adhesives in Glued Butt Joints. *Technologies*. 2021; 9(1):19.
https://doi.org/10.3390/technologies9010019

**Chicago/Turabian Style**

Raffa, Maria Letizia, Raffaella Rizzoni, and Frédéric Lebon.
2021. "A Model of Damage for Brittle and Ductile Adhesives in Glued Butt Joints" *Technologies* 9, no. 1: 19.
https://doi.org/10.3390/technologies9010019