Phytochemicals Derived from Catharanthus roseus and Their Health Benefits
Abstract
:1. Introduction
2. Taxonomy and Traditional Use of C. roseus
3. Major Bioactive Compounds Derived from C. roseus
4. Preparation and Recovery of Bioactive Compounds from C. roseus
4.1. Preparation of Dried C. roseus
4.2. Recovery of Bioactive Compounds from C. roseus
5. Potential Use for Health Benefits
5.1. Potential Use as an Anticancer Agent
5.2. Potential Use as an Antidiabetic Agent
5.3. Potential Use as Anti-Alzheimer’s Disease Agents
5.4. Other Beneficial Effects
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Easmin, M.S.; Sarker, M.Z.I.; Ferdosh, S.; Shamsudin, S.H.; Yunus, K.B.; Uddin, M.S.; Sarker, M.M.R.; Akanda, M.J.H.; Hossain, M.S.; Khalil, H.P.S.A. Bioactive compounds and advanced processing technology: Phaleria macrocarpa (sheff.) Boerl, a review. J. Chem. Technol. Biotechnol. 2015, 90, 981–991. [Google Scholar] [CrossRef]
- Aslam, J.; Khan, S.H.; Siddiqui, Z.H.; Fatima, Z.; Maqsood, M.; Bhat, M.A.; Nasim, S.A.; Ilah, A.; Ahmad, I.Z.; Khan, S.A. Catharanthus roseus (L.) G. Don. an important drug: It’s applications and production. Pharm. Glob. (IJCP) 2010, 4, 1–16. [Google Scholar]
- Cragg, G.M.; Newman, D.J. Plants as a source of anti-cancer agents. J. Ethnophamacol. 2005, 1, 72–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pham, H.N.T.; Nguyen, V.T.; Vuong, Q.V.; Bowyer, M.C.; Scarlett, C.J. Effect of extraction solvents and drying methods on the physicochemical and antioxidant properties of Helicteres hirsuta Lour. leaves. Technologies 2015, 3, 285–301. [Google Scholar] [CrossRef] [Green Version]
- Pham, H.N.T.; Nguyen, V.T.; Vuong, Q.V.; Bowyer, M.C.; Scarlett, C.J. Bioactive compound yield and antioxidant capacity of Helicteres hirsuta Lour. stem as affected by various solvents and drying methods. J. Food Process. Preserv. 2017, 41, e12879. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Pham, N.M.Q.; Vuong, Q.V.; Bowyer, M.C.; van Altenaa, I.A.; Scarlett, C.J. Phytochemical retention and antioxidant capacity of xao tam phan (Paramignya trimera) root as prepared by different drying methods. Dry. Technol. 2015, 34, 324–334. [Google Scholar] [CrossRef]
- Vuong, Q.V.; Zammit, N.; Munro, B.R.; Murchie, S.; Bowyer, M.C.; Scarlett, C.J. Effect of drying conditions on physicochemical and antioxidant properties of Vitex agnus-castus leaves. J. Food Process. Preserv. 2015, 39, 2562–2571. [Google Scholar] [CrossRef]
- Goli, A.H.; Barzegar, M.; Sahari, M.A. Antioxidant activity and total phenolic compounds of pistachio (Pistachia vera) hull extracts. Food Chem. 2005, 92, 521–525. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Bowyer, M.C.; Vuong, Q.V.; van Altena, I.A.; Scarlett, C.J. Phytochemicals and antioxidant capacity of Xao tam phan (Paramignya trimera) root as affected by various solvents and extraction methods. Ind. Crops Prod. 2015, 67, 192–200. [Google Scholar] [CrossRef]
- Mehmood, A.; Ishaq, M.; Zhao, L.; Yaqoob, S.; Safdar, B.; Nadeem, M.; Munir, M.; Wang, C. Impact of ultrasound and conventional extraction techniques on bioactive compounds and biological activities of blue butterfly pea flower (Clitoria ternatea L.). Ultrason. Sonochem. 2019, 51, 12–19. [Google Scholar] [CrossRef]
- Uribe, E.; Delgadillo, A.; Giovagnoli-Vicuña, C.; Quispe-Fuentes, I.; Zura-Bravo, L. Extraction techniques for bioactive compounds and antioxidant capacity determination of Chilean papaya (Vasconcellea pubescens) fruit. J. Chem. 2015, 2015, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.; Sangwan, P. Taxonomy, ethnobotany and antimicrobial activity of Alstonia scholaris (L.) R. Br., Carissa carandas L. and Catharanthus roseus (L.) G. Don. Int. J. Biotech Biosci. 2011, 1, 102–112. [Google Scholar]
- Holdsworth, D.K. Traditional medicinal plants of rarotonga, cook islands part I. Int. J. Crude Drug Res. 1990, 28, 209–218. [Google Scholar]
- Khan, M.H.; Yadava, P. Antidiabetic plants used in Thoubal district of Manipur, Northeast India. Indian J. Tradit. Know. 2010, 9, 510–514. [Google Scholar]
- Marles, R.J.; Farnsworth, N.R. Antidiabetic plants and their active constituents. Phytomedicine 1995, 2, 137–189. [Google Scholar]
- Swanston-Flatt, S.K.; Day, C.; Flatt, P.R.; Gould, B.J.; Bailey, C. Glycaemic effects of traditional European plant treatments for diabetes. Studies in normal and streptozotocin diabetic mice. Diabetes Res. 1989, 10, 69–73. [Google Scholar]
- Vo, V.C. Dictionary of Vietnamese medicinal plants, Medical Publishing House, Ha Noi. Am. J. Plant Sci. 2012, 4, 210–215. [Google Scholar]
- Ochwang’i, D.O.; Kimwele, C.N.; Oduma, J.A.; Gathumbi, P.K.; Mbaria, J.M.; Kiama, S.G. Medicinal plants used in treatment and management of cancer in Kakamega County, Kenya. J. Ethnopharmacol. 2014, 151, 1040–1055. [Google Scholar]
- Muthu, C.; Ayyanar, M.; Raja, N.; Ignacimuthu, S. Medicinal plants used by traditional healers in Kancheepuram district of Tamil Nadu, India. J. Ethnobiol. Ethnomed. 2006, 2, 43. [Google Scholar]
- Fernandes, L.; Van Rensburg, C.; Hoosen, A.; Steenkamp, V. In vitro activity of medicinal plants of the Venda region, South Africa, against Trichomonas vaginalis. S. Afr. J. Epidemiol. Infect. 2008, 23, 26–28. [Google Scholar]
- Semenya, S.; Potgieter, M. Catharanthus roseus (L.) G. Don.: Extraordinary bapedi medicinal herb for gonorrhoea. J. Med. Plant. Res. 2013, 7, 1434–1438. [Google Scholar]
- Chigora, P.; Masocha, R.; Mutenheri, F. The role of indigenous medicinal knowledge (IMK) in the treatment of ailments in rural Zimbabwe: The case of Mutirikwi communal lands. J. Sustain. Dev. Afr. 2007, 9, 26–43. [Google Scholar]
- Wansi, J.D.; Devkota, K.P.; Tshikalange, E.; Kuete, V. Alkaloids from the medicinal plants of Africa. In Medicinal Plant Research in Africa; Kuete, V., Ed.; Elsevier: Oxford, UK, 2013; pp. 557–605. [Google Scholar]
- Kumar, S.; Singh, A.; Kumar, B.; Singh, B.; Bahadur, L.; Lal, M. Simultaneous quantitative determination of bioactive terpene indole alkaloids in ethanolic extracts of Catharanthus roseus (L.) G. Don by ultra high performance liquid chromatography–tandem mass spectrometry. J. Pharm. Biomed. Anal. 2018, 151, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Mu, F.S.; Yang, L.Q.; Wang, W.; Luo, M.; Fu, Y.J.; Guo, X.R.; Zu, Y.G. Negative-pressure cavitation extraction of four main vinca alkaloids from Catharanthus roseus leaves. Molecules 2012, 17, 8742–8752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tikhomiroff, C.; Jolicoeur, M. Screening of Catharanthus roseus secondary metabolites by high-performance liquid chromatography. J. Chromatogr. A 2002, 995, 87–93. [Google Scholar] [CrossRef]
- Tiong, S.H.; Looi, C.Y.; Hazni, H.; Arya, A.; Paydar, M.; Wong, W.F.; Cheah, S.C.; Mustafa, M.R.; Awang, K. Antidiabetic and antioxidant properties of alkaloids from Catharanthus roseus (L.) G. Don. Molecules 2013, 18, 9770–9784. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; He, H.-P.; Di, Y.-T.; Zhang, Y.; Hao, X.-J. Catharoseumine, a new monoterpenoid indole alkaloid possessing a peroxy bridge from Catharanthus roseus. Tetrahedron Lett. 2012, 53, 1576–1578. [Google Scholar]
- El-Sayed, A.; Cordell, G.A. Catharanthus alkaloids. XXXIV. Catharanthamine, a new antitumor bisindole alkaloid from Catharanthus roseus. J. Nat. Prod. 1981, 44, 289–293. [Google Scholar] [CrossRef]
- Wang, C.-H.; Wang, G.-C.; Wang, Y.; Zhang, X.-Q.; Huang, X.-J.; Zhang, D.-M.; Chen, M.-F.; Ye, W.-C. Cytotoxic dimeric indole alkaloids from Catharanthus roseus. Fitoterapia 2012, 83, 765–769. [Google Scholar] [CrossRef]
- Wang, X.-D.; Li, C.-Y.; Jiang, M.-M.; Li, D.; Wen, P.; Song, X.; Chen, J.-D.; Guo, L.-X.; Hu, X.-P.; Li, G.-Q. Induction of apoptosis in human leukemia cells through an intrinsic pathway by cathachunine, a unique alkaloid isolated from Catharanthus roseus. Phytomedicine 2016, 23, 641–653. [Google Scholar] [CrossRef]
- Ferreres, F.; Pereira, D.M.; Valentao, P.; Andrade, P.B.; Seabra, R.M.; Sottomayor, M. New phenolic compounds and antioxidant potential of Catharanthus roseus. J. Agr. Food Chem. 2008, 56, 9967–9974. [Google Scholar] [CrossRef] [PubMed]
- Pereira, D.M.; Ferreres, F.; Oliveira, J.; Valentao, P.; Andrade, P.B.; Sottomayor, M. Targeted metabolite analysis of Catharanthus roseus and its biological potential. Food Chem. Toxicol. 2009, 47, 1349–1354. [Google Scholar] [CrossRef]
- Misra, N.; Gupta, A.K. Effect of salinity and different nitrogen sources on the activity of antioxidant enzymes and indole alkaloid content in Catharanthus roseus seedlings. J. Plant Physiol. 2006, 163, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Wu, M. Cadmium treatment enhances the production of alkaloid secondary metabolites in Catharanthus roseus. Plant Sci. 2004, 166, 507–514. [Google Scholar] [CrossRef]
- Binder, B.Y.; Peebles, C.A.; Shanks, J.V.; San, K.Y. The effects of UV-B stress on the production of terpenoid indole alkaloids in Catharanthus roseus hairy roots. Biotechnol. Prog. 2009, 25, 861–865. [Google Scholar] [CrossRef] [PubMed]
- Mishra, M.R.M.; Srivastava, R.K.; Akhtar, N. Effect of nitrogen, phosphorus and medium ph to enhance alkaloid production from Catharanthus roseus cell suspension culture. Int. J. Second. Metab. 2019, 6, 137–153. [Google Scholar] [CrossRef]
- Oueslati, S.; Karray-Bouraoui, N.; Attia, H.; Rabhi, M.; Ksouri, R.; Lachaal, M. Physiological and antioxidant responses of Mentha pulegium (Pennyroyal) to salt stress. Acta Physiol. Plant. 2010, 32, 289–296. [Google Scholar] [CrossRef]
- Mahdavi, A.; Moradi, P.; Mastinu, A. Variation in terpene profiles of Thymus vulgaris in water deficit stress response. Molecules 2020, 25, 1091. [Google Scholar] [CrossRef] [Green Version]
- Pham, H.N.T.; Vuong, Q.V.; Bowyer, M.C.; Scarlett, C.J. Effect of extraction solvents and thermal drying methods on bioactive compounds and antioxidant properties of Catharanthus roseus (L.) G. Don (Patricia White cultivar). J. Food Process. Preserv. 2017, 41, e13199. [Google Scholar] [CrossRef]
- Bhadra, R.; Vani, S.; Shanks, J.V. Production of indole alkaloids by selected hairy root lines of Catharanthus roseus. Biotechnol. Bioeng. 1993, 41, 581–592. [Google Scholar] [CrossRef]
- Uniyal, G.; Bala, S.; Mathur, A.; Kulkarni, R. Symmetry C18 column: A better choice for the analysis of indole alkaloids of Catharanthus roseus. Phytochem. Anal. 2001, 12, 206–210. [Google Scholar] [CrossRef] [PubMed]
- Tiong, S.H.; Looi, C.Y.; Arya, A.; Wong, W.F.; Hazni, H.; Mustafa, M.R.; Awang, K. Vindogentianine, a hypoglycemic alkaloid from Catharanthus roseus (L.) G. Don (Apocynaceae). Fitoterapia 2015, 102, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Kha, T.C.; Nguyen, M.H. Extraction and isolation of plant bioactives. In Plant Bioactive Compounds for Pancreatic Cancer Prevention and Treatment; Scarlett, C.J., Vuong, Q.V., Eds.; Nova Science Publishers: New York, NY, USA, 2014; pp. 117–144. [Google Scholar]
- Wang, L.; Weller, C.L. Recent advances in extraction of nutra-ceuticals from plants. Trends Food Sci. Technol. 2006, 17, 300–312. [Google Scholar] [CrossRef]
- Pham, H.N.T.; Vuong, Q.V.; Bowyer, M.C.; Scarlett, C.J. Ultrasound-assisted extraction of Catharanthus roseus (L.) G. Don (Patricia White cultivar) stem for maximizing saponin yield and antioxidant capacity. J. Food Process. Preserv. 2018, 42, e13597. [Google Scholar] [CrossRef]
- Lucas-González, R.; Fernández-López, J.; Pérez-Álvarez, J.Á.; Viuda-Martos, M. Effect of particle size on phytochemical composition and antioxidant properties of two persimmon flours from Diospyros kaki Thunb. vars.‘Rojo Brillante’ and ‘Triumph’co-products. J. Sci. Food Agri. 2018, 98, 504–510. [Google Scholar] [CrossRef]
- Zaiter, A.; Becker, L.; Karam, M.-C.; Dicko, A. Effect of particle size on antioxidant activity and catechin content of green tea powders. J. Food Sci. Technol. 2016, 53, 2025–2032. [Google Scholar] [CrossRef] [Green Version]
- Boi, V.N.; Cuong, D.X.; Vinh, P.T.K. Effects of extraction conditions over the phlorotannin content and antioxidant activity of extract from brown algae Sargassum serratum (Nguyen Huu Dai 2004). Free Radic. Antioxid. 2017, 7, 115–122. [Google Scholar] [CrossRef]
- Alexandre, E.M.; Araújo, P.; Duarte, M.F.; de Freitas, V.; Pintado, M.; Saraiva, J.A. Experimental design, modeling, and optimization of high-pressure-assisted extraction of bioactive compounds from pomegranate peel. Food Bioprocess Tech. 2017, 10, 886–900. [Google Scholar] [CrossRef]
- Cragg, G.M.; Newman, D.J. Plants as a source of anti-cancer and anti-HIV agents. Ann. Appl. Biol. 2003, 143, 127–133. [Google Scholar] [CrossRef]
- Almagro, L.; Fernández-Pérez, F.; Pedreño, M. Indole alkaloids from Catharanthus roseus: Bioproduction and their effect on human health. Molecules 2015, 20, 2973–3000. [Google Scholar] [CrossRef] [Green Version]
- Pham, H.N.T.; Sakoff, J.A.; Vuong, Q.V.; Bowyer, M.C.; Scarlett, C.J. Screening phytochemical content, antioxidant, antimicrobial and cytotoxic activities of Catharanthus roseus (L.) G. Don stem extract and its fractions. Biocatal. Agric. Biotechnol. 2018, 16, 405–411. [Google Scholar] [CrossRef]
- Pham, H.N.T.; Sakoff, J.A.; Vuong, Q.V.; Bowyer, M.C.; Scarlett, C.J. Phytochemical, antioxidant, anti-proliferative and antimicrobial properties of Catharanthus roseus root extract, saponin-enriched and aqueous fractions. Mol. Biol. Rep. 2019, 46, 3265–3273. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Pérez, F.; Almagro, L.; Pedreño, M.A.; Gomez Ros, L.V. Synergistic and cytotoxic action of indole alkaloids produced from elicited cell cultures of Catharanthus roseus. Pharm. Biol. 2013, 51, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Bhuyan, D.J.; Vuong, Q.V.; Bond, D.R.; Chalmers, A.C.; Bowyer, M.C.; Scarlett, C.J. Eucalyptus microcorys leaf extract derived HPLC-fraction reduces the viability of MIA PaCa-2 cells by inducing apoptosis and arresting cell cycle. Biomed. Pharmacother. 2018, 105, 449–460. [Google Scholar] [CrossRef] [PubMed]
- Barth, S.W.; Faehndrich, C.; Bub, A.; Watzl, B.; Will, F.; Dietrich, H.; Rechkemmer, G.; Briviba, K. Cloudy apple juice is more effective than apple polyphenols and an apple juice derived cloud fraction in a rat model of colon carcinogenesis. J. Agric. Food Chem. 2007, 55, 1181–1187. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Shang, X.; Wu, H.; Huang, G.; Wang, Y.; Al-Holou, S.; Gautam, S.C.; Chopp, M. Combination treatment with resveratrol and sulforaphane induces apoptosis in human U251 glioma cells. Neurochem. Res. 2010, 35, 152. [Google Scholar] [CrossRef] [Green Version]
- Rasoanaivo, P.; Wright, C.W.; Willcox, M.L.; Gilbert, B. Whole plant extracts versus single compounds for the treatment of malaria: Synergy and positive interactions. Malar. J. 2011, 10, S4. [Google Scholar] [CrossRef] [Green Version]
- Nammi, S.; Boini, M.K.; Lodagala, S.D.; Behara, R.B.S. The juice of fresh leaves of Catharanthus roseus Linn. reduces blood glucose in normal and alloxan diabetic rabbits. BMC Complement. Altern. Med. 2003, 3, 4. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.F.; Kazim, S.M.; Ghori, S.S.; Mehjabeen, S.S.; Ahmed, S.R.; Ali, S.M.; Ibrahim, M. Antidiabetic activity of Vinca rosea extracts in alloxan-induced diabetic rats. Int. J. Endocrinol. 2010, 2010, 841090. [Google Scholar] [CrossRef]
- Yoo, K.-Y.; Park, S.-Y. Terpenoids as potential anti-Alzheimer’s disease therapeutics. Molecules 2012, 17, 3524–3538. [Google Scholar] [CrossRef]
- Bartolucci, C.; Perola, E.; Pilger, C.; Fels, G.; Lamba, D. Three-dimensional structure of a complex of galanthamine (Nivalin®) with acetylcholinesterase from Torpedo californica: Implications for the design of new anti-Alzheimer drugs. Proteins 2001, 42, 182–191. [Google Scholar] [CrossRef]
- Greenblatt, H.M.; Guillou, C.; Guénard, D.; Argaman, A.; Botti, S.; Badet, B.; Thal, C.; Silman, I.; Sussman, J.L. The complex of a bivalent derivative of galanthamine with torpedo acetylcholinesterase displays drastic deformation of the active-site gorge: Implications for structure-based drug design. J. Am. Chem. Soc. 2004, 126, 15405–15411. [Google Scholar] [CrossRef] [PubMed]
- Pereira, D.M.; Faria, J.; Gaspar, L.; Ferreres, F.; Valentao, P.; Sottomayor, M.; Andrade, P.B. Exploiting Catharanthus roseus roots: Source of antioxidants. Food Chem. 2010, 121, 56–61. [Google Scholar] [CrossRef]
- Pereira, D.M.; Ferreres, F.; Oliveira, J.M.A.; Gaspar, L.; Faria, J.; Valentão, P.; Sottomayor, M.; Andrade, P.B. Pharmacological effects of Catharanthus roseus root alkaloids in acetylcholinesterase inhibition and cholinergic neurotransmission. Phytomedicine 2010, 17, 646–652. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, J.-J.; Xu, D.-P.; Zhou, T.; Zhou, Y.; Li, S.; Li, H.-B. Bioactivities and health benefits of wild fruits. Int. J. Mol. Sci. 2016, 17, 1258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goyal, P.; Khanna, A.; Chauhan, A.; Chauhan, G.; Kaushik, P. In vitro evaluation of crude extracts of Catharanthus roseus for potential antibacterial activity. Int. J. Green Pharm. 2008, 2, 176–181. [Google Scholar] [CrossRef]
- Ramya, S.; Govindaraji, V.; Kannan, K.N.; Jayakumararaj, R. In vitro evaluation of antibacterial activity using crude extracts of Catharanthus roseus L.(G.) Don. Ethnobot. Leafl. 2008, 12, 1067–1072. [Google Scholar]
- Özçelik, B.; Kartal, M.; Orhan, I. Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharm. Biol. 2011, 49, 396–402. [Google Scholar] [CrossRef]
- Nayak, B.; Anderson, M.; Pereira, L.P. Evaluation of wound-healing potential of Catharanthus roseus leaf extract in rats. Fitoterapia 2007, 78, 540–544. [Google Scholar] [CrossRef]
- Nayak, B.; Pereira, L.M.P. Catharanthus roseus flower extract has wound-healing activity in sprague dawley rats. BMC Complement. Altern. Med. 2006, 6, 41. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Singh, P.K.; Singh, R.K. Antidiabetic and wound healing activity of Catharanthus roseus L. in streptozotocin-induced diabetic mice. Am. J. Phytomed. Clin. Ther. 2014, 2, 686–692. [Google Scholar]
- Ara, N.; Rashid, M.; Amran, S. Comparison of hypotensive and hypolipidemic effects of Catharanthus roseus leaves extract with atenolol on adrenaline induced hypertensive rats. Pak. J. Pharm. Sci. 2009, 22, 267–271. [Google Scholar] [PubMed]
- Wink, M.; Schmeller, T.; Latz-Brüning, B. Modes of action of allelochemical alkaloids: Interaction with neuroreceptors, DNA, and other molecular targets. J. Chem. Ecol. 1998, 24, 1881–1937. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Özyürek, M.; Çelik, S.E. Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchim. Acta 2008, 160, 413–419. [Google Scholar] [CrossRef]
- Hamid, A.; Aiyelaagbe, O.; Usman, L.; Ameen, O.; Lawal, A. Antioxidants: Its medicinal and pharmacological applications. Afr. J. Pure Appl. Chem. 2010, 4, 142–151. [Google Scholar]
Part Used | Disease | Preparation | Mode of Administration | Country | References |
---|---|---|---|---|---|
Whole plant, leaf | Diabetes | The whole plant is powdered and mixed with cow’s milk. | Oral intake | Kancheepuram district of Tamil Nadu, India | [19] |
Diabetes | The leaf is boiled with water. | Oral intake | Northeast India | [14] | |
Leaf | Diabetes mellitus | The dried leaf is decocted. | Oral intake | Northern Europe | [16] |
Leaf of purple or white flowered varieties | Diabetes, hypertension and cancer | Eighteen leaves are boiled in a kettle of water. The cool solution is drunk daily. | Oral intake | Cook Island | [13] |
Whole plant | Throat, stomach, oesophageal cancer | The whole plant is boiled with water. Pound | Oral intake. Usually taken together with Sesbania sesban whole plant. Applied topically | Kenya | [18] |
Root | Urogenital infections | The root is air dried, ground and decocted. | Oral intake | Venda region, South Africa | [20] |
Root | Gonorrhoea | The root is boiled for 20 min. | Oral intake | Limpopo Province, South Africa | [21] |
Root | Stomach | Crushed roots are mixed with a cup of water. | Oral intake | Mutirikwi area of Zimbabwe | [22] |
Whole plant | Diabetes, hypertension, dysentery, cancer | The whole plant is boiled with water. | Oral intake | Vietnam | [17] |
Alkaloids | Plant Part | Quantity | Chemical Structure | References |
---|---|---|---|---|
Vincristine | Leaf | 0.189−0.523 mg/g DE | [24] | |
Stem | 0.082−0.388 mg/g DE | |||
Root | 0.078−0.659 mg/g DE | |||
Vinblastine | Leaf | 0.266−1.293 mg/g DE | ||
Stem | 0.285−1.056 mg/g DE | |||
Root | 0.463−1.638 mg/g DE | |||
Vinpocetine | Leaf | 0.001−0.006 mg/g DE | [24] | |
Stem | 0.001−0.007 mg/g DE | |||
Root | 0.001−0.056 mg/g DE | |||
Reserpine | Leaf | 0.001−0.036 mg/g DE | [24] | |
Stem | 0.003−0.055 mg/g DE | |||
Root | 0.001−0.036 mg/g DE | |||
Ajmalicine | Leaf | 0.165−0.970 mg/g DE | [24] | |
Stem | 0.162−5.487 mg/g DE | |||
Root | 0.124−17.675 mg/g DE | |||
Ajmaline | Leaf | 0.016−0.067 mg/g DE | [24] | |
Stem | 0.025−0.085 mg/g DE | |||
Root | 0.036−0.140 mg/g DE | |||
Yohimbine | Leaf | 0.139−0.539 mg/g DE | [24] | |
Stem | 0.185−1.572 mg/g DE | |||
Root | 0.316−2.433 mg/g DE | |||
Vindesine | Leaf | 0.139−2.978 mg/g DE | [24] | |
Stem | 1.754−2.302 mg/g DE | |||
Root | 1.552−3.247 mg/g DE | |||
Serpentine | Leaf | 2.868−22.079 mg/g DE | [24] | |
Stem | 11.265−50.078 mg/g DE | |||
Root | 4.927−49.851 mg/g DE | |||
Catharanthine | Leaf | 0.2843 ± 0.0132 mg/g | [25,26] | |
Vindolidine | Leaf | 0.14% | [24,27] | |
Vindoline | Leaf | 5.301−19.463 mg/g DE | ||
Stem | 0.144−3.344 mg/g DE | |||
Root | 0.021−9.690 mg/g DE | |||
Vindolicine | Leaf | 0.07% | [27] | |
Vindolinine | Leaf | 0.02% | [27] | |
Catharoseumine | Whole plant | 0.786 mg/kg | [28] | |
Tabersonine | Hairy root | NR | [26] | |
Tryptamine | Hairy root | NR | [26] | |
Catharanthamine | Leaf | NR | [29] | |
14′,15′-Didehydrocyclovinblastine | Whole plant | 0.071 mg/g DE | [30] | |
17-Deacetoxycyclovinblastine | Whole plant | 0.089 mg/g DE | [30] | |
Cycloleurosine | Whole plant | 0.116 mg/g DE | ||
17-Deacetoxyvinamidine | Whole plant | 0.107 mg/g DE | [30] | |
Vinamidine | Whole plant | 0.071 mg/g DE | ||
Leurosine | Whole plant | 0.134 mg/g DE | [30] | |
Leurosidine | Whole plant | 0.107 mg/g DE | ||
Catharine | Whole plant | 0.098 mg/g DE | [30] | |
Cathachunine | Whole plant | 0.223 mg/g DE | [31] |
Plant Parts | Phenolic Compounds | Quantity (mg/kg Dry Basis) | References |
---|---|---|---|
Stem | 3-O-caffeoylquinic acid | 769.9 ± 12.7 | [32,33] |
4-O-caffeoylquinic acid | 2874.6 ± 151.6 | [32,33] | |
5-O-caffeoylquinic acid | 22.5 ± 1.5 | [32,33] | |
Quercetin-3-O-(2,6-di-O-rhamnosyl-galactoside) | 190.5 ± 3.1 | [32,33] | |
Kaempferol-3-O-(2,6-di-O-rhamnosyl-galactoside) | 190.8 ± 5.3 | [32,33] | |
Isorhamnetin-3-O-(2,6-di-O-rhamnosyl galactoside) | 78.6 ± 3.9 | [32,33] | |
Leaf | 3-O-caffeoylquinic acid | 2971.6 ± 15.6 | [32,33] |
Kaempferol-3-O-(2,6-di-O-rhamnosyl-galactoside)-7-O-hexoside | 52.7 ± 1.0 | [32,33] | |
4-O-caffeoylquinic acid | 5156.8 ± 137.2 | [32,33] | |
5-O-caffeoylquinic acid | 187.7 ± 0.5 | [32,33] | |
Quercetin-3-O-(2,6-di-O-rhamnosyl-galactoside) | 310.9 ± 5.0 | [32,33] | |
Kaempferol-3-O-(2,6-di-O-rhamnosyl-galactoside) | 8.5 ± 5.3 | [32,33] | |
Seeds | Kaempferol-3-O-(2,6-di-O-rhamnosyl-galactoside)-7-O-hexoside | 292.3 ± 0.3 | [32,33] |
Quercetin-3-O-(2,6-di-O-rhamnosyl-galactoside) | 582.7 ± 6.6 | [32,33] | |
Kaempferol-3-O-(2,6-di-O-rhamnosyl-galactoside) | 2714.2 ± 4.3 | [32,33] | |
Kaempferol-3-O-(2,6-di-O-rhamnosyl-glucoside) | 56.6 ± 0.4 | [32,33] | |
Isorhamnetin-3-O-(2,6-di-O-rhamnosyl-glucoside) | 354.1 ± 8.2 | [32,33] | |
Kaempferol-3-O-(6-O-rhamnosyl-galactoside) | 112.1 ± 16.0 | [32,33] | |
Isorhamnetin-3-O-(6-O-rhamnosyl-glucoside) | 372.0 ± 65.2 | [32,33] | |
Petal | 4-O-caffeoylquinic acid | 11153.2 ± 126.4 | [32,33] |
Quercetin-3-O-(2,6-di-O-rhamnosyl-galactoside) | 1027.9 ± 7.0 | [32] | |
Kaempferol-3-O-(2,6-di-O-rhamnosyl-galactoside) | 8120.8 ± 74.4 | [32] | |
Kaempferol-3-O-(2,6-di-O-rhamnosyl-glucoside) | 4296.3 ± 34.4 | [32] | |
Kaempferol-3-O-(6-O-rhamnosyl-galactoside) | 9567.2 ± 98.5 | [32,33] | |
Kaempferol-3-O-(6-O-rhamnosyl-glucoside) | 4639.8 ± 21.9 | [32,33] | |
Isorhamnetin-3-O-(6-O-rhamnosyl-galactoside) | 989.2 ± 33.0 | [32,33] | |
Isorhamnetin-3-O-(6-O-rhamnosyl-glucoside) | 1330.4 ± 10.8 | [32,33] |
Plant Part | Compounds | Procedures | References |
---|---|---|---|
Hairy root | Vindoline, ajmalicine, serpentine, and catharanthine | Freeze-drying sample, Extracting sample (200−250 mg) with 80 mL of methanol for 3 h in a Soxhlet extraction apparatus (reflux rate of 12−15 siphons/h), Evaporating and diluting with 1.5 volumes of a 5 mM (NH4)2HPO4 solution, Fractionating using a 300-mg C18 Maxi-Clean cartridge, then eluting successively with 4 mL of mixture of MeOH:5 mM (NH4)2HPO4 (60:40, 95:5, and 100:0, v/v). | [41] |
Leaf | Vindoline, catharanthine, vincristine and vinblastine | Drying the sample at 60 °C for 48 h and grinding the dried material, Extracting dried sample (5 g) overnight with 90% ethanol (30 mL) at room temperature (3 times), Filtering ethanol extract and vacuum concentrating at 40 °C, Redissolving the residue in ethanol (10 mL), then diluting with water (10 mL) and acidifying with 3% hydrochloric acid (10 mL), Washing with hexane (3 × 30 mL), Cooling the aqueous portion down to 10°C, adjusting pH 8.5 with ammonium, Extracting with chloroform (3 × 30 mL), Washing with water and evaporating chloroform to get the dried residue, Redissolving in 1 mL chloroform, Separating with a silica Sep-Pak cartridge (Waters) pre-saturated with chloroform, Washing with 5 mL each of chloroform and then with chloroform: methanol (9:1, v/v) before drying over anhydrous sodium sulphate, Evaporating to dryness. | [42] |
Hairy root | Serpentine, vincristine, vindoline, catharanthine, vinblastine, tabersonine, tryptamine and ajmalicine | Freeze-drying and grinding the sample, Ultrasound-assisted extracting at room temperature (RT) in 1 mL of MeOH for 60 min, Centrifuging and filtering to get the extract solution. | [26] |
Whole plant | 14′,15′-didehydrocyclovinblastine, 17-deacetoxycyclovinblastine, 17-deacetoxyvinamidine, vinamidin, leurosine, catharine, cycloleurosine, leurosidine and cathachunine | Drying and grinding the plant material, Extracting dried sample with 95% EtOH, subsequently evaporating to get a residue, Redissolving with water and then extraction with CHCl3, Separating CHCl3 fraction using silica gel column chromatography (200–300 mesh, Qingdao Marine Chemical Factory, Qingdao, China), then using ODS column (YMC, Kyoto, Japan) to get subfractions, Purifying subfractions by preparative HPLC on a COSMOSIL C18 preparative column (5 μm, 20 × 250 mm, Nacalai Tesque, Kyoto, Japan). | [30,31] |
Whole plant | Catharoseumine | Air-drying and grinding the plant material, Extracting dried sample with MeOH under reflux, subsequently evaporating to get a residue, Redissolving with water and adjusting to pH 3 with tartaric acid, Defatting by petroleum ether, and then subjecting to cation ion exchange resins, Washing the resins by water and basified, then eluting with EtOAc and MeOH, The EtOAc fraction was subjected to silica gel column chromatography eluting with CHCl3/CH3OH (100:1→1:1) to give 5 fractions (A–E). Fraction A was further applied to column chromatography over reverse-phase C-18 silica gel, Sephadex LH-20, and silica gel chromatography to get catharoseumine. | [28] |
Leaf | Vindogentianine | Drying the leaf at 40 °C and grinding dried sample, Defatting dried sample (1 kg) using n-hexane (10 L) for 3 days at RT, then removing n-hexane to get the residue, The residue was first wetted with 25% ammonia for 1 h, followed by soaking twice with dichloromethane (10 L) for 3 days at RT, Filtering and drying dichloromethane extract under reduced pressure, Acid-base extracting dichloromethane extract using 5% hydrochloric acid and 25% ammonia solution to get an alkaloid crude extract, Separating alkaloid crude extract using silica column chromatography (CC, diameter: 10cm; Merck, Kenilworth, NJ, USA), then flushing using a solvent mixture of CH2Cl2 and MeOH (a ratio of 40:60, 20:80 (v/v)) before 100% MeOH to get fractions (1–15). Applying fraction 4 to preparative thin layer chromatography silica gel F254 (1 mm; Merck) under ammonia vapour to get vindogentianine. | [43] |
Leaf, stem and root | Ajmaline, yohimbine, vindesine, ajmalicine, serpentine, vincristine, vinblastine, vindoline, vinpocetine and reserpine | Drying the samples under shade and grinding dried sample, Ultrasonic extraction with ethanol for 30 min at 30 °C (sample-to-solvent ratio of 1/10, g/mL) (53 KHz, Bandelin SONOREX, Berlin) and then kept at RT for 24 h, The extracts were filtered through filter paper (Whatman No. 1) and filtrates were collected. The residues were re-extracted with fresh solvent again. The combined filtrates were evaporated to dryness under reduced pressure. | [24] |
Leaf, stem, seed and petal | Caffeoylquinic acids, quercetin, kaempferol, isorhamnetin and their derivatives | Freeze-drying sample, Ultrasound-assisted extracting using methanol:water (1:1) as the extraction solvent for 1 h, macerating for 15 h and ultrasonicating again for 1 h (leaf or stem/solvent: 1/10 g/mL, petal/solvent: 1/100 g/mL, seed/solvent: 1/3 g/mL), Centrifuging, filtering and then lyophilising to obtain the powdered phenolic extract. | [32] |
Leaf, stem, seed and petal | Caffeoylquinic acids, quercetin, kaempferol, isorhamnetin and their derivatives | Freeze-drying sample, Extraction with boiling water for 20 min (sample-to-solvent ratio of 1/200 g/mL), Filtering and then lyophilising to obtain the powdered phenolic extract. | [33] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pham, H.N.T.; Vuong, Q.V.; Bowyer, M.C.; Scarlett, C.J. Phytochemicals Derived from Catharanthus roseus and Their Health Benefits. Technologies 2020, 8, 80. https://doi.org/10.3390/technologies8040080
Pham HNT, Vuong QV, Bowyer MC, Scarlett CJ. Phytochemicals Derived from Catharanthus roseus and Their Health Benefits. Technologies. 2020; 8(4):80. https://doi.org/10.3390/technologies8040080
Chicago/Turabian StylePham, Hong Ngoc Thuy, Quan Van Vuong, Michael C. Bowyer, and Christopher J. Scarlett. 2020. "Phytochemicals Derived from Catharanthus roseus and Their Health Benefits" Technologies 8, no. 4: 80. https://doi.org/10.3390/technologies8040080
APA StylePham, H. N. T., Vuong, Q. V., Bowyer, M. C., & Scarlett, C. J. (2020). Phytochemicals Derived from Catharanthus roseus and Their Health Benefits. Technologies, 8(4), 80. https://doi.org/10.3390/technologies8040080