Next Article in Journal
An Acoustic-Based Smart Home System for People Suffering from Dementia
Previous Article in Journal
Evaluating Scenario-Specific Loading Processes on Mobile Phones
Previous Article in Special Issue
A Verifiable Fully Homomorphic Encryption Scheme for Cloud Computing Security
Open AccessArticle

A Novel Chip-Level Blockchain Security Solution for the Internet of Things Networks

1
Department of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu City 30010, Taiwan
2
3H Blockchain, Brea, CA 92821, USA
*
Author to whom correspondence should be addressed.
Technologies 2019, 7(1), 28; https://doi.org/10.3390/technologies7010028
Received: 6 January 2019 / Revised: 28 February 2019 / Accepted: 28 February 2019 / Published: 7 March 2019
(This article belongs to the Special Issue Technologies for Industry 4.0)
The widespread computer network has been changing drastically and substantially since blockchain and IoT entered the stage. Blockchain is good at protecting data transactions between logical nodes with a desirable guaranty. Internet of Things (IoT), on the other hand, by providing ultimate convenience to consumers, is expected to give rise to many various merits in a broad business scene. The security of IoT is still an open problem and if blockchain can reinforce IoT security, as many authors have hoped in recent papers, these newcomers appear to make a good collaboration to reinforce IoT security. However, software copes with logical nodes and IoT involves a vast number of physical nodes (IoT devices). Enabling blockchain to protect IoT cannot be brought to reality without respectively identifying logical and physical nodes. This is identical to the Proof-of-Trust problem. In this article, we propose a conceptual solution—Blockchained IoT—and show that this concept is able to be realized on-chip level using mass-produced dynamical random access memory (DRAM). We have completed the first test of longevity and temperature dependence (−40 °C to 105 °C) to confirm the necessary characteristics for the 5G base stations that are known to have an issue of self-heating. Furthermore, we have coarsely evaluated the probability of two DRAM IC chips being associated with an identical cyber-physical chip identification accidentally. Then, such a probability is minimal. View Full-Text
Keywords: blockchain; IoT; security; identification; authentication; connected devices; spoofing; cyber-attack; Proof-of-Trust; DRAM; IC chip blockchain; IoT; security; identification; authentication; connected devices; spoofing; cyber-attack; Proof-of-Trust; DRAM; IC chip
Show Figures

Figure 1

MDPI and ACS Style

Watanabe, H.; Fan, H. A Novel Chip-Level Blockchain Security Solution for the Internet of Things Networks. Technologies 2019, 7, 28. https://doi.org/10.3390/technologies7010028

AMA Style

Watanabe H, Fan H. A Novel Chip-Level Blockchain Security Solution for the Internet of Things Networks. Technologies. 2019; 7(1):28. https://doi.org/10.3390/technologies7010028

Chicago/Turabian Style

Watanabe, Hiroshi; Fan, Howie. 2019. "A Novel Chip-Level Blockchain Security Solution for the Internet of Things Networks" Technologies 7, no. 1: 28. https://doi.org/10.3390/technologies7010028

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop