Sample Entropy Identifies Differences in Spontaneous Leg Movement Behavior between Infants with Typical Development and Infants at Risk of Developmental Delay
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Data Analyses
2.4. Statistical Analyses
3. Results
4. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jeng, S.F.; Chen, L.C.; Yau, K.I. Kinematic analysis of kicking movements in preterm infants with very low birth weight and full-term infants. Phys. Ther. 2002, 82, 148–159. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.P.; Fetters, L.; Holt, K.G.; Saltzman, E. Making the mobile move: Constraining task and environment. Infant Behav. Dev. 2002, 25, 195–220. [Google Scholar] [CrossRef]
- Ulrich, B.D.; Ulrich, D.A. Spontaneous leg movements of infants with Down syndrome and nondisabled infants. Child Dev. 1995, 66, 1844–1855. [Google Scholar] [CrossRef] [PubMed]
- Piek, J.P.; Carman, R. Developmental profiles of spontaneous movements in infants. Early Hum. Dev. 1994, 39, 109–126. [Google Scholar] [CrossRef]
- Thelen, E. Rhythmical stereotypies in normal human infants. Anim. Behav. 1979, 27, 699–715. [Google Scholar] [CrossRef]
- Cioni, G.; Prechtl, H.F. Preterm and early postterm motor behaviour in low-risk premature infants. Early Hum. Dev. 1990, 23, 159–191. [Google Scholar] [CrossRef]
- Adolph, K.E.; Robinson, S.R. Sampling development. J. Cogn. Dev. 2011, 12, 411–423. [Google Scholar] [CrossRef] [PubMed]
- Angulo-Kinzler, R.M.; Peirano, P.; Lin, E.; Algarin, C.; Garrido, M.; Lozoff, B. Twenty-four-hour motor activity in human infants with and without iron deficiency anemia. Early Hum. Dev. 2002, 70, 85–101. [Google Scholar] [CrossRef]
- McKay, S.M.; Angulo-Barroso, R.M. Longitudinal assessment of leg motor activity and sleep patterns in infants with and without Down syndrome. Infant Behav. Dev. 2006, 29, 153–168. [Google Scholar] [CrossRef] [PubMed]
- Korte, J.; Wulff, K.; Oppe, C.; Siegmund, R. Ultradian and circadian activity-rest rhythms of preterm neonates compared to full-term neonates using actigraphic monitoring. Chronobiol. Int. 2001, 18, 697–708. [Google Scholar] [CrossRef] [PubMed]
- Harbourne, R.T.; Stergiou, N. Movement variability and the use of nonlinear tools: Principles to guide physical therapist practice. Phys. Ther. 2009, 89, 267–282. [Google Scholar] [CrossRef] [PubMed]
- Glass, L.; Mackey, M.C. From Clocks to Chaos: The Rhythms of Life; Princeton University Press: Princeton, NJ, USA, 1998. [Google Scholar]
- Deffeyes, J.E.; Harbourne, R.T.; DeJong, S.L.; Kyvelidou, A.; Stuberg, W.A.; Stergiou, N. Use of information entropy measures of sitting postural sway to quantify developmental delay in infants. J. Neuroeng. Rehabil. 2009, 6. [Google Scholar] [CrossRef] [PubMed]
- Kyvelidou, A.; Harbourne, R.T.; Stergiou, N. Severity and characteristics of developmental delay can be assessed using variability measures of sitting posture. Pediatr. Phys. Ther. 2010, 22, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Hausdorff, J.M.; Rios, D.A.; Edelberg, H.K. Gait variability and fall risk in community-living older adults: A 1-year prospective study. Arch. Phys. Med. Rehabil. 2001, 82, 1050–1056. [Google Scholar] [CrossRef] [PubMed]
- Huisinga, J.M.; Yentes, J.M.; Filipi, M.L.; Stergiou, N. Postural control strategy during standing is altered in patients with multiple sclerosis. Neurosci. Lett. 2012, 524, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Hausdorff, J.M. Gait dynamics in Parkinson’s disease: Common and distinct behavior among stride length, gait variability, and fractal-like scaling. Chaos 2009, 19, 026113. [Google Scholar] [CrossRef] [PubMed]
- Myers, S.A.; Johanning, J.M.; Stergiou, N.; Celis, R.I.; Robinson, L.; Pipinos, I.I. Gait variability is altered in patients with peripheral arterial disease. J. Vasc. Surg. 2009, 49, 924–931. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.A.; Stergiou, N.; Ulrich, B.D. Patterns of gait variability across the lifespan in persons with and without down syndrome. J. Neurol. Phys. Ther. 2011, 2011, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Slutzky, M.W.; Cvitanovic, P.; Mogul, D.J. Deterministic chaos and noise in three in vitro hippocampal models of epilepsy. Ann. Biomed. Eng. 2001, 29, 607–618. [Google Scholar] [CrossRef] [PubMed]
- Dinkel, D.; Snyder, K.; Molfese, V.; Kyvelidou, A. Postural control strategies differ in normal weight and overweight infants. Gait Posture 2017, 55, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Craig, J.J.; Bruetsch, A.; Huisinga, J.M. Relationship between trunk and foot accelerations during walking in healthy adults. Gait Posture 2016, 49, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Chen, X.; Cao, S.; Yu, Y.; Zhang, X. Investigation on inter-limb coordination and motion stability, intensity and complexity of trunk and limbs during hands-knees crawling in human adults. Sensors 2017, 17, 692. [Google Scholar] [CrossRef] [PubMed]
- Ihlen, E.A.F.; Weiss, A.; Bourke, A.; Helbostad, J.L.; Hausdorff, J.M. The complexity of daily life walking in older adult community-dwelling fallers and non-fallers. J. Biomech. 2016, 49, 1420–1428. [Google Scholar] [CrossRef] [PubMed]
- Huisinga, J.M.; Mancini, M.; St., George, R.J.; Horak, F.B. Accelerometry reveals differences in gait variability between patients with multiple sclerosis and healthy controls. Ann. Biomed. Eng. 2013, 41, 1670–1679. [Google Scholar] [CrossRef] [PubMed]
- California Department of Health Care Services. Available online: http://www.dhcs.ca.gov/services/ccs/Pages/HRIF.aspx#medicalcriteria (accessed on 20 May 2017).
- Piper, M.C.; Darrah, J. Motor Assessment of the Developing Infant; WB Saunders: Philadelphia, PA, USA, 1994. [Google Scholar]
- Smith, B.A.; Trujillo-Priego, I.A.; Lane, C.J.; Finley, J.M.; Horak, F.B. Daily quantity of infant leg movement: Wearable sensor algorithm and relationship to walking onset. Sensors 2015, 15, 19006–19020. [Google Scholar] [CrossRef] [PubMed]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [PubMed]
- Smith, B.A.; Teulier, C.; Sansom, J.K.; Stergiou, N.; Ulrich, B.D. Approximate entropy values demonstrate impaired neuromotor control of spontaneous leg activity in infants with myelomeningocele. Pediatr. Phys. Ther. 2011, 23, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Dusing, S.C.; Kyvelidou, A.; Mercer, V.S.; Stergiou, N. Infants born preterm exhibit different patterns of center-of-pressure movement than infants born at full term. Phys. Ther. 2009, 89, 1354–1362. [Google Scholar] [CrossRef] [PubMed]
- Kyvelidou, A.; Harbourne, R.T.; Willett, S.L.; Stergiou, N. Sitting postural control in infants with typical development, motor delay, or cerebral palsy. Pediatr. Phys. Ther. 2013, 25, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Deffeyes, J.E.; Harbourne, R.T.; Stuberg, W.A.; Stergiou, N. Approximate entropy used to assess sitting postural sway of infants with developmental delay. Infant Behav. Dev. 2011, 34, 81–99. [Google Scholar] [CrossRef] [PubMed]
- Thelen, E. Developmental origins of motor coordination: Leg movements in human infants. Dev. Psychobiol. 1985, 18, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Thelen, E. Motor development: A new synthesis. Am. Psychol. 1995, 50, 79. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, B.D. Opportunities for early intervention based on theory, basic neuroscience, and clinical science. Phys. Ther. 2010, 90, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Harbourne, R.T.; Willett, S.; Kyvelidou, A.; Deffeyes, J.; Stergiou, N. A comparison of interventions for children with cerebral palsy to improve sitting postural control: A clinical trial. Phys. Ther. 2010, 90, 1881–1898. [Google Scholar] [CrossRef] [PubMed]
- Dusing, S.C.; Harbourne, R.T. Variability in postural control during infancy: Implications for development, assessment, and intervention. Phys. Ther. 2010, 90, 1838–1849. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, D.A.; Ulrich, B.D.; Angulo-Kinzler, R.M.; Yun, J. Treadmill training of infants with Down syndrome: Evidence-based developmental outcomes. Pediatrics 2001, 108, 7. [Google Scholar] [CrossRef]
- Campbell, S.; Campbell, S.K.; Gaebler-Spira, D.; Zawacki, L.; Clark, A.; Boynewicz, K.; deRegnier, R.-A.; Kuroda, M.M.; Bhat, R.; Yu, J.; et al. Effects on motor development of kicking and stepping exercise in preterm infants with periventricular brain injury: A pilot study. J. Pediatr. Rehabil. Med. 2012, 5, 15–27. [Google Scholar] [PubMed]
- Prosser, L.A.; Ohlrich, L.B.; Curatalo, L.A.; Alter, K.E.; Damiano, D.L. Feasibility and preliminary effectiveness of a novel mobility training intervention in infants and toddlers with cerebral palsy. Dev. Neurorehabil. 2012, 15, 259–266. [Google Scholar] [CrossRef] [PubMed]
Group | Chronological or Adjusted Age (Months) | Alberta Infant Motor Scale |
---|---|---|
Typical Development | 6.4 (2.5) | 26.6 (9.7) |
At Risk | 9.0 (3.8) | 20.5 (12.9) |
Group | Median | Range |
---|---|---|
Typical Development | 1.20 | 0.40–2.10 |
At Risk | 0.21 | 0.02–1.79 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smith, B.A.; Vanderbilt, D.L.; Applequist, B.; Kyvelidou, A. Sample Entropy Identifies Differences in Spontaneous Leg Movement Behavior between Infants with Typical Development and Infants at Risk of Developmental Delay. Technologies 2017, 5, 55. https://doi.org/10.3390/technologies5030055
Smith BA, Vanderbilt DL, Applequist B, Kyvelidou A. Sample Entropy Identifies Differences in Spontaneous Leg Movement Behavior between Infants with Typical Development and Infants at Risk of Developmental Delay. Technologies. 2017; 5(3):55. https://doi.org/10.3390/technologies5030055
Chicago/Turabian StyleSmith, Beth A., Douglas L. Vanderbilt, Bryon Applequist, and Anastasia Kyvelidou. 2017. "Sample Entropy Identifies Differences in Spontaneous Leg Movement Behavior between Infants with Typical Development and Infants at Risk of Developmental Delay" Technologies 5, no. 3: 55. https://doi.org/10.3390/technologies5030055