Organic Solar Cell by Inkjet Printing—An Overview
Abstract
:1. Introduction
2. Introduction to Inkjet Printing Technology
3. Advantages of Inkjet Printing
3.1. Advantages of Inkjet Printing over Screen Printing
3.2. Comparison of Inkjet Printing with Screen, Gravure and Flexographic Printing
4. Inkjet Printing for OSC
5. Recent Developments of Inkjet-Printed OSCs
5.1. Halogen Free Inkjet-Printed OSCs
5.2. ITO-Free Inkjet-Printed OSCs
5.3. Roll-to-Roll Printing of OSCs
6. Challenges in Inkjet Printing
6.1. Viscosity Limitations
- (i)
- Expanding the polymer concentration.
- (ii)
- Utilizing an alternate solvent system.
- (iii)
- Expanding the molecular weight of the polymer.
6.2. Nozzle Clogging
6.3. Coffee Ring Effect
6.4. Limitation of Printability
6.5. Surface Texture/Feature Resolution
6.6. Dot Spacing
7. Efficiency Improvement Strategies
7.1. Efficiency Improvement by Energy Conversion Layer
7.2. Efficiency Improvement by Vapor Annealing and Thermal Annealing
8. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bagher, A.M. Introduction to Organic Solar Cells. Sustain. Energy 2014, 2, 85–90. [Google Scholar]
- Haque, A.; Rahman, M.A.; Ahsan, Q. Building integrated photovoltaic system: Cost effectiveness. In Proceedings of the 2012 7th International Conference on Electrical and Computer Engineering, Dhaka, Bangladesh, 20–22 December 2012; pp. 904–907. [Google Scholar]
- Krebs, F.C. Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Sol. Energy Mater. Sol. Cells 2009, 93, 394–412. [Google Scholar] [CrossRef]
- Søndergaard, R.R.; Hösel, M.; Krebs, F.C. Roll-to-Roll fabrication of large area functional organic materials. J. Polym. Sci. Part B Polym. Phys. 2013, 51, 16–34. [Google Scholar] [CrossRef]
- Cheyney, T. Innovalight Installs OTB Solar Silicon Ink Inkjet Printing Production Tool. 2009. Available online: https://www.pv-tech.org/news/innovalight_installs_otb_solar_silicon-ink_inkjet_printing_production_tool (accessed on 9 June 2009).
- Aernouts, T.; Aleksandrov, T.; Girotto, C.; Genoe, J.; Poortmans, J. Polymer based organic solar cells using ink-jet printed active layers. Appl. Phys. Lett. 2008, 92, 033306. [Google Scholar] [CrossRef]
- Basaran, O.A.; Gao, H.; Bhat, P.P. Nonstandard inkjets. Ann. Rev. Fluid Mech. 2013, 45, 85–113. [Google Scholar] [CrossRef]
- Daly, R.; Harrington, T.S.; Martin, G.D.; Hutchings, I.M. Inkjet printing for pharmaceutics—A review of research and manufacturing. Int. J. Pharm. 2015, 494, 554–567. [Google Scholar] [CrossRef] [PubMed]
- DeGans, B.J.; Duineveld, P.C.; Schubert, U.S. Inkjet printing of polymers: State of the art and future developments. Adv. Mater. 2004, 16, 203–213. [Google Scholar] [CrossRef]
- Derby, B. Inkjet printing of functional and structural materials: Fluid property requirements, feature stability, and resolution. Ann. Rev. Mater. Res. 2010, 40, 395–414. [Google Scholar] [CrossRef]
- Hoth, C.N.; Schilinsky, P.; Choulis, S.A.; Balasubramanian, S.; Brabec, C.J. Solution-processed organic photovoltaics. In Applications of Organic and Printed Electronics; Springer: Berlin, Germany, 2013; pp. 27–56. [Google Scholar]
- Singh, M.; Haverinen, H.M.; Dhagat, P.; Jabbour, G.E. Inkjet printing—Process and its applications. Adv. Mater. 2010, 22, 673–685. [Google Scholar] [CrossRef] [PubMed]
- Teichler, A.; Eckardt, R.; Hoeppener, S.; Friebe, C.; Perelaer, J.; Senes, A.; Morana, M.; Brabec, C.J.; Schubert, U.S. Combinatorial screening of polymer: Fullerene blends for organic solar cells by inkjet printing. Adv. Energy Mater. 2011, 1, 105–114. [Google Scholar] [CrossRef]
- Hoth, C.N.; Choulis, S.A.; Schilinsky, P.; Brabec, C.J. High photovoltaic performance of inkjet printed polymer: Fullerene blends. Adv. Mater. 2007, 19, 3973–3978. [Google Scholar] [CrossRef]
- Krebs, F.C.; Biancardo, M.; Winther-Jensen, B.; Spanggard, H.; Alstrup, J. Strategies for incorporation of polymer photovoltaics into garments and textiles. Sol. Energy Mater. Sol. Cell. 2006, 90, 1058–1067. [Google Scholar] [CrossRef]
- Shaheen, S.E.; Radspinner, R.; Peyghambarian, N.; Jabbour, G.E. Fabrication of bulk heterojunction plastic solar cells by screen printing. Appl. Phys. Lett. 2001, 79, 2996–2998. [Google Scholar] [CrossRef]
- Haque, A.; Rahman, M.A. Study of a solar PV-powered mini-grid pumped hydroelectric storage & its comparison with battery storage. In Proceedings of the 2012 7th International Conference on Electrical and Computer Engineering, Dhaka, Bangladesh, 20–22 December 2012; pp. 626–629. [Google Scholar]
- Krebs, F.C.; Alstrup, J.; Spanggaard, H.; Larsen, K.; Kold, E. Production of large-area polymer solar cells by industrial silk screen printing, lifetime considerations and lamination with polyethyleneterephthalate. Sol. Energy Mater. Sol. Cells 2004, 83, 293–300. [Google Scholar] [CrossRef]
- Mazzio, K.A.; Rice, A.H.; Durban, M.M.; Luscombe, C.K. Effect of regioregularity on charge transport and structural and excitonic coherence in poly (3-hexylthiophene) nanowires. J. Phys. Chem. C 2015, 119, 14911–14918. [Google Scholar] [CrossRef]
- Hoth, C.N.; Schilinsky, P.; Choulis, S.A.; Brabec, C.J. Printing highly efficient organic solar cells. Nano Lett. 2008, 8, 2806–2813. [Google Scholar] [CrossRef] [PubMed]
- Eggenhuisen, T.M.; Galagan, Y.; Biezemans, A.; Coenen, M.; Gilot, J.; Groen, P.; Andriessen, R. Organic photovoltaic cells with all inkjet printed layers and freedom of form. In Proceedings of the 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), Denver, CO, USA, 8–13 June 2014; pp. 2842–2845. [Google Scholar]
- Eggenhuisen, T.M.; Galagan, Y.; Biezemans, A.F.K.V.; Slaats, T.M.W.L.; Voorthuijzen, W.P.; Kommeren, S.; Shanmugam, S.; Teunissen, J.P.; Hadipour, A.; Verhees, T.M.W.L.; et al. High efficiency, fully inkjet printed organic solar cells with freedom of design. J. Mater. Chem. A 2015, 3, 7255–7272. [Google Scholar] [CrossRef]
- Hoth, C.N.; Choulis, S.A.; Schilinsky, P.; Brabec, C.J. On the effect of poly (3-hexylthiophene) regioregularity on inkjet printed organic solar cells. J. Mater. Chem. 2009, 19, 5398–5404. [Google Scholar] [CrossRef]
- Krebs, F.C.; Tromholt, T.; Jørgensen, M. Upscaling of polymer solar cell fabrication using full roll-to-roll processing. Nanoscale 2010, 2, 873–886. [Google Scholar] [CrossRef] [PubMed]
- Espinosa, N.; García-Valverde, R.; Urbina, A.; Krebs, F.C. A life cycle analysis of polymer solar cell modules prepared using roll-to-roll methods under ambient conditions. Sol. Energy Mater. Sol. Cells 2011, 95, 1293–1302. [Google Scholar] [CrossRef]
- Hösel, M.; Søndergaard, R.R.; Angmo, D.; Krebs, F.C. Comparison of Fast Roll-to-Roll Flexographic, Inkjet, Flatbed, and Rotary Screen Printing of Metal Back Electrodes for Polymer Solar Cells. Adv. Eng. Mater. 2013, 15, 995–1001. [Google Scholar] [CrossRef]
- Krebs, F.C.; Jørgensen, M.; Norrman, K.; Hagemann, O.; Alstrup, J.; Nielsen, T.D.; Fyenbo, J.; Larsen, K.; Kristensen, J. A complete process for production of flexible large area polymer solar cells entirely using screen printing—First public demonstration. Sol. Energy Mater. Sol. Cells 2009, 93, 422–441. [Google Scholar] [CrossRef]
- Alamán, J.; Alicante, R.; Peña, J.I.; Sánchez-Somolinos, C. Inkjet Printing of Functional Materials for Optical and Photonic Applications. Materials 2016, 9, 910. [Google Scholar] [CrossRef] [PubMed]
- Perelaer, J.; Smith, P.J.; Mager, D.; Soltman, D.; Volkman, S.K.; Subramanian, V.; Korvink, J.G.; Schubert, U.S. Printed electronics: The challenges involved in printing devices, interconnects, and contacts based on inorganic materials. J. Mater. Chem. 2010, 20, 8446–8453. [Google Scholar] [CrossRef]
- Kang, W.; Kitamura, M.; Arakawa, Y. High performance inkjet-printed C 60 fullerene thin-film transistors: Toward a low-cost and reproducible solution process. Org. Electron. 2013, 14, 644–648. [Google Scholar] [CrossRef]
- Kang, B.J.; Lee, C.K.; Oh, J.H. All-inkjet-printed electrical components and circuit fabrication on a plastic substrate. Microelectron. Eng. 2012, 97, 251–254. [Google Scholar] [CrossRef]
- Smaal, W.; Kjellander, C.; Jeong, Y.; Tripathi, A.; van der Putten, B.; Facchetti, A.; Yan, H.; Quinn, J.; Anthony, J.; Myny, K.; et al. Complementary integrated circuits on plastic foil using inkjet printed n- and p-type organic semiconductors: Fabrication, characterization, and circuit analysis. Org. Electron. 2012, 13, 1686–1692. [Google Scholar] [CrossRef]
- Tobjörk, D.; Österbacka, R. Paper electronics. Adv. Mater. 2011, 23, 1935–1961. [Google Scholar] [CrossRef] [PubMed]
- Castrejon-Pita, J.R.; Baxter, W.R.S.; Morgan, J.; Temple, S.; Martin, G.D.; Hutchings, I.M. Future, opportunities and challenges of inkjet technologies. At. Sprays 2013, 23, 541–564. [Google Scholar] [CrossRef]
- Moonen, P.F.; Yakimets, I.; Huskens, J. Fabrication of transistors on flexible substrates: From mass-printing to high-resolution alternative lithography strategies. Adv. Mater. 2012, 24, 5526–5541. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.W.P.; Shan, X.; Tarapata, G.; Jachowicz, R.; Weremczuk, J.; Hui, H.T. Fabrication of wireless sensors on flexible film using screen printing and via filling. Microsyst. Technol. 2011, 17, 661–667. [Google Scholar] [CrossRef]
- Kempa, H.; Hambsch, M.; Reuter, K.; Stanel, M.; Schmidt, G.C.; Meier, B.; Hubler, A.C. Complementary ring oscillator exclusively prepared by means of gravure and flexographic printing. IEEE Trans. Electron Devices 2011, 58, 2765–2769. [Google Scholar] [CrossRef]
- Sung, D.; de la Fuente Vornbrock, A.; Subramanian, V. Scaling and optimization of gravure-printed silver nanoparticle lines for printed electronics. IEEE Trans. Compon. Packag. Technol. 2010, 33, 105–114. [Google Scholar] [CrossRef]
- Deganello, D.; Cherry, J.A.; Gethin, D.T.; Claypole, T.C. Patterning of micro-scale conductive networks using reel-to-reel flexographic printing. Thin Solid Films 2010, 518, 6113–6116. [Google Scholar] [CrossRef]
- Eom, S.H.; Park, H.; Mujawar, S.H.; Yoon, S.C.; Kim, S.S.; Na, S.I.; Kang, S.J.; Khim, D.; Kim, D.Y.; Lee, S.H. High efficiency polymer solar cells via sequential inkjet-printing of PEDOT: PSS and P3HT: PCBM inks with additives. Org. Electron. 2010, 11, 1516–1522. [Google Scholar] [CrossRef]
- Lange, A.; Schindler, W.; Wegener, M.; Fostiropoulos, K.; Janietz, S. Inkjet printed solar cell active layers based on a novel, amorphous polymer. J. Nanosci. Nanotechnol. 2013, 13, 5209–5214. [Google Scholar] [CrossRef] [PubMed]
- Angmo, D.; Sweelssen, J.; Andriessen, R.; Galagan, Y.; Krebs, F.C. Inkjet printing of back electrodes for inverted polymer solar cells. Adv. Energy Mater. 2013, 3, 1230–1237. [Google Scholar] [CrossRef]
- Van Franeker, J.J.; Voorthuijzen, W.P.; Gorter, H.; Hendriks, K.H.; Janssen, R.A.; Hadipour, A.; Andriessen, R.; Galagan, Y. All-solution-processed organic solar cells with conventional architecture. Sol. Energy Mater. Sol. Cells 2013, 117, 267–272. [Google Scholar] [CrossRef]
- Vandevenne, G.; Marchal, W.; Verboven, I.; Drijkoningen, J.; D’Haen, J.; Van Bael, M.K.; Hardy, A.; Deferme, W. A study on the thermal sintering process of silver nanoparticle inkjet inks to achieve smooth and highly conducting silver layers. Phys. Status Solidi 2016, 213, 1403–1409. [Google Scholar] [CrossRef]
- Eom, S.H.; Senthilarasu, S.; Uthirakumar, P.; Yoon, S.C.; Lim, J.; Lee, C.; Lim, H.S.; Lee, J.; Lee, S.H. Polymer solar cells based on inkjet-printed PEDOT: PSS layer. Org. Electron. 2009, 10, 536–542. [Google Scholar] [CrossRef]
- Gotleyb, D.; Shikler, R. A new model of organic solar cells reveals open circuit conditions and size dependent power loss induced by the finite conductivity of a transparent contact. J. Appl. Phys. 2017, 121, 045502. [Google Scholar] [CrossRef]
- Huang, Y.C.; Hsu, F.H.; Cha, H.C.; Chuang, C.M.; Tsao, C.S.; Chen, C.Y. High-performance ITO-free spray-processed polymer solar cells with incorporating ink-jet printed grid. Org. Electron. 2013, 14, 2809–2817. [Google Scholar] [CrossRef]
- Eggenhuisen, T.M.; Galagan, Y.; Coenen, E.W.C.; Voorthuijzen, W.P.; Slaats, M.W.L.; Kommeren, S.A.; Shanmuganam, S.; Coenen, M.J.J.; Andriessen, R.; Groen, W.A. Digital fabrication of organic solar cells by Inkjet printing using non-halogenated solvents. Sol. Energy Mater. Sol. Cells 2015, 134, 364–372. [Google Scholar] [CrossRef]
- Lamont, C.A.; Eggenhuisen, T.M.; Coenen, M.J.; Slaats, T.W.; Andriessen, R.; Groen, P. Tuning the viscosity of halogen free bulk heterojunction inks for inkjet printed organic solar cells. Org. Electron. 2015, 17, 107–114. [Google Scholar] [CrossRef]
- Jung, S.; Sou, A.; Banger, K.; Ko, D.H.; Chow, P.C.; McNeill, C.R.; Sirringhaus, H. All-inkjet-printed, all-air-processed solar cells. Adv. Energy Mater. 2014, 4, 1–9. [Google Scholar] [CrossRef]
- Seo, K.W.; Lee, J.H.; Cho, N.G.; Kang, S.J.; Kim, H.K.; Na, S.I.; Koo, H.W.; Kim, T.W. Simple brush painted Ag nanowire network on graphene sheets for flexible organic solar cells. J. Vac. Sci. Technol. A Vac. Surfaces Films 2014, 32, 061201. [Google Scholar] [CrossRef]
- Hösel, M.; Krebs, F.C. Large-Scale Roll-to-Roll Fabrication of Organic Solar Cells for Energy Production; Department of Energy Conversion and Storage, Technical University of Denmark: Kongens Lyngby, Denmark, 2013. [Google Scholar]
- Lange, A.; Wegener, M.; Boeffel, C.; Fischer, B.; Wedel, A.; Neher, D. A new approach to the solvent system for inkjet-printed P3HT: PCBM solar cells and its use in devices with printed passive and active layers. Sol. Energy Mater. Sol. Cells 2010, 94, 1816–1821. [Google Scholar] [CrossRef]
- Hermerschmidt, F.; Papagiorgis, P.; Savva, A.; Christodoulou, C.; Itskos, G.; Choulis, S.A. Inkjet printing processing conditions for bulk-heterojunction solar cells using two high-performing conjugated polymer donors. Sol. Energy Mater. Sol. Cells 2014, 130, 474–480. [Google Scholar] [CrossRef]
- Hachmann, J.; Olivares-Amaya, R.; Atahan-Evrenk, S.; Amador-Bedolla, C.; Sánchez-Carrera, R.S.; Gold-Parker, A.; Vogt, L.; Brockway, A.M.; Aspuru-Guzik, A. The Harvard clean energy project: Large-scale computational screening and design of organic photovoltaics on the world community grid. J. Phys. Chem. Lett. 2011, 2, 2241–2251. [Google Scholar] [CrossRef] [Green Version]
- Perelaer, J.; Schubert, U.S. Polymer Science: A Comprehensive Reference; Elsevier: Amsterdam, The Netherlands, 2012; pp. 147–175. [Google Scholar]
- Singh, M.; Haverinen, H.M.; Yoshioka, Y.; Jabbour, G.E. Inkjet Technology for Digital Fabrication; Hutchings, I.M., Martin, G.D., Eds.; John Wiley & Sons Ltd.: London, UK, 2013. [Google Scholar]
- He, Z.; Zhong, C.; Su, S.; Xu, M.; Wu, H.; Cao, Y. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat. Photonics 2012, 6, 591–595. [Google Scholar] [CrossRef]
- Zhang, S.; Ye, L.; Zhang, H.; Hou, J. Green-solvent-processable organic solar cells. Mater. Today 2016, 19, 533–543. [Google Scholar] [CrossRef]
- Aïch, B.R.; Beaupré, S.; Leclerc, M.; Tao, Y. Highly efficient thieno [3, 4-c] pyrrole-4, 6-dione-based solar cells processed from non-chlorinated solvent. Org. Electr. 2014, 15, 543–548. [Google Scholar] [CrossRef]
- Chueh, C.C.; Yao, K.; Yip, H.L.; Chang, C.Y.; Xu, Y.X.; Chen, K.S.; Li, C.Z.; Liu, P.; Huang, F.; Chen, Y.; et al. Non-halogenated solvents for environmentally friendly processing of high-performance bulk-heterojunction polymer solar cells. Energy Environ. Sci. 2013, 6, 3241–3248. [Google Scholar] [CrossRef]
- Lange, A.; Schindler, W.; Wegener, M.; Fostiropoulos, K.; Janietz, S. Inkjet printed solar cell active layers prepared from chlorine-free solvent systems. Sol. Energy Mater. Sol. Cells 2013, 109, 104–110. [Google Scholar] [CrossRef]
- Ren, M.; Sweelssen, J.; Grossiord, N.; Gorter, H.; Eggenhuisen, T.M.; Andriessen, R. Inkjet printing technology for OPV applications. J. Image Sci. Technol. 2012, 56, 40501–40504. [Google Scholar] [CrossRef]
- Lim, G.H.; Zhuo, J.M.; Wong, L.Y.; Chua, S.J.; Chua, L.L.; Ho, P.K. A transition solvent strategy to print polymer: Fullerene films using halogen-free solvents for solar cell applications. Org. Electron. 2014, 15, 449–460. [Google Scholar] [CrossRef]
- Chen, Z.; Li, W.; Li, R.; Zhang, Y.; Xu, G.; Cheng, H. Fabrication of highly transparent and conductive indium–tin oxide thin films with a high figure of merit via solution processing. Langmuir 2013, 29, 13836–13842. [Google Scholar] [CrossRef] [PubMed]
- Sandström, A.; Dam, H.F.; Krebs, F.C.; Edman, L. Ambient fabrication of flexible and large-area organic light-emitting devices using slot-die coating. Nat. Commun. 2012, 3, 1002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, W.; Yang, C.; Gong, X.; Lee, K.; Heeger, A.J. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv. Funct. Mater. 2005, 15, 1617–1622. [Google Scholar] [CrossRef]
- Cairns, D.R.; Witte, R.P.; Sparacin, D.K.; Sachsman, S.M.; Paine, D.C.; Crawford, G.P.; Newton, R.R. Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates. Appl. Phys. Lett. 2000, 76, 1425–1427. [Google Scholar] [CrossRef]
- Xia, Y.; Sun, K.; Ouyang, J. Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices. Adv. Mater. 2012, 24, 2436–2440. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Cheun, H.; Choi, S.; Potscavage, W.J., Jr.; Fuentes-Hernandez, C.; Kippelen, B. Indium tin oxide-free and metal-free semitransparent organic solar cells. Appl. Phys. Lett. 2010, 97, 153304. [Google Scholar] [CrossRef]
- Stubhan, T.; Krantz, J.; Li, N.; Guo, F.; Litzov, I.; Steidl, M.; Richter, M.; Matt, G.J.; Brabec, C.J. High fill factor polymer solar cells comprising a transparent, low temperature solution processed doped metal oxide/metal nanowire composite electrode. Sol. Energy Mater. Sol. Cells 2012, 107, 248–251. [Google Scholar] [CrossRef]
- Lim, J.W.; Cho, D.Y.; Na, S.I.; Kim, H.K. Simple brush-painting of flexible and transparent Ag nanowire network electrodes as an alternative ITO anode for cost-efficient flexible organic solar cells. Sol. Energy Mater. Sol. Cells 2012, 107, 348–354. [Google Scholar] [CrossRef]
- Angmo, D.; Hösel, M.; Krebs, F.C. All solution processing of ITO-free organic solar cell modules directly on barrier foil. Sol. Energy Mater. Sol. Cells 2012, 107, 329–336. [Google Scholar] [CrossRef]
- Choi, Y.Y.; Kang, S.J.; Kim, H.K.; Choi, W.M.; Na, S.I. Multilayer graphene films as transparent electrodes for organic photovoltaic devices. Sol. Energy Mater. Sol. Cells 2012, 96, 281–285. [Google Scholar] [CrossRef]
- Hösel, M.; Søndergaard, R.R.; Jørgensen, M.; Krebs, F.C. Fast inline roll-to-roll printing for indium-tin-oxide-free polymer solar cells using automatic registration. Energy Technol. 2013, 1, 102–107. [Google Scholar] [CrossRef]
- Burgués-Ceballos, I.; Kehagias, C.M.; Sotomayor-Torres, N.; Campoy-Quiles, M.; Lacharmoise, P.D. Embedded inkjet printed silver grids for ITO-free organic solar cells with high fill factor. Sol. Energy Mater. Sol. Cells 2014, 127, 50–57. [Google Scholar] [CrossRef]
- Kaduwal, D.; Schleiermacher, H.F.; Schulz-Gericke, J.; Kroyer, T.; Zimmermann, B.; Würfel, U. ITO-free organic solar cells with roll-to-roll coated organic functional layers from non-halogenated solvents. Sol. Energy Mater. Sol. Cells 2014, 124, 92–97. [Google Scholar] [CrossRef]
- Kopola, P.; Aernouts, T.; Sliz, R.; Guillerez, S.; Ylikunnari, M.; Cheyns, D.; Välimäki, M.; Tuomikoski, M.; Hast, J.; Jabbour, G.; et al. Gravure printed flexible organic photovoltaic modules. Sol. Energy Mater. Sol. Cells 2011, 95, 1344–1347. [Google Scholar] [CrossRef]
- Abbel, R.; Teunissen, P.; Rubingh, E.; van Lammeren, T.; Cauchois, R.; Everaars, M.; Valeton, J.; van de Geijn, S.; Groen, P. Industrial-scale inkjet printed electronics manufacturing—Production up-scaling from concept tools to a roll-to-roll pilot line. Transl. Mater. Res. 2014, 1, 015002. [Google Scholar] [CrossRef] [PubMed]
- Croucher, M.D.; Hair, M.L. Design criteria and future directions in ink-jet ink technology. Ind. Eng. Chem. Res. 1989, 28, 1712–1718. [Google Scholar] [CrossRef]
- Rhaman, M.M.; Matin, M.A. Organic Solar Cells: Historical developments and challenges. In Proceedings of the 2015 International Conference on Advances in Electrical Engineering (ICAEE), Dhaka, Bangladesh, 17–19 December 2015; pp. 26–29. [Google Scholar]
- Nilsson, S.; Bernasik, A.; Budkowski, A.; Moons, E. Morphology and phase segregation of spin-casted films of polyfluorene/PCBM blends. Macromolecules 2007, 40, 8291–8301. [Google Scholar] [CrossRef]
- Hoath, S.D.; Harlen, O.G.; Hutchings, I.M. Jetting behavior of polymer solutions in drop-on-demand inkjet printing. J. Rheol. 2012, 56, 1109–1127. [Google Scholar] [CrossRef]
- Madec, M.B.; Smith, P.J.; Malandraki, A.; Wang, N.; Korvink, J.G.; Yeates, S.G. Enhanced reproducibility of inkjet printed organic thin film transistors based on solution processable polymer-small molecule blends. J. Mater. Chem. 2010, 20, 9155–9160. [Google Scholar] [CrossRef]
- Neophytou, M.; Cambarau, W.; Hermerschmidt, F.; Waldauf, C.; Christodoulou, C.; Pacios, R.; Choulis, S.A. Inkjet-printed polymer–fullerene blends for organic electronic applications. Microelectron. Eng. 2012, 95, 102–106. [Google Scholar] [CrossRef]
- Chang, J.F.; Sun, B.; Breiby, D.W.; Nielsen, M.M.; Sölling, T.I.; Giles, M.; McCulloch, I.; Sirringhaus, H. Enhanced mobility of poly (3-hexylthiophene) transistors by spin-coating from high-boiling-point solvents. Chem. Mater., 2004, 16, 4772–4776. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.J.; Vandadi, V.; Felske, J.D.; Masoud, H. Alternative mechanism for coffee-ring deposition based on active role of free surface. Phys. Rev. E 2016, 94, 063104. [Google Scholar] [CrossRef] [PubMed]
- Deegan, R.D.; Bakajin, O.; Dupont, T.F.; Huber, G.; Nagel, S.R.; Witten, T.A. Capillary flow as the cause of ring stains from dried liquid drops. Nature 1997, 389, 827–829. [Google Scholar] [CrossRef]
- Soltman, D.; Subramanian, V. Inkjet-printed line morphologies and temperature control of the coffee ring effect. Langmuir 2008, 24, 2224–2231. [Google Scholar] [CrossRef] [PubMed]
- Kajiya, T.; Kobayashi, W.; Okuzono, T.; Doi, M. Controlling profiles of polymer dots by switching between evaporation and condensation. Langmuir 2010, 26, 10429–10432. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.X.; Fuh, J.Y.; Loh, H.T.; San Wong, Y.; Ng, Y.S.; Gray, J.J.; Chua, S.J. Characterization of drop-on-demand microdroplet printing. Int. J. Adv. Manuf. Technol. 2010, 48, 243–250. [Google Scholar] [CrossRef]
- Perelaer, J.; Smith, P.J.; Wijnen, M.M.; van den Bosch, E.; Eckardt, R.; Ketelaars, P.H.; Schubert, U.S. Droplet tailoring using evaporative inkjet printing. Macromol. Chem. Phys. 2009, 210, 387–393. [Google Scholar] [CrossRef]
- Tekin, E.; de Gans, B.J.; Schubert, U.S. Ink-jet printing of polymers-from single dots to thin film libraries. J. Mater. Chem. 2004, 14, 2627–2632. [Google Scholar] [CrossRef]
- Martin, G.D.; Hoath, S.D.; Hutchings, I.M. Inkjet printing-the physics of manipulating liquid jets and drops. J. Phys. Conf. Ser. 2008, 105, 012001. [Google Scholar] [CrossRef]
- Noh, Y.Y.; Zhao, N.; Caironi, M.; Sirringhaus, H. Downscaling of self-aligned, all-printed polymer thin-film transistors. Nat. Nanotechnol. 2007, 2, 784–789. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, C.E.; Smith, P.J.; Perelaer, J.; Van den Berg, A.M.; Schubert, U.S. “Invisible” Silver Tracks Produced by Combining Hot-Embossing and Inkjet Printing. Adv. Funct. Mater. 2008, 18, 1031–1038. [Google Scholar] [CrossRef]
- Stringer, J.; Derby, B. Formation and stability of lines produced by inkjet printing. Langmuir 2010, 26, 10365–10372. [Google Scholar] [CrossRef] [PubMed]
- Duineveld, P.C. The stability of ink-jet printed lines of liquid with zero receding contact angle on a homogeneous substrate. J. Fluid Mech. 2003, 477, 175–200. [Google Scholar] [CrossRef]
- Stow, C.D.; Hadfield, M.G. An experimental investigation of fluid flow resulting from the impact of a water drop with an unyielding dry surface. Math. Phys. Eng. Sci. 1755, 373, 419–441. [Google Scholar] [CrossRef]
- Bhola, R.; Chandra, S. Parameters controlling solidification of molten wax droplets falling on a solid surface. J. Mater. Sci. 1999, 34, 4883–4894. [Google Scholar] [CrossRef]
- Oh, Y.; Kim, J.; Yoon, Y.J.; Kim, H.; Yoon, H.G.; Lee, S.N.; Kim, J. Inkjet printing of Al 2 O 3 dots, lines, and films: From uniform dots to uniform films. Curr. Appl. Phys. 2011, 11, S359–S363. [Google Scholar] [CrossRef]
- Teichler, A.; Perelaer, J.; Schubert, U.S. Inkjet printing of organic electronics-comparison of deposition techniques and state-of-the-art developments. J. Mater. Chem. C 2013, 1, 1910–1925. [Google Scholar] [CrossRef]
- Chen, H.; Miao, J.; Yan, J.; He, Z.; Wu, H. Improving Organic Solar Cells Efficiency Through a Two-Step Method Consisting of Solvent Vapor Annealing and Thermal Annealing. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 66–72. [Google Scholar] [CrossRef]
- Pantho, M.J.H.; Junnat, N.A.; Alam, M.J. Design and analysis the characteristics of a cost-effective polymer based bulk heterojunction tandem solar cell. In Proceedings of the 8th International Conference on Electrical and Computer Engineering (ICECE), Dhaka, Bangladesh, 20–22 December 2014; pp. 516–519. [Google Scholar]
- Burgués-Ceballos, I.; Stella, M.; Lacharmoise, P.; Martínez-Ferrero, E. Towards industrialization of polymer solar cells: Material processing for upscaling. J. Mater. Chem. A 2014, 2, 17711–17722. [Google Scholar] [CrossRef]
- Yeo, D.B.; Heo, K.C.; Bae, G.; Chae, S.H.; Moon, C.B.; Kim, W.Y.; Jhun, C.G. High efficiency of organic photovoltaic device by the energy conversion layer. In Proceedings of the 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), New Orleans, LA, USA, 14–19 June 2015; pp. 1–3. [Google Scholar]
- Bhaumik, A.; Haque, A.; Karnati, P.; Taufique, M.F.N.; Patel, R.; Ghosh, K. Copper oxide based nanostructures for improved solar cell efficiency. Thin Solid Films 2014, 572, 126–133. [Google Scholar] [CrossRef]
Parameters | Unit | Inkjet Printing | Screen Printing | Gravure | Flexographic |
---|---|---|---|---|---|
Required solution viscosity | Pa·S | 0.002–0.10 | 0.500–5 | 0.01–1.1 | 0.010–0.500 |
Print thickness | µm | 0.01–0.5 | 3–30 | 0.02–12 | 0.17–8 |
Printing speed | m/min | 0.02–5 | 0.6–100 | 8–100 | 5–180 |
Material wastage | - | No | Yes | Yes | Yes |
Experimental approach | - | Contact-less | Contact | Contact | Contact |
Process Mode (Pattern line) | - | Single-step | Multi-steps | Multi-steps | Multi-steps |
Hard mask requirement | - | No | Yes | No | No |
Typical plate cost | USD | Zero | - | 1000 | 1000 |
Reference | - | [12,29,30,31,32,33,34] | [3,33,35,36] | [33,34,35,37,38] | [33,34,35,37,39] |
Inkjet-Printed Materials | Company/Ink Name | Comments | Ref. | |
---|---|---|---|---|
1 | Poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) | Agfa (Agfa, Orgacon-IJ 1005) | were used as received | [48] |
Poly(3-hexylthiophene) (P3HT) | Merck, Lisicon SP001, Mw 19 kg/mol) | |||
[6,6] phenyl C61-butyric acid methylester (PCBM, 99%) | Solenne BV | |||
Solvents | Sigma-Aldrich | |||
2 | HC-PEDOT | Agfa (Agfa, Orgacon-IJ 1005) | were used as received | [22] |
PEDOT:PSS | Agfa (PEDOT, Agfa, Orgacon S315) | |||
P3HT (Mw 19 kg/mol) | Merck, Lisicon SP001 | |||
ActivInk® PV2000 | Polyera corporation | |||
PCBM, 99% | Solenne BV | |||
Suntronic U5603 Ag nanoparticle ink | Sun chemicals, Slough, UK | |||
3 | Regioregular P3HT (Mw = 31,300 g/mol, RR = 93.6) | Merck | Inks were prepared with 1.3/1.3 wt % P3HT/PCBM and varying amounts of poly-styrene (0–1 wt %) dissolved in tetralin, indan and oxylene (1:1:1 by wt %). | [49] |
PCBM (99%) | Solenne | |||
Polystyrene varieties with molecular weight of 35,000 g/mol (PS-L), 192,000 g/mol (PS-M) and 350,000 g/mol (PS-H) | Sigma Aldrich | were used as received | ||
1,2,3,4-Tetrahydronapthalene (tetralin, 99%), indan (95%) and o-xylene (97%) | Sigma Aldrich | |||
4 | The polymers PCPDTBT and PSBTBT | Konarka as powders | The inks with a systematically varied polymer:fullerene ratio and varied (CB/o-DCB) ratio | [13] |
mono-PCBM and bis-PCBM (99% pure) | Solenne | |||
The solvents chlorobenzene (CB) and ortho-dichlorobenzene (o-DCB) | Aldrich (Steinheim, Germany) | filtered before usage | ||
5 | P3HT | Rieke Metal, Inc. | mixed in a 1:1 ratio by weight | [6] |
PCBM | Solenne BV | |||
6 | High-conductivity PEDOT:PSS | Clevios PH1000, Heraeus | dissolved in water | [50] |
5 wt % DMSO and 0.1% fluorosurfactant | Zonyl FS-300, Sigma-Aldrich | were added into the ink to make a highly conductive and uniform film | ||
PCDTBT:PC70BM | Ossila, 1:4 ratio | - | ||
Ag nanoparticle ink | DGP 40LT-15C, ANP | - |
Inkjet-Printed Layers | Voc (V) | Jsc (mA/cm2) | FF (%) | PCE (%) | Reference |
---|---|---|---|---|---|
Active layer PEDOT:PSS P3HT:PCBM | 0.628 | 10.68 | 55.27 | 3.71 | [40] |
Active layer PEDOT:PSS P3HT:PCBM | 0.573 | 9.34 | 45 | 2.40 | [53] |
back electrode [Ag] | 0.51 | 8.39 | 45.5 | 1.96 | [42] |
electrode [Ag] | 0.49 | 5.49 | 31.0 | 0.83 | [29] |
All layers Ag/HC-PEDOT;PSS/ETL/AL/HTL/Ag | 0.77 | 10.4 | 51.0 | 4.10 | [22] |
Active layer PCDTBT:PC70BM PEDOT:PSS | 0.89 | 9.95 | 56.8% | 4.85 (PCEmax = 5.05%) | [50] |
All layers glass substrate/PEDOT:PSS/PCDTBT:PC70BM/ZnO/Ag | - | - | - | 2.05 | [50] |
RR-P3HT:PCBM | 0.537 | 10.05 | 64.0 | 3.5 | [20] |
PEDOT:PSS | 0.595 | 9.593 | 55.28 | 3.16 | [45] |
Ag grids | 0.62 | 7.0 | 66.0 | 2.86 | [47] |
PCDTBT:PC70BM | 0.834 | 9.7 | 47.8 | 3.86 | [54] |
Si-PCPDTBT:PC70BM | 0.661 | 8.1 | 56.2 | 3.01 | [54] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sumaiya, S.; Kardel, K.; El-Shahat, A. Organic Solar Cell by Inkjet Printing—An Overview. Technologies 2017, 5, 53. https://doi.org/10.3390/technologies5030053
Sumaiya S, Kardel K, El-Shahat A. Organic Solar Cell by Inkjet Printing—An Overview. Technologies. 2017; 5(3):53. https://doi.org/10.3390/technologies5030053
Chicago/Turabian StyleSumaiya, Sharaf, Kamran Kardel, and Adel El-Shahat. 2017. "Organic Solar Cell by Inkjet Printing—An Overview" Technologies 5, no. 3: 53. https://doi.org/10.3390/technologies5030053
APA StyleSumaiya, S., Kardel, K., & El-Shahat, A. (2017). Organic Solar Cell by Inkjet Printing—An Overview. Technologies, 5(3), 53. https://doi.org/10.3390/technologies5030053