Temporal Segmentation of Urban Water Consumption Patterns Based on Non-Parametric Density Clustering
Abstract
1. Introduction
2. Related Work
3. Materials and Methods
3.1. Overview of the Study Area and Data Sources
3.2. Methodological Foundations of Density Clustering
3.3. Optimization of Density Clustering Parameters
- STEP 1: Calculation of distances to the nearest neighbors
- STEP 2: Calculation of average distances to the k nearest neighbors
- STEP 3: Analysis of changes in average distances
- STEP 4: Selection of the neighborhood radius ε
3.4. Redistribution of Noise Data to Nearby Clusters
3.5. Modified Non-Parametric Clustering Algorithm
4. Results and Discussion
4.1. Clustering Based on Time of Day and Water Supply and Electricity Consumption Parameters
4.2. Extended Clustering with the Addition of a Pressure Factor
4.3. Comparative Analysis of Clustering Results Using the K-Means Method and the Modified DBSCAN Method
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zapata, O. More Water Please, It’s Getting Hot! The Effect of Climate on Residential Water Demand. Water Econ. Policy 2015, 1, 1550007. [Google Scholar] [CrossRef]
- Brigida, V.S.; Golik, V.I.; Dzeranov, B.V. Modeling of Coalmine Methane Flows to Estimate the Spacing of Primary Roof Breaks. Mining 2022, 2, 809–821. [Google Scholar] [CrossRef]
- Guedes, B. Crop Evapotranspiration and Water Use Efficiency. In Irrigation Systems and Practices in Challenging Environments; BoD—Books on Demand: Norderstedt, Germany, 2012. [Google Scholar] [CrossRef]
- Heidari, H.; Arabi, M.; Warziniack, T.; Sharvelle, S. Effects of Urban Development Patterns on Municipal Water Shortage. Front. Water 2021, 3, 694817. [Google Scholar] [CrossRef]
- Ghatani, S. Problems and Challenges on Urban Water Management in Darjeeling Hill Town. Asian Res. J. Arts Soc. Sci. 2021, 13, 24–33. [Google Scholar] [CrossRef]
- Ren, W.; Bai, X.; Wang, Y.; Liang, C.; Huang, S.; Wang, Z.; Yang, L. Analysis of Water Supply-Demand Based on Socioeconomic Efficiency. J. Sensors 2022, 2022, 1–16. [Google Scholar] [CrossRef]
- Kapanski, A.; Hruntovich, N.; Bakhur, S.; Markaryants, L.; Dolomanyak, L. Optimize the cost of paying for electricity in the water supply system by using accumulating tanks. E3S Web Conf. 2020, 178, 01065. [Google Scholar] [CrossRef]
- Hristov, P.; Hristova, T. Explaining The DLT Applications in The Context of a Customers, Facility Managements and Utility Companies Relationship. In Proceedings of the 2019 16th Conference on Electrical Machines, Drives and Power Systems (ELMA), Varna, Bulgaria, 6–8 June 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Golik, V.I.; Razorenov, Y.U.I.; Brigida, V.S.; Burdzieva, O.G. Mechanochemical technology of metal mining from enriching tails. Bull. Tomsk. Polytech. Univ. Geo. Assets Eng. 2020, 331, 175–183. [Google Scholar] [CrossRef]
- Kapanski, A.; Hruntovich, N.V.; Klyuev, R.V.; Brigida, V. Identification of Easily Accessible Urban Water Con-sumption Factors for Energy-Efficient Management of Pumping Stations. Water Conserv. Sci. Eng. 2025, 10, 1–16. [Google Scholar] [CrossRef]
- Liao, T.W. Clustering of time series data—A survey. Pattern Recognit. 2005, 38, 1857–1874. [Google Scholar] [CrossRef]
- Rani, S.; Sikka, G. Recent techniques of clustering of time series data: A survey. Int. J. Comput. Appl. 2012, 52, 1–9. [Google Scholar] [CrossRef]
- Prakaisak, I.; Wongchaisuwat, P. Hydrological Time Series Clustering: A Case Study of Telemetry Stations in Thailand. Water 2022, 14, 2095. [Google Scholar] [CrossRef]
- Guo, H.; Liu, X.; Zhang, Q. Identifying daily water consumption patterns based on K-means Clustering, Agglomerative Hierarchical Clustering, and Spectral Clustering algorithms. AQUA-Water Infrastruct. Ecosyst. Soc. 2024, 73, 870–887. [Google Scholar] [CrossRef]
- Cominola, A.; Giuliani, M.; Castelletti, A.; Rosenberg, D.; Abdallah, A. Implications of data sampling resolution on water use simulation, end-use disaggregation, and demand management. Environ. Model. Softw. 2018, 102, 199–212. [Google Scholar] [CrossRef]
- Cheifetz, N.; Noumir, Z.; Samé, A.; Sandraz, A.-C.; Féliers, C.; Heim, V. Modeling and clustering water demand patterns from real-world smart meter data. Drink. Water Eng. Sci. 2017, 10, 75–82. [Google Scholar] [CrossRef]
- Candelieri, A. Clustering and Support Vector Regression for Water Demand Forecasting and Anomaly Detection. Water 2017, 9, 224. [Google Scholar] [CrossRef]
- Ioannou, A.E.; Creaco, E.F.; Laspidou, C.S. Exploring the Effectiveness of Clustering Algorithms for Capturing Water Consumption Behavior at Household Level. Sustainability 2021, 13, 2603. [Google Scholar] [CrossRef]
- Arsene, D.; Predescu, A.; Pahonțu, B.; Chiru, C.G.; Apostol, E.-S.; Truică, C.-O. Advanced Strategies for Monitoring Water Consumption Patterns in Households Based on IoT and Machine Learning. Water 2022, 14, 2187. [Google Scholar] [CrossRef]
- Mu, C.; Hou, Y.; Zhao, J.; Wei, S.; Wu, Y. Stream-DBSCAN: A Streaming Distributed Clustering Model for Water Quality Monitoring. Appl. Sci. 2023, 13, 5408. [Google Scholar] [CrossRef]
- Song, C.; Cui, J.; Cui, Y.; Zhang, S.; Wu, C.; Qin, X.; Wu, Q.; Chi, S.; Yang, M.; Liu, J.; et al. Integrated STL-DBSCAN algorithm for online hydrological and water quality monitoring data cleaning. Environ. Model. Softw. 2025, 183, 106262. [Google Scholar] [CrossRef]
- Nasaruddin, N.; Masseran, N.; Idris, W.M.R.; Ul-Saufie, A.Z. A SMOTE PCA HDBSCAN approach for enhancing water quality classification in imbalanced datasets. Sci. Rep. 2025, 15, 1–12. [Google Scholar] [CrossRef]
- Zhang, F.; Guo, J.; Yuan, F.; Qiu, Y.; Wang, P.; Cheng, F.; Gu, Y. Enhancement Methods of Hydropower Unit Moni-toring Data Quality Based on the Hierarchical Density-Based Spatial Clustering of Applications with a Noise–Wasserstein Slim Generative Adversarial Imputation Network with a Gradient Penalty. Sensors 2023, 24, 118. [Google Scholar] [CrossRef]
- Birant, D.; Kut, A. ST-DBSCAN: An algorithm for clustering spatial–temporal data. Data Knowl. Eng. 2007, 60, 208–221. [Google Scholar] [CrossRef]
- Bhowmik, A.; Kumar, R.; Ranganathaswamy, M.K.; Kumar, Y.K.; Samal, P.; Mahapatro, A.; Alhazaa, A.N.; Romanovski, V.; Santhosh, A.J. Predictive modeling of the mechanical behavior of 3D-printed polylactic acid/wood composite: Comparison of GEP and ANN methods. AIP Adv. 2025, 15, 045221. [Google Scholar] [CrossRef]
- Romanovski, V.; Moskovskikh, D.; Tan, H.; Kuskov, K.; Volodko, S.; Akinwande, A.A.; Periakaruppan, R.; Kong, F.; Ma, X.; Yang, F.; et al. Gypsum Binder with Increased Water Resistance Derived from Membrane Water Desalination Waste. Eng. Rep. 2024, 7, e13028. [Google Scholar] [CrossRef]
- Hahsler, M.; Piekenbrock, M.; Doran, D. dbscan: Fast Density-Based Clustering with R. J. Stat. Softw. 2019, 91, 1–30. [Google Scholar] [CrossRef]
- Gholizadeh, N.; Saadatfar, H.; Hanafi, N. K-DBSCAN: An improved DBSCAN algorithm for big data. J. Supercomput. 2020, 77, 6214–6235. [Google Scholar] [CrossRef]
- Johnston, B.; Jones, A.; Kruger, C. Applied Unsupervised Learning with Python: Discover Hidden Patterns and Relationships in Unstructured Data with Python; Packt Publishing Ltd.: Birmingham, UK, 2019; 500p. [Google Scholar]
- Ester, M.; Kriegel, H.-P.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD’96), Portland, OR, USA, 2–4 August 1996; pp. 226–231. [Google Scholar]
- Hao, W.; Cominola, A.; Castelletti, A. Short-Term Memory and Regional Climate Drive City-Scale Water Demand in the Contiguous US. Earth’s Future 2025, 13, e2024EF004415. [Google Scholar] [CrossRef]
- Spinelli, D.; Giuliani, M.; Castelletti, A. Ensemble Forecasts with Blocked K-Fold Cross-Validation in Multi-Objective Water Systems Control. In Proceedings of the 2024 European Control Conference (ECC), Stockholm, Sweden, 25–28 June 2024; pp. 493–498. [Google Scholar] [CrossRef]
- Pesantez, J.E.; Berglund, E.Z.; Kaza, N. Smart meters data for modeling and forecasting water demand at the user-level. Environ. Model. Softw. 2020, 125, 104633. [Google Scholar] [CrossRef]
Date and Time | Hour of Day | Water Supply, m3 | Electricity, kWh |
---|---|---|---|
2023-01-01 00:30:00 | 0.50 | 1 468.63 | 893.16 |
2023-01-01 01:00:00 | 0.75 | 1 558.25 | 947.66 |
2023-01-01 01:30:00 | 1.00 | 1 547.99 | 937.35 |
Cluster | Time Range (Within 5–95% Percentile) | Average Water Supply, m3 | Average Power Consumption, kW∙h | Data Share, % |
---|---|---|---|---|
0 | 00:00–06:30 | 1357 | 818 | 29.1 |
1 | 08:00–22:00 | 2355 | 1149 | 63.6 |
2 | 20:30–23:30 | 1791 | 925 | 2.3 |
3 | 21:00–23:00 | 2176 | 1064 | 2.9 |
4 | 06:30–08:00 | 2247 | 1169 | 0.7 |
5 | 06:30–08:30 | 2469 | 1231 | 1.3 |
Cluster | Time Range (Within 5–95% Percentile) | Average Water Supply, m3 | Average Power Consumption, kW∙h | Average Pressure, kPa | Data Share, % |
---|---|---|---|---|---|
0 | 00:30–05:00 | 1254 | 796 | 324 | 5.7 |
1 | 12:00–22:00 | 2332 | 1149 | 391 | 11.5 |
2 | 00:00–06:30 | 1372 | 822 | 369 | 23.0 |
3 | 07:30–22:30 | 2361 | 1154 | 370 | 53.0 |
4 | 06:30–11:00 | 2251 | 1047 | 393 | 1.3 |
5 | 07:30–11:30 | 2355 | 1106 | 389 | 1.9 |
6 | 06:30–12:30 | 1966 | 915 | 370 | 1.4 |
7 | 21:30–23:30 | 1786 | 926 | 367 | 2.3 |
Mode | Modified DBSCAN | K-Means | Note |
---|---|---|---|
Nighttime minimum | 00:30–05:00 (cluster 0, 5.7%) and 00:00–06:30 (cluster 2, 23.0%) | 00:00–06:00 (cluster 6, 21.6%) and 00:30–05:00 (cluster 7, 5.7%) | Both methods record the night minimum, the combined share being about a quarter of the sample. |
Daytime maximum | 07:30–22:30 (cluster 3, 53.0%) and 12:00–22:00 (cluster 1, 11.5%) | 08:30–21:30 (cluster 2, 14.2%), 12:00–17:30 (cluster 1, 15.1%), 18:00–22:30 (cluster 0, 13.2%) | In DBSCAN, the daily maximum consistently occupies ~65% of the sample, while in K-means it is split into several intersecting intervals (a total of about 42%). |
Morning transitional | 06:30–11:00 (cluster 4, 1.3%), 07:30–11:30 (cluster 5, 1.9%), 06:30–12:30 (cluster 6, 1.4%) | 06:00–13:00 (cluster 5, 6.4%), 06:30–13:00 (cluster 3, 15.1%) | In DBSCAN, transient modes occupy a small share (<5%), while in K-means these same intervals are extended and form up to 20% of the sample. |
Evening transitional | 21:30–23:30 (cluster 7, 2.3%) | 15:30–23:30 (cluster 4, 8.7%), 18:00–22:30 (cluster 0, 13.2%) | DBSCAN records a short evening decline (<3%), K-means distributes it into long intervals with a share of more than 20%. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kapanski, A.A.; Klyuev, R.V.; Brigida, V.S.; Hruntovich, N.V. Temporal Segmentation of Urban Water Consumption Patterns Based on Non-Parametric Density Clustering. Technologies 2025, 13, 449. https://doi.org/10.3390/technologies13100449
Kapanski AA, Klyuev RV, Brigida VS, Hruntovich NV. Temporal Segmentation of Urban Water Consumption Patterns Based on Non-Parametric Density Clustering. Technologies. 2025; 13(10):449. https://doi.org/10.3390/technologies13100449
Chicago/Turabian StyleKapanski, Aliaksey A., Roman V. Klyuev, Vladimir S. Brigida, and Nadezeya V. Hruntovich. 2025. "Temporal Segmentation of Urban Water Consumption Patterns Based on Non-Parametric Density Clustering" Technologies 13, no. 10: 449. https://doi.org/10.3390/technologies13100449
APA StyleKapanski, A. A., Klyuev, R. V., Brigida, V. S., & Hruntovich, N. V. (2025). Temporal Segmentation of Urban Water Consumption Patterns Based on Non-Parametric Density Clustering. Technologies, 13(10), 449. https://doi.org/10.3390/technologies13100449