Electron Energy-Loss Spectroscopy Method for Thin-Film Thickness Calculations with a Low Incident Energy Electron Beam
Abstract
:1. Introduction
2. Monte Carlo Simulations
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Biebl, F.; Glawar, R.; Jalali, A.; Ansari, F.; Haslhofer, B.; de Boer, P.; Sihn, W. A conceptual model to enable prescriptive maintenance for etching equipment in semiconductor manufacturing. Procedia CIRP 2020, 88, 64–69. [Google Scholar] [CrossRef]
- Weber, A. Smart manufacturing in the semiconductor industry: An evolving nexus of business drivers, technologies, and standards. In Smart Manufacturing; Elsevier: New York, NY, USA, 2020; pp. 59–105. [Google Scholar] [CrossRef]
- Huang, H.-T.; Terry, F.L., Jr. Spectroscopic ellipsometry and reflectometry from gratings (Scatterometry) for critical dimension measurement and in situ, real-time process monitoring. Thin Solid Films 2004, 455–456, 828–836. [Google Scholar] [CrossRef]
- Llovet, X.; Moy, A.; Pinard, P.T.; Fournelle, J.H. Electron probe microanalysis: A review of recent developments and applications in materials science and engineering. Prog. Mater. Sci. 2021, 116, 100673. [Google Scholar] [CrossRef]
- Terborg, R.; Kim, K.J.; Hodoroaba, V.-D. Determination of Thin Film Thickness and Composition using Energy Dispersive EPMA. Microsc. Microanal. 2022, 28, 672–673. [Google Scholar] [CrossRef]
- Terborg, R.; Kim, K.J.; Hodoroaba, V. Elemental composition and thickness determination of thin films by electron probe microanalysis. Surf. Interface Anal. 2023, 55, 496–500. [Google Scholar] [CrossRef]
- Sokolov, S.A.; Milovanov, R.A.; Sidorov, L.N. Determination of the Thickness of Thin Films Based on Scanning Electron Microscopy and Energy Dispersive X-Ray Analysis. J. Surf. Investig. 2019, 13, 836–847. [Google Scholar] [CrossRef]
- Egerton, R.F. Electron Energy-Loss Spectroscopy in the Electron Microscope; Springer US: Boston, MA, USA, 2011. [Google Scholar] [CrossRef]
- Egerton, R.F.; Cheng, S.C. Measurement of local thickness by electron energy-loss spectroscopy. Ultramicroscopy 1987, 21, 231–244. [Google Scholar] [CrossRef]
- Niedrig, H. Film-thickness Determination in Electron Microscopy: The Electron Backscattering Method. Opt. Acta 1977, 24, 679–691. [Google Scholar] [CrossRef]
- Egerton, R.F.; Malac, M. EELS in the TEM. J. Electron. Spectros. Relat. Phenom. 2005, 143, 43–50. [Google Scholar] [CrossRef]
- Stephens, A.P. Quantitative microanalysis by electron energy-loss spectroscopy: Two corrections. Ultramicroscopy 1980, 5, 343–349. [Google Scholar] [CrossRef]
- Assa’d, A.M.D. Monte Carlo computation of the influence of carbon contamination layer on the energy distribution of backscattered electrons emerging from Al and Au. Jordan J. Phys. 2019, 12, 37–44. [Google Scholar]
- Egerton, R.F. Electron energy-loss spectroscopy in the TEM. Rep. Prog. Phys. 2009, 72, 016502. [Google Scholar] [CrossRef]
- Malis, T.; Cheng, S.C.; Egerton, R.F. EELS log-ratio technique for specimen-thickness measurement in the TEM. J. Electron. Microsc. Tech. 1988, 8, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Botton, G.A.; L’espérance, G.; Gallerneault, C.E.; Ball, M.D. Volume fraction measurement of dispersoids in a thin foil by parallel energy-loss spectroscopy: Development and assessment of the technique. J. Microsc. 1995, 180, 217–229. [Google Scholar] [CrossRef]
- Haasch, R.T. X-Ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES). In Practical Materials Characterization; Springer: New York, NY, USA, 2014; pp. 93–132. [Google Scholar] [CrossRef]
- Leapman, R.D.; Fiori, C.E.; Swyt, C.R. Mass thickness determination by electron energy loss for quantitative X-ray microanalysis in biology. J. Microsc. 1984, 133, 239–253. [Google Scholar] [CrossRef] [PubMed]
- Joy, D.C.; Egerton, R.F.; Maher, D.M. Progress in the quantitation of EELS. In Scanning Electron Microscopy; SEM: Washington, DC, USA, 1979; Volume 2, pp. 817–826. [Google Scholar]
- Iakoubovskii, K.; Mitsuishi, K.; Nakayama, Y.; Furuya, K. Thickness measurements with electron energy loss spectroscopy. Microsc. Res. Tech. 2008, 71, 626–631. [Google Scholar] [CrossRef] [PubMed]
- Jaber, A.M.D.; Kawariq, H.H.; Walker, C.G.H.; Mousa, M.S. Monte Carlo Simulation of Free-standing Thin Films under Low Energy Electron Bombardment: Electron Inelastic Mean Free Path (IMFP) Determination Using Elastic Peak of the Transmitted Electrons. Jordan J. Phys. 2023, 16, 381–393. [Google Scholar] [CrossRef]
- Tanuma, S.; Powell, C.J.; Penn, D.R. Calculations of electron inelastic mean free paths. IX. Data for 41 elemental solids over the 50 eV to 30 keV range. Surf. Interface Anal. 2011, 43, 689–713. [Google Scholar] [CrossRef]
- Kieft, E.; Bosch, E. Refinement of Monte Carlo simulations of electron–specimen interaction in low-voltage SEM. J. Phys. D Appl. Phys. 2008, 41, 215310. [Google Scholar] [CrossRef]
- Ashley, J.C. Interaction of low-energy electrons with condensed matter: Stopping powers and inelastic mean free paths from optical data. J. Electron. Spectros. Relat. Phenom. 1988, 46, 199–214. [Google Scholar] [CrossRef]
- Kenway, P.B.; Duke, P.J. X-Ray Optics and Microanalysis 1992, Proceedings of the 13th INT Conference, Manchester, UK, 31 August-4 September 1992; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar] [CrossRef]
- Demers, H.; Poirier-Demers, N.; de Jonge, N.; Drouin, D. Three-Dimensional Electron Microscopy Simulation with the CASINO Monte Carlo Software. Microsc. Microanal. 2011, 17, 612–613. [Google Scholar] [CrossRef]
- Agostinelli, S.; Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.; et al. Geant4—A simulation toolkit. Nucl. Instrum. Methods Phys. Res. A 2003, 506, 250–303. [Google Scholar] [CrossRef]
- Rising, M.E.; Armstrong, J.C.; Bolding, S.R.; Brown, F.B.; Bull, J.S.; Burke, T.P.; Clark, A.R.; Dixon, D.A.; Forster, R.A., III; Giron, J.F.; et al. MCNP® Code V.6.3.0 Release Notes; Los Alamos National Laboratory (LANL): Los Alamos, NM, USA, 2023. [Google Scholar] [CrossRef]
- Sobel’man, I.I.; Vainshtein, L.A.; Yukov, E.A. Theory of Atomic Collisions; Springer: New York, NY, USA, 1933. [Google Scholar]
- Massey, H.S.W. Theory of Atomic Collisions. In Atoms II/Atome II. Encyclopedia of Physics/Handbuch der Physik; Springer: Berlin/Heidelberg, Germany, 1956; pp. 232–306. [Google Scholar] [CrossRef]
- Werner, W.S.M. Electron transport in solids for quantitative surface analysis. Surf. Interface Anal. 2001, 31, 141–176. [Google Scholar] [CrossRef]
- Reimer, L. Scanning Electron Microscopy: Physics of Image Formation and Microanalysis, Second Edition. Meas. Sci. Technol. 2000, 11, 1826. [Google Scholar] [CrossRef]
- Goldstein, J.I.; Newbury, D.E.; Echlin, P.; Joy, D.C.; Fiori, C.; Lifshin, E. Scanning Electron Microscopy and X-Ray Microanalysis; Springer US: Boston, MA, USA, 1981. [Google Scholar] [CrossRef]
- Walker, C.G.H.; El-Gomati, M.M.; Assa’d, A.M.D.; Zadražil, M. The secondary electron emission yield for 24 solid elements excited by primary electrons in the range 250–5000 ev: A theory/experiment comparison. Scanning 2008, 30, 365–380. [Google Scholar] [CrossRef]
- Assa’d, A.M.D. Monte Carlo calculation of the backscattering coefficient of thin films of low on high atomic number materials and the reverse as a function of the incident electron energy and film thickness. Appl. Phys. A 2018, 124, 699. [Google Scholar] [CrossRef]
t (nm) | 1 keV | 3 keV | 5 keV | 7.5 keV | 10 keV | |||||
---|---|---|---|---|---|---|---|---|---|---|
tc | ±∆ tc | tc | ±∆ tc | tc | ±∆ tc | tc | ±∆ tc | tc | ±∆ tc | |
2.00 | 2.10 | 0.050 | 2.04 | 0.020 | 2.03 | 0.015 | 2.04 | 0.020 | 2.08 | 0.040 |
4.00 | 4.24 | 0.060 | 4.08 | 0.020 | 4.07 | 0.018 | 4.06 | 0.015 | 4.10 | 0.025 |
6.00 | 6.38 | 0.063 | 6.13 | 0.022 | 6.08 | 0.013 | 6.08 | 0.013 | 6.16 | 0.027 |
8.00 | 8.44 | 0.055 | 8.19 | 0.024 | 8.11 | 0.014 | 8.08 | 0.010 | 8.19 | 0.024 |
10.00 | 10.77 | 0.077 | 10.29 | 0.029 | 10.19 | 0.019 | 10.08 | 0.008 | 10.21 | 0.021 |
12.00 | - | - | 12.39 | 0.033 | 12.24 | 0.020 | 12.15 | 0.013 | 12.34 | 0.028 |
t (nm) | 1 keV | 3 keV | 5 keV | 7.5 keV | 10 keV | |||||
---|---|---|---|---|---|---|---|---|---|---|
tc | ±∆ tc | tc | ±∆ tc | tc | ±∆ tc | tc | ±∆ tc | tc | ±∆ tc | |
2.00 | 2.11 | 0.055 | 2.06 | 0.030 | 2.05 | 0.025 | 2.04 | 0.020 | 2.06 | 0.030 |
4.00 | 4.31 | 0.078 | 4.10 | 0.025 | 4.06 | 0.015 | 4.09 | 0.023 | 4.06 | 0.015 |
6.00 | 6.51 | 0.085 | 6.20 | 0.033 | 6.13 | 0.022 | 6.10 | 0.017 | 6.11 | 0.018 |
8.00 | 8.68 | 0.085 | 8.29 | 0.036 | 8.17 | 0.021 | 8.15 | 0.019 | 8.17 | 0.021 |
10.00 | 10.99 | 0.099 | 10.40 | 0.040 | 10.29 | 0.029 | 10.19 | 0.019 | 10.17 | 0.017 |
12.00 | 13.25 | 0.104 | 12.54 | 0.045 | 12.28 | 0.023 | 12.22 | 0.018 | 12.23 | 0.019 |
t (nm) | 1 keV | 3 keV | 5 keV | 7.5 keV | 10 keV | |||||
---|---|---|---|---|---|---|---|---|---|---|
tc | ±∆ tc | tc | ±∆ tc | tc | ±∆ tc | tc | ±∆ tc | tc | ±∆ tc | |
2.00 | 2.28 | 0.140 | 2.15 | 0.075 | 2.07 | 0.035 | 2.08 | 0.040 | 2.07 | 0.035 |
4.00 | 4.63 | 0.158 | 4.30 | 0.075 | 4.10 | 0.025 | 4.16 | 0.040 | 4.13 | 0.033 |
6.00 | 6.92 | 0.153 | 6.57 | 0.095 | 6.25 | 0.042 | 6.24 | 0.040 | 6.24 | 0.040 |
8.00 | - | - | 8.87 | 0.109 | 8.39 | 0.049 | 8.40 | 0.050 | 8.34 | 0.043 |
10.00 | - | - | 11.2 | 0.120 | 10.62 | 0.062 | 10.50 | 0.050 | 10.50 | 0.050 |
12.00 | - | - | 13.5 | 0.125 | 12.90 | 0.075 | 12.70 | 0.070 | 12.60 | 0.050 |
t (nm) | 1 keV | 3 keV | 5 keV | 7.5 keV | 10 keV | |||||
---|---|---|---|---|---|---|---|---|---|---|
tc | ±∆ tc | tc | ±∆ tc | tc | ±∆ tc | tc | ±∆ tc | tc | ±∆ tc | |
2.00 | 2.32 | 0.160 | 2.20 | 0.100 | 2.15 | 0.075 | 2.08 | 0.040 | 2.10 | 0.050 |
4.00 | 4.66 | 0.165 | 4.47 | 0.118 | 4.27 | 0.068 | 4.19 | 0.048 | 4.21 | 0.053 |
6.00 | 6.87 | 0.145 | 6.80 | 0.133 | 6.49 | 0.082 | 6.35 | 0.060 | 6.34 | 0.057 |
8.00 | - | - | 9.20 | 0.150 | 8.75 | 0.094 | 8.52 | 0.065 | 8.46 | 0.058 |
10.00 | - | - | 11.59 | 0.159 | 11.05 | 0.105 | 10.71 | 0.071 | 10.59 | 0.059 |
12.00 | - | - | 14.2 | 0.183 | 13.4 | 0.116 | 12.93 | 0.078 | 12.82 | 0.068 |
t (nm) | 1 keV | 3 keV | 5 keV | 7.5 keV | 10 keV | |||||
---|---|---|---|---|---|---|---|---|---|---|
tc | ±∆ tc | tc | ±∆ tc | tc | ±∆ tc | tc | ±∆ tc | tc | ±∆ tc | |
2.00 | 2.30 | 0.150 | 2.17 | 0.085 | 2.14 | 0.070 | 2.12 | 0.060 | 2.11 | 0.055 |
4.00 | 4.48 | 0.120 | 4.41 | 0.104 | 4.30 | 0.075 | 4.23 | 0.058 | 4.21 | 0.053 |
6.00 | - | - | 6.71 | 0.118 | 6.49 | 0.082 | 6.40 | 0.067 | 6.30 | 0.050 |
8.00 | - | - | 9.04 | 0.130 | 8.74 | 0.093 | 8.57 | 0.071 | 8.39 | 0.049 |
10.00 | - | - | 11.35 | 0.135 | 11.04 | 0.104 | 10.84 | 0.084 | 10.54 | 0.054 |
12.00 | - | - | 13.79 | 0.149 | 13.38 | 0.115 | 13.05 | 0.088 | 12.74 | 0.062 |
t (nm) | 1 keV | 3 keV | 5 keV | 7.5 keV | 10 keV | |||||
---|---|---|---|---|---|---|---|---|---|---|
tc | ±∆ tc | tc | ±∆ tc | tc | ±∆ tc | tc | ±∆ tc | tc | ±∆ tc | |
2.00 | 2.36 | 0.180 | 2.26 | 0.130 | 2.18 | 0.090 | 2.17 | 0.085 | 2.15 | 0.075 |
4.00 | 4.71 | 0.178 | 4.62 | 0.155 | 4.41 | 0.103 | 4.38 | 0.095 | 4.33 | 0.083 |
6.00 | - | - | 7.10 | 0.183 | 6.75 | 0.125 | 6.68 | 0.113 | 6.54 | 0.090 |
8.00 | - | - | 9.57 | 0.196 | 9.09 | 0.136 | 8.99 | 0.124 | 8.81 | 0.101 |
10.00 | - | - | 12.22 | 0.222 | 11.55 | 0.155 | 11.39 | 0.139 | 11.16 | 0.116 |
12.00 | - | - | 14.60 | 0.217 | 14.01 | 0.168 | 13.81 | 0.151 | 13.44 | 0.120 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaber, A.M.D.; Alsoud, A.; Al-Bashaish, S.R.; Al Dmour, H.; Mousa, M.S.; Trčka, T.; Holcman, V.; Sobola, D. Electron Energy-Loss Spectroscopy Method for Thin-Film Thickness Calculations with a Low Incident Energy Electron Beam. Technologies 2024, 12, 87. https://doi.org/10.3390/technologies12060087
Jaber AMD, Alsoud A, Al-Bashaish SR, Al Dmour H, Mousa MS, Trčka T, Holcman V, Sobola D. Electron Energy-Loss Spectroscopy Method for Thin-Film Thickness Calculations with a Low Incident Energy Electron Beam. Technologies. 2024; 12(6):87. https://doi.org/10.3390/technologies12060087
Chicago/Turabian StyleJaber, Ahmad M. D. (Assa’d), Ammar Alsoud, Saleh R. Al-Bashaish, Hmoud Al Dmour, Marwan S. Mousa, Tomáš Trčka, Vladimír Holcman, and Dinara Sobola. 2024. "Electron Energy-Loss Spectroscopy Method for Thin-Film Thickness Calculations with a Low Incident Energy Electron Beam" Technologies 12, no. 6: 87. https://doi.org/10.3390/technologies12060087
APA StyleJaber, A. M. D., Alsoud, A., Al-Bashaish, S. R., Al Dmour, H., Mousa, M. S., Trčka, T., Holcman, V., & Sobola, D. (2024). Electron Energy-Loss Spectroscopy Method for Thin-Film Thickness Calculations with a Low Incident Energy Electron Beam. Technologies, 12(6), 87. https://doi.org/10.3390/technologies12060087