A 28 GHz Highly Linear Up-Conversion Mixer for 5G Cellular Communications
Abstract
:1. Introduction
2. Design of I/Q Up-Conversion Mixer
3. Fabrication and Measurement
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roh, W.; Seol, J.-Y.; Park, J.H.; Lee, B.; Lee, J.; Kim, Y.; Cho, J.; Aryanfa, F.; Cheun, K. Millimeter-Wave Beamforming as an Enabling Technology for 5G Cellular Communications: Theoretical Feasibility and Prototype Results. IEEE Commun. Mag. 2014, 52, 106–113. [Google Scholar] [CrossRef]
- Byeon, C.W.; Yoon, C.H.; Park, C.S. A 67-mW 10.7-Gb/s 60-GHz OOK CMOS transceiver for short-range wireless communications. IEEE Trans. Microw. Theory Tech. 2013, 61, 3391–3401. [Google Scholar] [CrossRef]
- Byeon, C.W.; Eun, K.C.; Park, C.S. A 2.65-pJ/Bit 12.5-Gb/s 60-GHz OOK CMOS Transmitter and Receiver for Proximity Communications. IEEE Trans. Microw. Theory Tech. 2020, 68, 2902–2910. [Google Scholar] [CrossRef]
- Huang, M.-Y.; Chi, T.; Li, S.; Huang, T.-Y.; Wang, H. A 24.5–43.5-GHz ultra-compact CMOS receiver front end with calibration-free instantaneous full-band image rejection for multiband 5G massive MIMO. IEEE J. Solid-State Circuits 2020, 55, 1177–1186. [Google Scholar] [CrossRef]
- Yin, Y.; Ustundag, B.; Kibaroglu, K.; Sayginer, M.; Rebeiz, G.M. Wideband 23.5–29.5-GHz phased arrays for multistandard 5G applications and carrier aggregation. IEEE Trans. Microw. Theory Tech. 2021, 69, 235–247. [Google Scholar] [CrossRef]
- Jung, J.; Lee, J.; Kang, D.; Kim, J.; Lee, W.; Oh, H.; Park, J.; Kim, K.; Lee, D.; Lee, S.; et al. A 39 GHz 2 × 16-Channel Phased-Array Transceiver IC with Compact, High-Efficiency Doherty Power Amplifiers. In Proceedings of the 2023 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), San Diego, CA, USA, 11–13 June 2023; pp. 273–276. [Google Scholar]
- Li, Z.; Pang, J.; Zhang, Y.; Yamazaki, Y.; Wang, Q.; Luo, P.; Chen, W.; Liao, Y.; Tang, M.; Wang, Y.; et al. A 39-GHz CMOS Bidirectional Doherty Phased- Array Beamformer Using Shared-LUT DPD with Inter-Element Mismatch Compensation Technique for 5G Base Station. IEEE J. Solid-State Circuits 2023, 58, 901–914. [Google Scholar] [CrossRef]
- Park, J.; Lee, S.; Chun, J.; Jeon, L.; Hong, S. A 28-GHz Four-Channel Beamforming Front-End IC with Dual-Vector Variable Gain Phase Shifters for 64-Element Phased Array Antenna Module. IEEE J. Solid-State Circuits 2023, 58, 1142–1159. [Google Scholar] [CrossRef]
- Song, J.-H.; Lee, E.-G.; Lee, J.-E.; Son, J.-T.; Kim, J.-H.; Baek, M.-S.; Kim, C.-Y. A 37–40 GHz 6-Bits Switched-Filter Phase Shifter Using 150 nm GaN HEMT. Nanomaterials 2023, 13, 2752. [Google Scholar] [CrossRef] [PubMed]
- Kiani, S.H.; Altaf, A.; Anjum, M.R.; Afridi, S.; Arain, Z.A.; Anwar, S.; Khan, S.; Alibakhshikenari, M.; Lalbakhsh, A.; Khan, M.A.; et al. MIMO Antenna System for Modern 5G Handheld Devices with Healthcare and High Rate Delivery. Sensors 2021, 21, 7415. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.A.; Taher, F.; Alzaidi, M.S.; Hussain, I.; Ghoniem, R.M.; Sree, M.F.A.; Lalbakhsh, A.L. Wideband, High-Gain, and Compact Four-Port MIMO Antenna for Future 5G Devices Operating over Ka-Band Spectrum. Appl. Sci. 2023, 13, 4380. [Google Scholar] [CrossRef]
- Verma, A.; O, K.K.; Lin, J. A low-power up-conversion CMOS mixer for 22–29-GHz ultra-wideband applications. IEEE Trans. Microw. Theory Tech. 2006, 54, 3295–3300. [Google Scholar] [CrossRef]
- Won, Y.-S.; Kim, C.-H.; Lee, S.-G. A 24 GHz highly linear up-conversion mixer in CMOS 0.13 μm technology. IEEE Microw. Wirel. Compon. Lett. 2015, 25, 400–402. [Google Scholar] [CrossRef]
- Lee, H.-S.; Min, B.-W. Ka-band up-conversion mixer with inductive degeneration. In Proceedings of the 2017 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Seoul, Republic of Korea, 30 August–1 September 2017; pp. 211–213. [Google Scholar]
- Tsai, J.-H.; Hsieh, Y.-Y.; Liu, W.-H. A 27–44 GHz CMOS Dual-Ring Subharmonic Up-Conversion Mixer with Linearization Technique. IEEE Microw. Wirel. Compon. Lett. 2022, 32, 347–350. [Google Scholar] [CrossRef]
- Wang, Z.-H.; Chen, C.-N.; Huang, T.-W.; Wang, H. A 28-GHz high linearity up-conversion mixer using second-harmonic injection technique in 28-nm CMOS technology. IEEE Microw. Wirel. Compon. Lett. 2021, 31, 276–279. [Google Scholar] [CrossRef]
- Bae, B.; Jeong, J.; Kim, S.; Lee, J.; Kwon, K.; Han, J. 24–40 GHz Dual-Band Highly Linear CMOS Up-Conversion Mixer for mmWave 5G NR FR2 Cellular Applications. IEEE Microw. Wirel. Compon. Lett. 2022, 32, 999–1002. [Google Scholar] [CrossRef]
- Lee, S.; Jeon, Y.; Yoon, D.-Y.; Lee, O.; Im, D.; Nam, I. 28-GHz CMOS Up-Conversion Mixer with Improved LO Second-Harmonic Leakage Signal Suppression for 5G Applications. IEEE Access 2022, 10, 57003–57011. [Google Scholar] [CrossRef]
- Hu, K.; Ma, K.; Ma, Z. An Ultra-Wideband Image-Reject Up-Conversion Mixer with a Sandwich-Coupled Transformer for 5G mm-Wave Communication. IEEE Microw. Wirel. Compon. Lett. 2022, 32, 1099–1102. [Google Scholar] [CrossRef]
- Byeon, C.W.; Lee, J.H.; Lee, D.Y.; Kim, M.-R.; Son, J.H. A high linearity, image/LO-rejection I/Q up-conversion mixer for 5G cellular communications. In Proceedings of the 2015 10th European Microwave Integrated Circuits Conference (EuMIC), Paris, France, 7–8 September 2015; pp. 345–348. [Google Scholar]
- Kim, S.H.; Jang, T.H.; Kang, D.M.; Jung, K.P.; Park, C.S. Wideband 120-GHz CMOS I/Q Transmitter with Suppressed IMRR and LOFT for Wireless Short-Range High-Speed 6G IoT Applications. IEEE Internet Things J. 2023, 10, 11739–11748. [Google Scholar] [CrossRef]
- Im, D.; Nam, I.; Kim, H.; Lee, K. A Wideband CMOS Low Noise Amplifier Employing Noise and IM2 Distortion Cancellation for a Digital TV Tuner. IEEE J. Solid-State Circuits 2009, 44, 686–698. [Google Scholar] [CrossRef]
This Work | [12] | [13] | [14] | [15] | [16] | [17] | [18] | [19] | |
---|---|---|---|---|---|---|---|---|---|
Process | 65 nm CMOS | 130 nm CMOS | 130 nm CMOS | 65 nm CMOS | 65 nm CMOS | 28 nm CMOS | 40 nm CMOS | 65 nm CMOS | 55 nm CMOS |
Topology | Pre-distorted complementary DS Gilbert-cell | Dual gate | Gilbert-cell | Gilbert-cell | Sub-harmonic dual ring | Gilbert-cell with IM2 Injection | Single-stack core Gm-boosting | Gilbert-cell | Gilbert-cell |
Frequency (GHz) | 28 | 18–28 | 23.4–29.2 | 28–35 | 27–44 | 17–29 | 24.2–29.5 | 26.5–29.5 | 20–42 |
CG (dB) | 11.4 | −2–0.7 | −1.9 | 0.9–3.5 | −10.5 | −6.4 | 4.2–5.3 | >22.2 * | 1.2 |
OP1dB (dBm) | 2 | −5.2 | 0.3 | −6.3 | −9 | −2.2 | 0.3 | −5 | −2.57 |
OIP3 (dBm) | 15.7 | 5.8 | - | 1.93 | - | 10.2 | 10.8 | 4.6 | - |
LO Power (dBm) | −13 | 3 | 0 | 10 | 9 | 2 | −10 | −8 | 12 |
LO Leakage (dBc) | −56 | - | - | - | - | - | - | −35 ## | - |
LO-RF Isolation (dB) | 56 | >30 | 28.9 | 31.2 | >45 # | - | - | - | >35 |
IRR (dB) | 61 | - | - | - | - | - | - | - | >30 |
PDC (mW) | 15 | 8 | 22.8 | 9.6 | 0 | 19 | 24.3 | 27.1 | 24 |
Area (mm2) | 1.23 | 0.47 | 0.86 | 0.77 | 0.33 | 0.48 | 0.59 | 1.09 | 0.58 |
FoM | 9.68 | 6.72 | 3.27 | 8.13 | - | 1.82 | 5.02 | 9.33 | 3.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Byeon, C.-W. A 28 GHz Highly Linear Up-Conversion Mixer for 5G Cellular Communications. Technologies 2024, 12, 35. https://doi.org/10.3390/technologies12030035
Byeon C-W. A 28 GHz Highly Linear Up-Conversion Mixer for 5G Cellular Communications. Technologies. 2024; 12(3):35. https://doi.org/10.3390/technologies12030035
Chicago/Turabian StyleByeon, Chul-Woo. 2024. "A 28 GHz Highly Linear Up-Conversion Mixer for 5G Cellular Communications" Technologies 12, no. 3: 35. https://doi.org/10.3390/technologies12030035
APA StyleByeon, C. -W. (2024). A 28 GHz Highly Linear Up-Conversion Mixer for 5G Cellular Communications. Technologies, 12(3), 35. https://doi.org/10.3390/technologies12030035