Attention-Based Ensemble Network for Effective Breast Cancer Classification over Benchmarks
Abstract
:1. Introduction
- The publicly available datasets seem limited, which may affect the model performance for effective BC classification. Therefore, this study significantly contributes to employing data augmentation techniques, for instance rotation, flipping, scaling, etc. The data augmentation strategy plays a significant role in enhancing the diversity and quantity of the training and testing sets, leading to improved model performance in terms of accuracy, sensitivity, and specificity.
- This paper presents a novel approach named an Ensemble-based Channel and Spatial Attention Network (ECS-A-Net) for effective BC classification. An ECS-A-Net parallel leverages modified SE-ResNet50 and InceptionV3 for meaning pattern selections, resulting in enhancing model performance for effective BC classification.
- We incorporated Channel Attention (CA) and Spatial Attention (SA) modules in a serial manner to acquire relevant features from the data. In this study, the CA module is responsible for highlighting the specific channel feature map based on relevance to the task, while the SA module is applicable for emphasizing the spatial location within the feature maps.
- To evaluate the generalization capability of the proposed ECS-A-Net, we performed extensive experiments between numerous SOTA techniques using publicly available benchmarks based on various evaluation indicators, including accuracy, sensitivity, and specificity, whereas the comparative analysis indicates that the proposed network achieved high performance for BC classification among SOTA techniques.
2. Literature Review
3. The Proposed Methodology
3.1. The SE-ResNet50 Network
3.2. InceptionV3 Architecture for BC Classification
3.3. Channel Attention Module
3.4. Spatial Attention Module
3.5. The Proposed Model
Algorithm 1: Training and Testing Procedure of ECS-A-Net |
1: Start 2: Load the dataset from repository, split , Flipping , Scaling , Rotation 3: Channel Attention , Spatial Attention 4: data preprocessing [Flipping [], Scaling [], Rotation []] 5: Load pre-trained weights = InceptionV3 and SE-ResNet50 6: ECS-A-Net = InceptionV3 SE-ResNet50 7: Initialization: (ECS-A-Net, ), parameter = {epochs =30, (optimizer = SGD, learning rate= 0.001, momentum = 0.9, validation = per epoch, batch size = 32)} 8: [training data: , validation data: , testing data: ] 9: = () 10: random (, ) 11: random (, ) 12: random (, ) 13: Return 14: [] = 15: = () 16: Output 17: End |
4. Results
4.1. Datasets Description
4.2. Results and Discussion
4.2.1. Comparative Analysis of DDSM Dataset
4.2.2. Comparative Analysis of MIAS Dataset
4.3. Ablation Study
4.4. Model Parameter Investigation
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement:
Data Availability Statement
Conflicts of Interest
References
- Zerouaoui, H.; Idri, A.J.J.o.M.S. Reviewing Machine Learning and Image Processing Based Decision-Making Systems for Breast Cancer Imaging. J. Med. Syst. 2021, 45, 8. [Google Scholar] [CrossRef] [PubMed]
- ElOuassif, B.; Idri, A.; Hosni, M.; Abran, A. Classification techniques in breast cancer diagnosis: A systematic literature review. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2021, 9, 50–77. [Google Scholar] [CrossRef]
- Chitalia, R.D.; Kontos, D. Role of texture analysis in breast MRI as a cancer biomarker: A review. J. Magn. Reson. Imaging 2019, 49, 927–938. [Google Scholar] [CrossRef] [PubMed]
- Eun, N.L.; Kang, D.; Son, E.J.; Youk, J.H.; Kim, J.-A.; Gweon, H.M. Texture analysis using machine learning–based 3-T magnetic resonance imaging for predicting recurrence in breast cancer patients treated with neoadjuvant chemotherapy. Eur. Radiol. 2021, 31, 6916–6928. [Google Scholar] [CrossRef] [PubMed]
- Aslan, M.F.; Celik, Y.; Sabanci, K.; Durdu, A. Breast Cancer Diagnosis by Different Machine Learning Methods Using Blood Analysis Data. Int. J. Intell. Syst. Appl. Eng. 2018, 6, 289–293. [Google Scholar] [CrossRef]
- Muduli, D.; Dash, R.; Majhi, B. Automated breast cancer detection in digital mammograms: A moth flame optimization based ELM approach. Biomed. Signal Process. Control. 2020, 59, 101912. [Google Scholar] [CrossRef]
- Bokade, A.; Shah, A. Breast Mass Classification with Deep Transfer Feature Extractor Model and Random Forest Classifier. In Proceedings of the 2021 International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT), Bangalore, India, 27–28 August 2021; pp. 634–641. [Google Scholar]
- Li, J.; Shi, J.; Chen, J.; Du, Z.; Huang, L. Self-attention random forest for breast cancer image classification. Front. Oncol. 2023, 13, 1043463. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Qin, G.; He, Q.; Sun, L.; Zeng, H.; He, Z.; Chen, W.; Zhen, X.; Zhou, L. Digital breast tomosynthesis versus digital mammography: Integration of image modalities enhances deep learning-based breast mass classification. Eur. Radiol. 2020, 30, 778–788. [Google Scholar] [CrossRef]
- Debelee, T.G.; Schwenker, F.; Ibenthal, A.; Yohannes, D. Survey of deep learning in breast cancer image analysis. Evol. Syst. 2019, 11, 143–163. [Google Scholar] [CrossRef]
- Yar, H.; Abbas, N.; Sadad, T.; Iqbal, S. Lung nodule detection and classification using 2D and 3D convolution neural networks (CNNs). In Artificial Intelligence and Internet of Things; CRC Press: Boca Raton, FL, USA, 2021; pp. 365–386. [Google Scholar]
- Munsif, M.; Ullah, M.; Ahmad, B.; Sajjad, M.; Cheikh, F.A. Monitoring neurological disorder patients via deep learning based facial expressions analysis. In Artificial Intelligence Applications and Innovations. AIAI 2022 IFIP WG 12.5 International Workshops; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Aboutalib, S.S.; Mohamed, A.A.; Berg, W.A.; Zuley, M.L.; Sumkin, J.H.; Wu, S. Deep Learning to Distinguish Recalled but Benign Mammography Images in Breast Cancer Screening. Clin. Cancer Res. 2018, 24, 5902–5909. [Google Scholar] [CrossRef]
- Platania, R.; Shams, S.; Yang, S.; Zhang, J.; Lee, K.; Park, S.-J. Automated Breast Cancer Diagnosis Using Deep Learning and Region of Interest Detection (BC-DROID). In Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, Boston, MA, USA, 20–23 August 2017; Association for Computing Machinery: New York, NY, USA, 2017; pp. 536–543. [Google Scholar] [CrossRef]
- Jannesari, M.; Habibzadeh, M.; Aboulkheyr, H.; Khosravi, P.; Elemento, O.; Totonchi, M.; Hajirasouliha, I. Breast Cancer Histopathological Image Classification: A Deep Learning Approach. In Proceedings of the 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Madrid, Spain, 3–6 December 2018; pp. 2405–2412. [Google Scholar]
- Khuriwal, N.; Mishra, N. Breast cancer detection from histopathological images using deep learning. In Proceedings of the 2018 3rd International Conference and Workshops on Recent Advances and Innovations in Engineering (ICRAIE), Jaipur, India, 22–25 November 2018. [Google Scholar]
- Li, H.; Zhuang, S.; Li, D.-A.; Zhao, J.; Ma, Y. Benign and malignant classification of mammogram images based on deep learning. Biomed. Signal Process. Control. 2019, 51, 347–354. [Google Scholar] [CrossRef]
- Khan, S.; Islam, N.; Jan, Z.; Din, I.U.; Rodrigues, J.J.P.C. A novel deep learning based framework for the detection and classification of breast cancer using transfer learning. Pattern Recognit. Lett. 2019, 125, 1–6. [Google Scholar] [CrossRef]
- Tsochatzidis, L.; Costaridou, L.; Pratikakis, I. Deep Learning for Breast Cancer Diagnosis from Mammograms—A Comparative Study. J. Imaging 2019, 5, 37. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.-Q.; Wu, X.-L.; Huang, S.-Y.; Wu, G.-G.; Ye, H.-R.; Wei, Q.; Bao, L.-Y.; Deng, Y.-B.; Li, X.-R.; Cui, X.-W.; et al. Lymph Node Metastasis Prediction from Primary Breast Cancer US Images Using Deep Learning. Radiology 2020, 294, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Margolies, L.R.; Rothstein, J.H.; Fluder, E.; McBride, R.; Sieh, W. Deep Learning to Improve Breast Cancer Detection on Screening Mammography. Sci. Rep. 2019, 9, 12495. [Google Scholar] [CrossRef]
- Ismail, N.S.; Sovuthy, C. Breast cancer detection based on deep learning technique. In Proceedings of the 2019 International UNIMAS STEM 12th Engineering Conference (EnCon), Kuching, Malaysia, 28–29 August 2019. [Google Scholar]
- Charan, S.; Khan, M.J.; Khurshid, K. Breast Cancer Detection in Mammograms Using Convolutional Neural Network. In Proceedings of the 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), Wuhan, China, 7–8 February 2018; pp. 1–5. [Google Scholar]
- Sha, Z.; Hu, L.; Rouyendegh, B.D. Deep learning and optimization algorithms for automatic breast cancer detection. Int. J. Imaging Syst. Technol. 2020, 30, 495–506. [Google Scholar] [CrossRef]
- Kaur, P.; Singh, G.; Kaur, P. Intellectual detection and validation of automated mammogram breast cancer images by multi-class SVM using deep learning classification. Inform. Med. Unlocked 2019, 16, 100151. [Google Scholar] [CrossRef]
- Arefan, D.; Mohamed, A.A.; Berg, W.A.; Zuley, M.L.; Sumkin, J.H.; Wu, S. Deep learning modeling using normal mammograms for predicting breast cancer risk. Med. Phys. 2020, 47, 110–118. [Google Scholar] [CrossRef]
- e Silva, D.; Cortes, O. On Convolutional Neural Networks and Transfer Learning for Classifying Breast Cancer on Histopathological Images Using GPU. In Progress of the CBEB 2020: XXVII Brazilian Congress on Biomedical Engineering, Vitória, Brazil, 26–30 October 2020; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Dhahbi, S.; Barhoumi, W.; Zagrouba, E. Breast cancer diagnosis in digitized mammograms using curvelet moments. Comput. Biol. Med. 2015, 64, 79–90. [Google Scholar] [CrossRef]
- da Rocha, S.V.; Braz Junior, G.; Corrêa Silva, A.; de Paiva, A.C.; Gattass, M. Texture analysis of masses malignant in mammograms images using a combined approach of diversity index and local binary patterns distribution. Expert Syst. Appl. 2016, 66, 7–19. [Google Scholar] [CrossRef]
- Ranjbarzadeh, R.; Sarshar, N.T.; Ghoushchi, S.J.; Esfahani, M.S.; Parhizkar, M.; Pourasad, Y.; Anari, S.; Bendechache, M. MRFE-CNN: Multi-route feature extraction model for breast tumor segmentation in Mammograms using a convolutional neural network. Ann. Oper. Res. 2023, 328, 1021–1042. [Google Scholar] [CrossRef]
- Saran, K.B.; Sreelekha, G.; Sunitha, V.C. Breast Density Classification to Aid Clinical Workflow in Breast Cancer Detection Using Deep Learning Network. In Proceedings of the TENCON 2023—2023 IEEE Region 10 Conference (TENCON), Chiang Mai, Thailand, 31 October–3 November 2023; pp. 444–449. [Google Scholar]
- Tsochatzidis, L.; Zagoris, K.; Arikidis, N.; Karahaliou, A.; Costaridou, L.; Pratikakis, I. Computer-aided diagnosis of mammographic masses based on a supervised content-based image retrieval approach. Pattern Recognit. 2017, 71, 106–117. [Google Scholar] [CrossRef]
- Aslan, M.F. A hybrid end-to-end learning approach for breast cancer diagnosis: Convolutional recurrent network. Comput. Electr. Eng. 2023, 105, 108562. [Google Scholar] [CrossRef]
- Addo, D.; Zhou, S.; Sarpong, K.; Nartey, O.T.; Abdullah, M.A.; Ukwuoma, C.C.; Al-Antari, M.A. A hybrid lightweight breast cancer classification framework using the histopathological images. Biocybern. Biomed. Eng. 2024, 44, 31–54. [Google Scholar] [CrossRef]
- Iqbal, A.; Sharif, M. Memory-efficient transformer network with feature fusion for breast tumor segmentation and classification task. Eng. Appl. Artif. Intell. 2024, 127, 107292. [Google Scholar] [CrossRef]
- Sapate, S.G.; Mahajan, A.; Talbar, S.N.; Sable, N.; Desai, S.; Thakur, M. Radiomics based detection and characterization of suspicious lesions on full field digital mammograms. Comput. Methods Programs Biomed. 2018, 163, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, J.; Midya, A.; Rabidas, R. Computer-aided detection and diagnosis of mammographic masses using multi-resolution analysis of oriented tissue patterns. Expert Syst. Appl. 2018, 99, 168–179. [Google Scholar] [CrossRef]
- Al-Antari, M.A.; Al-Masni, M.A.; Park, S.-U.; Park, J.; Metwally, M.K.; Kadah, Y.M.; Han, S.-M.; Kim, T.-S. An Automatic Computer-Aided Diagnosis System for Breast Cancer in Digital Mammograms via Deep Belief Network. J. Med. Biol. Eng. 2017, 38, 443–456. [Google Scholar] [CrossRef]
- Muramatsu, C.; Nishio, M.; Goto, T.; Oiwa, M.; Morita, T.; Yakami, M.; Kubo, T.; Togashi, K.; Fujita, H. Improving breast mass classification by shared data with domain transformation using a generative adversarial network. Comput. Biol. Med. 2020, 119, 103698. [Google Scholar] [CrossRef]
- Yan, F.; Huang, H.; Pedrycz, W.; Hirota, K. Automated breast cancer detection in mammography using ensemble classifier and feature weighting algorithms. Expert Syst. Appl. 2023, 227, 120282. [Google Scholar] [CrossRef]
- Milosevic, M.; Jankovic, D.; Peulic, A. Comparative analysis of breast cancer detection in mammograms and thermograms. Biomed. Eng. Biomed. Tech. 2014, 60, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Lou, M.; Wang, R.; Qi, Y.; Zhao, W.; Xu, C.; Meng, J.; Deng, X.; Ma, Y. MGBN: Convolutional neural networks for automated benign and malignant breast masses classification. Multimedia Tools Appl. 2021, 80, 26731–26750. [Google Scholar] [CrossRef]
- Li, B.; Ge, Y.; Zhao, Y.; Guan, E.; Yan, W. Benign and malignant mammographic image classification based on Convolutional Neural Networks. In Proceedings of the ICMLC 2018: 2018 10th International Conference on Machine Learning and Computing, Macau, China, 26–28 February 2018. [Google Scholar]
- Ting, F.F.; Tan, Y.J.; Sim, K.S. Convolutional neural network improvement for breast cancer classification. Expert Syst. Appl. 2018, 120, 103–115. [Google Scholar] [CrossRef]
- Jahangeer, G.S.B.; Rajkumar, T.D. Early detection of breast cancer using hybrid of series network and VGG-16. Multimedia Tools Appl. 2020, 80, 7853–7886. [Google Scholar] [CrossRef]
- Saber, A.; Sakr, M.; Abo-Seida, O.M.; Keshk, A.; Chen, H. A Novel Deep-Learning Model for Automatic Detection and Classification of Breast Cancer Using the Transfer-Learning Technique. IEEE Access 2021, 9, 71194–71209. [Google Scholar] [CrossRef]
- Byra, M.; Karwat, P.; Ryzhankow, I.; Komorowski, P.; Klimonda, Z.; Fura, L.; Pawlowska, A.; Zolek, N.; Litniewski, J. Deep meta-learning for the selection of accurate ultrasound based breast mass classifier. In Proceedings of the 2022 IEEE International Ultrasonics Symposium (IUS), Venice, Italy, 10–13 October 2022; pp. 1–4. [Google Scholar]
- Muralikrishnan, M.; Anitha, R. Comparison of breast cancer multi-class classification accuracy based on inception and inceptionresnet architecture. In Emerging Trends in Computing and Expert Technology; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Khan, Z.A.; Hussain, T.; Ullah, F.U.M.; Gupta, S.K.; Lee, M.Y.; Baik, S.W. Randomly Initialized CNN with Densely Connected Stacked Autoencoder for Efficient Fire Detection. Eng. Appl. Artif. Intell. 2022, 116, 105403. [Google Scholar] [CrossRef]
- Ali, H.; Farman, H.; Yar, H.; Khan, Z.; Habib, S.; Ammar, A. Deep learning-based election results prediction using Twitter activity. Soft Comput. 2021, 26, 7535–7543. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; IEEE: Piscataway, PA, USA, 2018. [Google Scholar]
- Kristiani, E.; Yang, C.-T.; Huang, C.-Y.; Chan, Y.-W.; Fathoni, H. Image Classification Model Using Deep Learning on the Edge Device, in Innovative Computing; Springer: Berlin, Germany, 2020; pp. 11–22. [Google Scholar]
- Yar, H.; Hussain, T.; Agarwal, M.; Khan, Z.A.; Gupta, S.K.; Baik, S.W. Optimized Dual Fire Attention Network and Medium-Scale Fire Classification Benchmark. IEEE Trans. Image Process. 2022, 31, 6331–6343. [Google Scholar] [CrossRef]
- Yar, H.; Ullah, W.; Khan, Z.A.; Baik, S.W. An Effective Attention-based CNN Model for Fire Detection in Adverse Weather Conditions. ISPRS J. Photogramm. Remote. Sens. 2023, 206, 335–346. [Google Scholar] [CrossRef]
- Khan, Z.A.; Hussain, T.; Ullah, W.; Baik, S.W. A Trapezoid Attention Mechanism for Power Generation and Consumption Forecasting. IEEE Transactions on Industrial Informatics; IEEE: Piscataway, PA, USA, 2023; pp. 1–13. [Google Scholar] [CrossRef]
- Khan, Z.A.; Hussain, T.; Baik, S.W. Dual stream network with attention mechanism for photovoltaic power forecasting. Appl. Energy 2023, 338, 120916. [Google Scholar] [CrossRef]
- Khan, T.; Choi, G.; Lee, S. EFFNet-CA: An Efficient Driver Distraction Detection Based on Multiscale Features Extractions and Channel Attention Mechanism. Sensors 2023, 23, 3835. [Google Scholar] [CrossRef] [PubMed]
- Khan, T.; Aslan, H.İ. Performance Evaluation of Enhanced ConvNeXtTiny-based Fire Detection System in Real-world Scenarios. In Proceedings of the Eleventh International Conference on Learning Representations, Kigali, Rwanda, 1–5 May 2023. [Google Scholar]
- Yar, H.; Khan, Z.A.; Ullah, F.U.M.; Ullah, W.; Baik, S.W. A modified YOLOv5 architecture for efficient fire detection in smart cities. Expert Syst. Appl. 2023, 231, 120465. [Google Scholar] [CrossRef]
- Hijji, M.; Yar, H.; Ullah, F.U.M.; Alwakeel, M.M.; Harrabi, R.; Aradah, F.; Cheikh, F.A.; Muhammad, K.; Sajjad, M. FADS: An Intelligent Fatigue and Age Detection System. Mathematics 2023, 11, 1174. [Google Scholar] [CrossRef]
- Jan, H.; Yar, H.; Iqbal, J.; Farman, H.; Khan, Z.; Koubaa, A. Raspberry pi assisted safety system for elderly people: An application of smart home. In Proceedings of the 2020 First International Conference of Smart Systems and Emerging Technologies (SMARTTECH), Riyadh, Saudi Arabia, 3–5 November 2020. [Google Scholar]
- Malebary, S.J.; Hashmi, A. Automated Breast Mass Classification System Using Deep Learning and Ensemble Learning in Digital Mammogram. IEEE Access 2021, 9, 55312–55328. [Google Scholar] [CrossRef]
- Soulami, K.B.; Kaabouch, N.; Saidi, M.N. Breast cancer: Classification of suspicious regions in digital mammograms based on capsule network. Biomed. Signal Process. Control. 2022, 76, 103696. [Google Scholar] [CrossRef]
- Shehzad, I.; Zafar, A. Breast Cancer CT-Scan Image Classification Using Transfer Learning. SN Comput. Sci. 2023, 4, 789. [Google Scholar] [CrossRef]
Name | Configuration |
---|---|
Operating System | Window 10 |
Integrated Development Environment | Jupyter Notebook, Python 3.7.2 |
Libraries | Matplotlib, Keras, TensorFlow, NumPy |
Imaging Libraries | Scikit-Image, Scikit-Learn, OpenCV |
Class | Precision | Recall | F1-Score |
---|---|---|---|
1 | 0.98 | 0.97 | 0.98 |
2 | 0.97 | 0.96 | 0.97 |
3 | 0.95 | 0.97 | 0.96 |
S: No | Ref | Classes | Methods | Accuracy |
---|---|---|---|---|
1 | [38] | Normal, Benign, Malignant | DBM | 92.86 |
2 | [63] | Normal, Benign, Malignant | DL and Ensemble Learning | 96.00 |
3 | [64] | Normal, Benign, Malignant | CapsNet | 77.78 |
4 | [31] | Normal, Benign, Malignant | CNN | 96.00 |
5 | [30] | Normal, Benign, Malignant | CNN-Multi feature extractor | 91.70 |
6 | [40] | Normal, Benign, Malignant | Ensemble-classifier | 93.26 |
7 | ECS-A-Net | Normal, Benign, Malignant | Ensemble-CNN with Attention mechanism | 96.50 |
Class | Precision | Recall | F1-Score |
---|---|---|---|
1 | 0.98 | 0.96 | 0.97 |
2 | 0.95 | 0.94 | 0.95 |
3 | 0.93 | 0.96 | 0.94 |
S: No | Ref | Classes | Classifier | Accuracy |
---|---|---|---|---|
1 | [44] | Normal, Benign, Malignant | CNN | 90.50 |
2 | [63] | Normal, Benign, Malignant | DL and Ensemble Learning | 95.00 |
3 | [30] | Normal, Benign, Malignant | CNN-Multi feature extractor | 89.90 |
4 | [40] | Normal, Benign, Malignant | Ensemble-classifier | 91.00 |
5 | [31] | Normal, Benign, Malignant | CNN | 94.00 |
6 | ECS-A-Net | Normal, Benign, Malignant | Ensemble-CNN with Attention mechanism | 95.33 |
S: No | Model | Channel Attention | Spatial Attention | Accuracy | |
---|---|---|---|---|---|
DDSM | MIAS | ||||
1 | Resnet50 | × | × | 92.65 | 91.00 |
2 | ✓ | × | 93.89 | 92.50 | |
3 | × | ✓ | 93.67 | 92.33 | |
4 | ✓ | ✓ | 94.08 | 93.13 | |
5 | InceptionV3 | × | × | 93.15 | 92.21 |
6 | ✓ | × | 94.42 | 93.00 | |
7 | × | ✓ | 94.28 | 92.90 | |
8 | ✓ | ✓ | 95.03 | 93.55 | |
9 | Ensemble | × | × | 94.45 | 93.70 |
10 | ✓ | × | 95.89 | 94.30 | |
11 | × | ✓ | 98.77 | 94.23 | |
12 | ✓ | ✓ | 96.50 | 95.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thwin, S.M.; Malebary, S.J.; Abulfaraj, A.W.; Park, H.-S. Attention-Based Ensemble Network for Effective Breast Cancer Classification over Benchmarks. Technologies 2024, 12, 16. https://doi.org/10.3390/technologies12020016
Thwin SM, Malebary SJ, Abulfaraj AW, Park H-S. Attention-Based Ensemble Network for Effective Breast Cancer Classification over Benchmarks. Technologies. 2024; 12(2):16. https://doi.org/10.3390/technologies12020016
Chicago/Turabian StyleThwin, Su Myat, Sharaf J. Malebary, Anas W. Abulfaraj, and Hyun-Seok Park. 2024. "Attention-Based Ensemble Network for Effective Breast Cancer Classification over Benchmarks" Technologies 12, no. 2: 16. https://doi.org/10.3390/technologies12020016
APA StyleThwin, S. M., Malebary, S. J., Abulfaraj, A. W., & Park, H. -S. (2024). Attention-Based Ensemble Network for Effective Breast Cancer Classification over Benchmarks. Technologies, 12(2), 16. https://doi.org/10.3390/technologies12020016