The Low-Cost Mechanism of a Defined Path Guide Slot-Based Passive Solar Tracker Intended for Developing Countries
Abstract
:1. Introduction
- The first contribution is the introduction of a new mechanism for passive solar trackers called the guide slot mechanism. This innovative design uses potential energy to imitate the solar trajectory, improving the ability of solar panels to track the Sun. A key feature of this mechanism is the guide slot, which regulates the rotation angle of the panel, enhancing its solar trajectory tracking accuracy.
- The second contribution highlights the efficiency observed in tests conducted. This study demonstrates an increase in solar radiation collection with the proposed solar tracker design compared to a static solar panel positioned parallel to the ground. The efficiency achieved with the new solar tracker design surpasses results from previous works on both passive and active solar trackers, as illustrated in Figure 17.
- The third contribution emphasizes the practicality and accessibility of this work. The solar tracker can be built and operated by individuals without technical expertise in solar tracking. Most materials used in the design are recycled, which showcases its versatility and cost-effectiveness. This makes the design particularly suitable for use in developing countries, marginalized urban areas, and urban settings. Additionally, it can be integrated into high school curricula, enabling students to participate in the fight against climate change.
- The fourth contribution provides a method for creating the primary component of the solar tracker with the guide slot mechanism. It outlines the main variables needed to create the guide slot’s trajectory and explains how to construct it using wood and simple tools. The disk with the guide slot is a key component. Ultimately, this work aims to present a functional solar tracker design that can be applied in various contexts to address environmental challenges, including thermal applications.
2. Materials and Methods
2.1. The Proposed Solar Tracking System
2.2. Guide Slot Design
2.3. Application of the Design in Other Regions
2.4. Construction of the Guide Slot
3. Results and Discussion
- The first is to activate the valve at the indicated time.
- The second is to fill the container with the required amount of water. Marks should be placed on the container to verify the water required.
3.1. Comparison to Contemporary Related Work
3.2. Limitations of the Study
4. Conclusions
- A new mechanism for passive solar trackers improves the ability to follow the solar trajectory.
- The efficiency achieved with the proposed solar tracker design surpasses previous works on passive and active solar trackers, as shown in Figure 17.
- The design is particularly well-suited for implementation in developing countries and marginalized urban areas, but it is also feasible for urban settings and could be taught to high school students.
- The method for creating the main component of the solar tracker with a guide slot mechanism is clearly illustrated, highlighting the critical variables involved in generating the guide slot trajectory.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pirayawaraporn, A.; Sappaniran, S.; Nooraksa, S.; Prommai, C.; Chindakham, N.; Jamroen, C. Innovative sensorless dual-axis solar tracking system using particle filter. Appl. Energy 2023, 338, 120946. [Google Scholar] [CrossRef]
- Dehshiri, S.S.H.; Firoozabadi, B. Comparison, evaluation and prioritization of solar photovoltaic tracking systems using multi criteria decision making methods. Sustain. Energy Technol. Assess. 2023, 55, 102989. [Google Scholar]
- El Hammoumi, A.; Chtita, S.; Motahhir, S.; El Ghzizal, A. Solar PV energy: From material to use, and the most commonly used techniques to maximize the power output of PV systems: A focus on solar trackers and floating solar panels. Energy Rep. 2022, 8, 11992–12010. [Google Scholar] [CrossRef]
- Poojitha, K.; Ashwini, L.; Anjali, B.; Ramprabhakar, J. Solar tracker using maximum power point tracking algorithm. In Proceedings of the 2019 International Conference on Intelligent Computing and Control Systems (ICCS), Madurai, India, 15–17 May 2019; pp. 1528–1531. [Google Scholar]
- Klimek, K.; Kapłan, M.; Halchak, V.; Korobka, S.; Syrotyuk, S.; Konieczny, R.; Filipczak, G.; Dybek, B.; Wałowski, G. Orientation and Exposure Efficiency of a Solar Tracking Surface in Clear Sky. Appl. Sci. 2022, 12, 9118. [Google Scholar] [CrossRef]
- Alexandru, C. Optimization of the bi-axial tracking system for a photovoltaic platform. Energies 2021, 14, 535. [Google Scholar] [CrossRef]
- Ramful, R.; Sowaruth, N. Low-cost solar tracker to maximize the capture of solar energy in tropical countries. Energy Rep. 2022, 8, 295–302. [Google Scholar] [CrossRef]
- Sritoklin, A.; Malee, W.; Prugsanantanatorn, A.; Sapaklom, T.; Ayudhya, P.N.N.; Mujjalinvimut, E.; Kunthong, J. A Low Cost, Open-source IoT based 2-axis Active Solar Tracker for Smart Communities. In Proceedings of the 2018 International Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE), Phuket, Thailand, 24–26 October 2018; pp. 1–4. [Google Scholar]
- Ma, W.; Zhang, W.; Zhang, X.; Chen, W.; Tan, Q. Experimental investigations on the wind load interference effects of single-axis solar tracker arrays. Renew. Energy 2023, 202, 566–580. [Google Scholar] [CrossRef]
- Vargas, A.N.; Francisco, G.R.; Montezuma, M.A.; Sampaio, L.P.; Acho, L. Low-cost dual-axis solar tracker with photovoltaic energy processing for education. Sustain. Energy Technol. Assess. 2022, 53, 102542. [Google Scholar] [CrossRef]
- Mehdi, G.; Ali, N.; Hussain, S.; Zaidi, A.A.; Shah, A.H.; Azeem, M.M. Design and fabrication of automatic single axis solar tracker for solar panel. In Proceedings of the 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), Sukkur, Pakistan, 30–31 January 2019; pp. 1–4. [Google Scholar]
- Haris, O.; Darmawan, A.; Juliansyah, A. Efficiency Analysis of Using Solar Panel System Tracker to Static Solar Panel. In Proceedings of the 2021 IEEE 7th International Conference on Computing, Engineering and Design (ICCED), Sukabumi, Indonesia, 5–6 August 2021; pp. 1–6. [Google Scholar]
- Kumar, P.; Shrivastava, A. Maximum power tracking from solar PV system by using fuzzy-logic and incremental conductance techniques. Mater. Today Proc. 2022, 79, 267–277. [Google Scholar] [CrossRef]
- Engin, M. Controller Design for Parallel Mechanism Solar Tracker. Machines 2023, 11, 372. [Google Scholar] [CrossRef]
- Riad, A.; Zohra, M.B.; Alhamany, A.; Mansouri, M. Bio-sun tracker engineering self-driven by thermo-mechanical actuator for photovoltaic solar systems. Case Stud. Therm. Eng. 2020, 21, 100709. [Google Scholar] [CrossRef]
- Gómez-Uceda, F.J.; Moreno-Garcia, I.M.; Jiménez-Martínez, J.M.; López-Luque, R.; Fernández-Ahumada, L.M. Analysis of the influence of terrain orientation on the design of pv facilities with single-axis trackers. Appl. Sci. 2020, 10, 8531. [Google Scholar] [CrossRef]
- Al Garni, H.Z. The Impact of Soiling on PV Module Performance in Saudi Arabia. Energies 2022, 15, 8033. [Google Scholar] [CrossRef]
- Rezk, H.; Fathy, A. Stochastic Fractal Search Optimization Algorithm Based Global MPPT for Triple-Junction Photovoltaic Solar System. Energies 2020, 13, 4971. [Google Scholar] [CrossRef]
- da Rocha Queiroz, J.; da Silva Souza, A.; Gussoli, M.K.; de Oliveira, J.C.D.; Andrade, C.M.G. Construction and automation of a microcontrolled solar tracker. Processes 2020, 8, 1309. [Google Scholar] [CrossRef]
- Piotrowski, L.J.; Farret, F.A. Feasibility of solar tracking and fixed topologies considering the estimated degradation and performance of photovoltaic panels. Sol. Energy Mater. Sol. Cells 2022, 244, 111834. [Google Scholar] [CrossRef]
- Kumar, M.; Sharma, S.; Verma, N.; Jain, A.; Sharma, A.K. Design of a GPS Enabled Maximum Power Point Solar Tracker for Mobile Platform. In Proceedings of the 2021 6th International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 8–10 July 2021; pp. 834–839. [Google Scholar]
- Ruelas, J.; Muñoz, F.; Lucero, B.; Palomares, J. PV tracking design methodology based on an orientation efficiency chart. Appl. Sci. 2019, 9, 894. [Google Scholar] [CrossRef]
- Ngo, X.C.; Nguyen, T.H.; Do, N.Y.; Nguyen, D.M.; Vo, D.V.N.; Lam, S.S.; Heo, D.; Shokouhimehr, M.; Nguyen, V.H.; Varma, R.S.; et al. Grid-connected photovoltaic systems with single-axis sun tracker: Case study for Central Vietnam. Energies 2020, 13, 1457. [Google Scholar] [CrossRef]
- Kuttybay, N.; Saymbetov, A.; Mekhilef, S.; Nurgaliyev, M.; Tukymbekov, D.; Dosymbetova, G.; Meiirkhanov, A.; Svanbayev, Y. Optimized single-axis schedule solar tracker in different weather conditions. Energies 2020, 13, 5226. [Google Scholar] [CrossRef]
- Gómez-Uceda, F.J.; Moreno-Garcia, I.M.; Perez-Castañeda, Á.; Fernández-Ahumada, L.M. Study of the dependence of solar radiation regarding design variables in photovoltaic solar installations with optimal dual-axis tracking. Appl. Sci. 2021, 11, 3917. [Google Scholar] [CrossRef]
- Hailu, A. Manual tracking for solar parabolic concentrator–For the case of solar injera baking, Ethiopia. Heliyon 2023, 9, e12884. [Google Scholar] [CrossRef]
- Baouche, F.Z.; Abderezzak, B.; Ladmi, A.; Arbaoui, K.; Suciu, G.; Mihaltan, T.C.; Raboaca, M.S.; Hudișteanu, S.V.; Țurcanu, F.E. Design and Simulation of a Solar Tracking System for PV. Appl. Sci. 2022, 12, 9682. [Google Scholar] [CrossRef]
- Katche, M.L.; Makokha, A.B.; Zachary, S.O.; Adaramola, M.S. A Comprehensive Review of Maximum Power Point Tracking (MPPT) Techniques Used in Solar PV Systems. Energies 2023, 16, 2206. [Google Scholar] [CrossRef]
- Musa, A.; Alozie, E.; Suleiman, S.A.; Ojo, J.A.; Imoize, A.L. A Review of Time-Based Solar Photovoltaic Tracking Systems. Information 2023, 14, 211. [Google Scholar] [CrossRef]
- Gutierrez, S.; Rodrigo, P.M.; Alvarez, J.; Acero, A.; Montoya, A. Development and testing of a single-axis photovoltaic sun tracker through the Internet of Things. Energies 2020, 13, 2547. [Google Scholar] [CrossRef]
- Petrusev, A.; Rulevskiy, V.; Sarsikeyev, Y.Z.; Lyapunov, D.Y. Solar tracker with active orientation. In Proceedings of the 2016 2nd International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), Chelyabinsk, Russia, 19–20 May 2016; pp. 1–4. [Google Scholar]
- Sawant, A.; Bondre, D.; Joshi, A.; Tambavekar, P.; Deshmukh, A. Design and analysis of automated dual axis solar tracker based on light sensors. In Proceedings of the 2018 2nd International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC) I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC), Palladam, India, 30–31 August 2018; pp. 454–459. [Google Scholar]
- Rani, P.; Singh, O.; Pandey, S. An analysis on Arduino based single axis solar tracker. In Proceedings of the 2018 5th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), Gorakhpur, India, 2–4 November 2018; pp. 1–5. [Google Scholar]
- Melo, K.B.d.; Moreira, H.S.; Villalva, M.G. Influence of Solar Position Calculation Methods Applied to Horizontal Single-Axis Solar Trackers on Energy Generation. Energies 2020, 13, 3826. [Google Scholar] [CrossRef]
- Mubaarak, S.; Zhang, D.; Chen, Y.; Liu, J.; Wang, L.; Yuan, R.; Wu, J.; Zhang, Y.; Li, M. Techno-economic analysis of grid-connected pv and fuel cell hybrid system using different pv tracking techniques. Appl. Sci. 2020, 10, 8515. [Google Scholar] [CrossRef]
- Manjhi, S.K.; Rohan, R.; Kumar, D. Comparison of Static and Single Axis Solar Tracker. In Proceedings of the 2022 IEEE 2nd International Symposium on Sustainable Energy, Signal Processing and Cyber Security (iSSSC), Gunupur, Odisha, India, 15–17 December 2022; pp. 1–5. [Google Scholar]
- Elsayed, A.A.; Khalil, E.E.; Kassem, M.A.; Huzzayin, O.A. A novel mechanical solar tracking mechanism with single axis of tracking for developing countries. Renew. Energy 2021, 170, 1129–1142. [Google Scholar] [CrossRef]
- Alemayehu, M.; Admasu, B.T. Passive solar tracker using a bimetallic strip activator with an integrated night return mechanism. Heliyon 2023, 9, e18174. [Google Scholar] [CrossRef]
- Sahu, S.; Tiwari, S.; Patel, R. Analysis and Testing of Dual Axis Solar Tracker for a Standalone PV System. In Proceedings of the 2020 First International Conference on Power, Control and Computing Technologies (ICPC2T), Raipur, India, 3–5 January 2020; pp. 96–101. [Google Scholar]
- Szabo, R.; Ricman, R.S. A Genetic Algorithm-Controlled Solar Tracker Robot with Increased Precision Due to Evolution. Machines 2023, 11, 430. [Google Scholar] [CrossRef]
- Liu, C.; Sun, Z.; Huang, C.; Wang, S.; Xing, H.; Guo, S.; Liu, W.; Li, H. A Novel Solar Tracker with a Foldable Solar Harvesting Mechanism for an Amphibious Robot. In Proceedings of the 2022 IEEE International Conference on Mechatronics and Automation (ICMA), Guilin, China, 7–10 August 2022; pp. 1257–1262. [Google Scholar]
- Williams, K.; Qouneh, A. Internet of Things: Solar array tracker. In Proceedings of the 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), Boston, MA, USA, 6–9 August 2017; pp. 1057–1060. [Google Scholar]
Advantages | Disadvantages |
---|---|
Source of free energy. | Very costly to begin with. |
Deliver eco-friendly power. | Setup requires ample space. |
No detrimental greenhouse gases are released into the atmosphere when energy is generated. | Extreme reliance on technological progress. |
Do not harm the environment in any way; eco-friendly. | Reliance on natural environments. |
They generate power silently, making them ideal for use in urban and residential settings. | Solar panels still fall short, while other renewable energy sources are more efficient overall. |
Minimal ongoing expenditures for upkeep compared to other renewable energy options. |
Number | Hour | Single-Axis Power | Static Panel Power |
---|---|---|---|
1 | 08:00 | 8.9182 | 4.0128 |
2 | 08:20 | 9.4299 | 5.2540 |
3 | 08:40 | 9.8056 | 5.7728 |
4 | 09:00 | 9.8551 | 6.6120 |
5 | 09:20 | 9.9123 | 7.1968 |
6 | 09:40 | 9.9258 | 7.7970 |
7 | 10:00 | 10.0100 | 8.4668 |
8 | 10:20 | 9.6162 | 9.0174 |
9 | 10:40 | 10.2065 | 9.4116 |
10 | 11:00 | 9.9900 | 9.3547 |
11 | 11:20 | 9.7755 | 9.5616 |
12 | 11:40 | 9.9750 | 9.6798 |
13 | 12:00 | 9.8700 | 9.7088 |
14 | 12:20 | 9.975 | 9.975 |
15 | 12:40 | 9.966 | 9.966 |
16 | 13:00 | 9.7148 | 9.7148 |
17 | 13:20 | 10.2145 | 10.1990 |
18 | 13:40 | 9.5756 | 9.2736 |
19 | 14:00 | 9.6052 | 9.2378 |
20 | 14:20 | 9.834 | 8.883 |
21 | 14:40 | 9.855 | 8.6716 |
22 | 15:00 | 9.9383 | 8.184 |
23 | 15:20 | 10.3581 | 7.9373 |
24 | 15:40 | 10.412 | 7.4703 |
25 | 16:00 | 10.3435 | 6.968 |
26 | 16:20 | 10.4643 | 6.2100 |
27 | 16:40 | 10.3853 | 5.392 |
28 | 17:00 | 9.6883 | 4.2752 |
29 | 17:20 | 9.504 | 3.8247 |
30 | 17:40 | 8.4609 | 2.3345 |
31 | 18:00 | 6.4701 | 1.6775 |
Number | Hour | Single-Axis Power | Static Panel Power |
---|---|---|---|
1 | 08:00 | 8.8938 | 4.0774 |
2 | 08:20 | 9.4380 | 4.8008 |
3 | 08:40 | 9.6480 | 6.2567 |
4 | 09:00 | 9.8256 | 6.7803 |
5 | 09:20 | 9.7856 | 7.3564 |
6 | 09:40 | 9.6883 | 7.8546 |
7 | 10:00 | 9.7713 | 8.4501 |
8 | 10:20 | 9.7955 | 8.636 |
9 | 10:40 | 9.5810 | 8.7912 |
10 | 11:00 | 9.7585 | 9.2598 |
11 | 11:20 | 9.6425 | 9.4952 |
12 | 11:40 | 9.7608 | 9.6944 |
13 | 12:00 | 9.5192 | 9.5046 |
14 | 12:20 | 9.5922 | 9.5922 |
15 | 12:40 | 9.4685 | 9.4685 |
16 | 13:00 | 9.5991 | 9.5991 |
17 | 13:20 | 9.8603 | 9.7148 |
18 | 13:40 | 9.9207 | 9.5484 |
19 | 14:00 | 9.9256 | 9.3600 |
20 | 14:20 | 9.9207 | 8.8155 |
21 | 14:40 | 9.9056 | 8.437 |
22 | 15:00 | 10.1133 | 8.0848 |
23 | 15:20 | 9.9811 | 7.475 |
24 | 15:40 | 9.9012 | 6.888 |
25 | 16:00 | 10.1171 | 6.3456 |
26 | 16:20 | 10.0640 | 5.8080 |
27 | 16:40 | 10.0989 | 5.0236 |
28 | 17:00 | 9.0480 | 3.6465 |
29 | 17:20 | 9.4604 | 2.9841 |
30 | 17:40 | 8.9000 | 2.6052 |
31 | 18:00 | 4.9000 | 1.7290 |
Number | Hour | Single-Axis Power | Static Panel Power |
---|---|---|---|
1 | 08:00 | 9.0248 | 2.229 |
2 | 08:20 | 9.7536 | 3.1777 |
3 | 08:40 | 9.6125 | 4.3616 |
4 | 09:00 | 10.108 | 5.236 |
5 | 09:20 | 10.0902 | 6.1752 |
6 | 09:40 | 10.0366 | 6.9285 |
7 | 10:00 | 10.1106 | 7.7376 |
8 | 10:20 | 10.1748 | 7.9488 |
9 | 10:40 | 10.1053 | 8.4132 |
10 | 11:00 | 10.0147 | 9.1512 |
11 | 11:20 | 9.9552 | 9.7944 |
12 | 11:40 | 9.6691 | 9.6154 |
13 | 12:00 | 9.516 | 9.6416 |
14 | 12:20 | 9.504 | 9.568 |
15 | 12:40 | 9.4189 | 9.4582 |
16 | 13:00 | 9.666 | 9.1977 |
17 | 13:20 | 9.7335 | 8.9298 |
18 | 13:40 | 9.6078 | 8.7596 |
19 | 14:00 | 9.5494 | 7.909 |
20 | 14:20 | 9.7512 | 7.776 |
21 | 14:40 | 9.576 | 7.3134 |
22 | 15:00 | 9.451 | 6.552 |
23 | 15:20 | 9.4428 | 5.736 |
24 | 15:40 | 9.2202 | 4.189 |
25 | 16:00 | 8.6258 | 3.894 |
26 | 16:20 | 8.1984 | 2.73 |
27 | 16:40 | 7.7698 | 2.0708 |
28 | 17:00 | 6.2866 | 1.7862 |
Reference | Solar Tracking System | Energy Efficiency |
---|---|---|
[10] | Two-axis solar tracker | 32% |
[12] | Arduino based single-axis (horizontal) | 10–23% |
[23] | Microcontroller based single-axis solar tracker | 30.3% |
[31] | Solar Tracker with Active Orientation | 30% |
[33] | Arduino based single-axis solar tracking system | − |
[38] | Passive solar tracker with a bimetallic band deflector | 24.86% |
This work | Passive single-axis (horizontal) with guide slot | 30.87% and 30.17% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Gudiño, J.L.; Gómez-Guzmán, M.A.; García-Valdez, C.; Carrillo-Serrano, R.V.; Pérez-Soto, G.I.; Rodríguez-Reséndiz, J. The Low-Cost Mechanism of a Defined Path Guide Slot-Based Passive Solar Tracker Intended for Developing Countries. Technologies 2024, 12, 250. https://doi.org/10.3390/technologies12120250
Pérez-Gudiño JL, Gómez-Guzmán MA, García-Valdez C, Carrillo-Serrano RV, Pérez-Soto GI, Rodríguez-Reséndiz J. The Low-Cost Mechanism of a Defined Path Guide Slot-Based Passive Solar Tracker Intended for Developing Countries. Technologies. 2024; 12(12):250. https://doi.org/10.3390/technologies12120250
Chicago/Turabian StylePérez-Gudiño, José Luis, Marco Antonio Gómez-Guzmán, Chayanne García-Valdez, Roberto Valentín Carrillo-Serrano, Gerardo Israel Pérez-Soto, and Juvenal Rodríguez-Reséndiz. 2024. "The Low-Cost Mechanism of a Defined Path Guide Slot-Based Passive Solar Tracker Intended for Developing Countries" Technologies 12, no. 12: 250. https://doi.org/10.3390/technologies12120250
APA StylePérez-Gudiño, J. L., Gómez-Guzmán, M. A., García-Valdez, C., Carrillo-Serrano, R. V., Pérez-Soto, G. I., & Rodríguez-Reséndiz, J. (2024). The Low-Cost Mechanism of a Defined Path Guide Slot-Based Passive Solar Tracker Intended for Developing Countries. Technologies, 12(12), 250. https://doi.org/10.3390/technologies12120250