Electrospinning Technologies for Biomedical and Biotechnological Applications
- Control of fiber morphology and properties. Producing electrospun nanofibers with uniform morphology, size, and properties can be challenging. Factors such as polymer concentration, solvent choice, and process parameters can affect fiber properties.
- Scalability. Scaling up electrospinning to produce nanofibers on a large scale for industrial applications can be difficult. Maintaining consistent fiber quality and productivity during scale-up can be challenging [10].
- Integration with other technologies. Integrating electrospinning with other manufacturing techniques, such as 3D printing or microfluidics, can be complex. It is important to develop methods for seamless integration and compatibility.
- Biocompatibility and toxicity. Some polymers used in electrospinning may not be biocompatible or may have potential toxicity. Identifying and developing biocompatible and non-toxic materials are critical for biomedical applications.
- (i)
- Advanced materials and functionalization. Developing new electrospinnable materials with improved properties, such as biocompatibility, conductivity, or responsiveness to stimuli. Functionalizing electrospun nanofibers with bioactive molecules or nanoparticles to enhance their functionality for specific applications [11].
- (ii)
- (iii)
- (iv)
- Integration with other technologies. Integrating electrospinning with other fabrication techniques, such as 3D printing, microfluidics, lithography, or freeze-drying, to create more complex and functional structures. Developing hybrid technologies that combine the advantages of electrospinning with other approaches [18,19].
- (v)
- Biomedical and biotechnological applications. Translating electrospinning technologies into practical biomedical and biotechnological applications. Developing electrospun scaffolds for tissue engineering [20], drug delivery systems [3], biosensors, and other biomedical devices [10]. Exploring electrospinning for biocatalysis, enzyme immobilization [9], and food industry [21].
Conflicts of Interest
References
- Wang, Z.; Wang, Y.; Yan, J.; Zhang, K.; Lin, F.; Xiang, L.; Deng, L.; Guan, Z.; Cui, W.; Zhang, H. Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration. Adv. Drug Deliv. Rev. 2021, 174, 504–534. [Google Scholar] [CrossRef] [PubMed]
- Niemczyk-Soczynska, B.; Zaszczyńska, A.; Zabielski, K.; Sajkiewicz, P. Hydrogel, electrospun and composite materials for bone/cartilage and neural tissue engineering. Materials 2021, 14, 6899. [Google Scholar] [CrossRef] [PubMed]
- Luraghi, A.; Peri, F.; Moroni, L. Electrospinning for drug delivery applications: A review. J. Control. Release 2021, 334, 463–484. [Google Scholar] [CrossRef] [PubMed]
- Dubashynskaya, N.V.; Skorik, Y.A. Patches as polymeric systems for improved delivery of topical corticosteroids: Advances and future perspectives. Int. J. Mol. Sci. 2022, 23, 12980. [Google Scholar] [CrossRef]
- Li, L.; Hao, R.; Qin, J.; Song, J.; Chen, X.; Rao, F.; Zhai, J.; Zhao, Y.; Zhang, L.; Xue, J. Electrospun fibers control drug delivery for tissue regeneration and cancer therapy. Adv. Fiber Mater. 2022, 4, 1375–1413. [Google Scholar] [CrossRef]
- Liu, Y.; Li, C.; Feng, Z.; Han, B.; Yu, D.G.; Wang, K. Advances in the preparation of nanofiber dressings by electrospinning for promoting diabetic wound healing. Biomolecules 2022, 12, 1727. [Google Scholar] [CrossRef]
- Broadwin, M.; Imarhia, F.; Oh, A.; Stone, C.R.; Sellke, F.W.; Bhowmick, S.; Abid, M.R. Exploring electrospun scaffold innovations in cardiovascular therapy: A review of electrospinning in cardiovascular disease. Bioengineering 2024, 11, 218. [Google Scholar] [CrossRef]
- Berdimurodov, E.; Dagdag, O.; Berdimuradov, K.; Wan Nik, W.M.N.; Eliboev, I.; Ashirov, M.; Niyozkulov, S.; Demir, M.; Yodgorov, C.; Aliev, N. Green electrospun nanofibers for biomedicine and biotechnology. Technologies 2023, 11, 150. [Google Scholar] [CrossRef]
- Rather, A.H.; Khan, R.S.; Wani, T.U.; Beigh, M.A.; Sheikh, F.A. Overview on immobilization of enzymes on synthetic polymeric nanofibers fabricated by electrospinning. Biotechnol. Bioeng. 2022, 119, 9–33. [Google Scholar] [CrossRef]
- Omer, S.; Forgach, L.; Zelko, R.; Sebe, I. Scale-up of electrospinning: Market overview of products and devices for pharmaceutical and biomedical purposes. Pharmaceutics 2021, 13, 286. [Google Scholar] [CrossRef]
- Shi, S.; Si, Y.; Han, Y.; Wu, T.; Iqbal, M.I.; Fei, B.; Li, R.K.Y.; Hu, J.; Qu, J. Recent progress in protective membranes fabricated via electrospinning: Advanced materials, biomimetic structures, and functional applications. Adv. Mater. 2022, 34, 2107938. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Shen, W.; Wu, S.; Ge, X.; Ao, F.; Ning, Y.; Luo, Y.; Liu, Z. Electrospun polymers: Using devices to enhance their potential for biomedical applications. React. Funct. Polym. 2023, 186, 105568. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, J.; Cheng, H.; Li, G.; Cho, H.; Jiang, M.; Gao, Q.; Zhang, X. Developments of advanced electrospinning techniques: A critical review. Adv. Mater. Technol. 2021, 6, 2100410. [Google Scholar] [CrossRef]
- Wu, S.; Dong, T.; Li, Y.; Sun, M.; Qi, Y.; Liu, J.; Kuss, M.A.; Chen, S.; Duan, B. State-of-the-art review of advanced electrospun nanofiber yarn-based textiles for biomedical applications. Appl. Mater. Today 2022, 27, 101473. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, J.; Wang, Y.; Cui, W. Advanced electrospun hydrogel fibers for wound healing. Compos. Part B Eng. 2021, 223, 109101. [Google Scholar] [CrossRef]
- Petrova, V.A.; Poshina, D.N.; Golovkin, A.S.; Mishanin, A.I.; Zhuravskii, S.G.; Yukina, G.Y.; Naumenko, M.Y.; Sukhorukova, E.G.; Savin, N.A.; Erofeev, A.S.; et al. Electrospun composites of chitosan with cerium oxide nanoparticles for wound healing applications: Characterization and biocompatibility evaluation in vitro and in vivo. Polymers 2024, 16, 1787. [Google Scholar] [CrossRef]
- Petrova, V.A.; Golovkin, A.S.; Mishanin, A.I.; Romanov, D.P.; Chernyakov, D.D.; Poshina, D.N.; Skorik, Y.A. Cytocompatibility of bilayer scaffolds electrospun from chitosan/alginate-chitin nanowhiskers. Biomedicines 2020, 8, 305. [Google Scholar] [CrossRef]
- Yang, D.L.; Faraz, F.; Wang, J.X.; Radacsi, N. Combination of 3D printing and electrospinning techniques for biofabrication. Adv. Mater. Technol. 2022, 7, 2101309. [Google Scholar] [CrossRef]
- Dilamian, M.; Joghataei, M.; Ashrafi, Z.; Bohr, C.; Mathur, S.; Maleki, H. From 1D electrospun nanofibers to advanced multifunctional fibrous 3D aerogels. Appl. Mater. Today 2021, 22, 100964. [Google Scholar] [CrossRef]
- Rahmati, M.; Mills, D.K.; Urbanska, A.M.; Saeb, M.R.; Venugopal, J.R.; Ramakrishna, S.; Mozafari, M. Electrospinning for tissue engineering applications. Prog. Mater. Sci. 2021, 117, 100721. [Google Scholar] [CrossRef]
- Sun, F.L.; Zhao, M.Y.; Li, Y.; Li, Z.Y.; Li, X.J.; Wang, N.; Hu, B.W.; Xue, H.Y.; Zhao, M.; Tian, J.L. Research progress of electrospinning in food field: A review. Food Hydrocoll. 2025, 158, 110474. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skorik, Y.A. Electrospinning Technologies for Biomedical and Biotechnological Applications. Technologies 2024, 12, 173. https://doi.org/10.3390/technologies12100173
Skorik YA. Electrospinning Technologies for Biomedical and Biotechnological Applications. Technologies. 2024; 12(10):173. https://doi.org/10.3390/technologies12100173
Chicago/Turabian StyleSkorik, Yury A. 2024. "Electrospinning Technologies for Biomedical and Biotechnological Applications" Technologies 12, no. 10: 173. https://doi.org/10.3390/technologies12100173
APA StyleSkorik, Y. A. (2024). Electrospinning Technologies for Biomedical and Biotechnological Applications. Technologies, 12(10), 173. https://doi.org/10.3390/technologies12100173