Application of 3D Virtual Prototyping Technology to the Integration of Wearable Antennas into Fashion Garments
Abstract
:1. Introduction
2. Challenges and Restrictions of Characteristic Textenna Types to Be Considered for Computer-Aided Garment Design
3. Description of Commercial Fashion Design Software Functionality
- Accumark3D (Gerber) [29]
- CLO3D [30]
- Modaris 3D (Lectra) [31]
- Optitex3D [32]
- Style3D [33]
- V-Stitcher (Browzwear) [34]
- Tukatech [35]
4. Application of Commercial Fashion Design Software to Textenna Integration into Garments
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Paracha, K.N.; Abdul Rahim, S.K.; Soh, P.J.; Khalily, M. Wearable Antennas: A Review of Materials, Structures, and Innovative Features for Autonomous Communication and Sensing. IEEE Access 2019, 7, 56694–56712. [Google Scholar] [CrossRef]
- Su, S.W.; Lee, C.T. Metal-Frame GPS Antenna for Smartwatch Applications. Prog. Electromagn. Res. Lett. 2016, 62, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Serra, A.A.; Nepa, P.; Manara, G. A Wearable Two-Antenna System on a Life Jacket for Cospas-Sarsat Personal Locator Beacons. IEEE Trans. Antennas Propag. 2012, 60, 1035–1042. [Google Scholar] [CrossRef]
- Joler, M.; Boljkovac, M. A Sleeve-Badge Circularly Polarized Textile Antenna. IEEE Trans. Antennas Propag. 2018, 66, 1576–1579. [Google Scholar] [CrossRef]
- Pettitt, G.; Matthews, J.C.G.; Tyler, A.J.; Pirollo, B.P. Wide-Band Body Wearable Antennas. BAE Syst. Def. Sci. Technol. Lab. IET 2008, 2008, 111–127. [Google Scholar]
- Tsolis, A.; Whittow, W.G.; Alexandridis, A.A.; Vardaxoglou, J. Embroidery and Related Manufacturing Techniques for Wearable Antennas: Challenges and Opportunities. Electronics 2014, 3, 314–338. [Google Scholar] [CrossRef] [Green Version]
- Salonen, P.; Hurme, H. A Novel Fabric WLAN Antenna for Wearable Applications. In Proceedings of the IEEE Antennas and Propagation Society International Symposium, Columbus, OH, USA, 22–27 June 2003; Volume 2, pp. 700–703. [Google Scholar]
- Zhang, J.; Yan, S.; Vandenbosch, G.A.E. A Miniature Feeding Network for Aperture-Coupled Wearable Antennas. IEEE Trans. Antennas Propag. 2017, 65, 2650–2654. [Google Scholar] [CrossRef]
- Nepa, P.; Rogier, H. Wearable Antennas for Off-Body Radio Links at VHF and UHF Bands: Challenges, the State of the Art, and Future Trends below 1 GHz. IEEE Antennas Propag. Mag. 2015, 57, 30–52. [Google Scholar] [CrossRef] [Green Version]
- Roh, J.-S.; Chi, Y.S.; Lee, J.H.; Tak, Y.; Nam, S.; Kang, T.J. Embroidered wearable multi resonant folded dipole antenna for FM reception. IEEE Antennas Wirel. Propag. Lett. 2010, 9, 803–806. [Google Scholar] [CrossRef]
- Lee, E.C.; Soh, P.J.; Hashim, N.B.M.; Vandenbosh, G.A.E.; Volski, V.; Adam, I.; Mirza, H.; Aziz, M.Z.A.A. Design and fabrication of a flexible Minkowski fractal antenna for VHF applications. In Proceedings of the European Conference Antennas Propagation, Barcelona, Spain, 12–16 April 2010; pp. 521–524. [Google Scholar]
- Zhang, X.Y.; Wong, H.; Mo, T.; Cao, Y.F. Dual-Band Dual-Mode Button Antenna for On-Body and Off-Body Communications. IEEE Trans. Biomed Circuits Syst. 2017, 11, 933–941. [Google Scholar] [CrossRef] [PubMed]
- Corchia, L.; Monti, G.; Tarricone, L. Wearable Antennas: Nontextile versus Fully Textile Solutions. IEEE Antennas Propag. Mag. 2019, 61, 71–83. [Google Scholar] [CrossRef]
- Khaleel, H. Innovation in Wearable and Flexible Antennas; WIT Press: Southampton, UK, 2015. [Google Scholar]
- Sanjari, H.; Merati, A.; Varkiani, S.; Tavakoli, A. A study on the effect of compressive strain on the resonance frequency of rectangular textile patch antenna: Elastic and isotropic model. J. Text. Inst. 2014, 105, 156–162. [Google Scholar] [CrossRef]
- Bai, Q.; Langley, R. Crumpling of PIFA textile antenna. IEEE Trans. Antennas Propag. 2012, 60, 63–70. [Google Scholar] [CrossRef]
- Declercq, F.; Couckuyt, I.; Rogier, H.; Dhaene, T. Environmental high frequency characterization of fabrics based on a novel surrogate modeling antenna technique. IEEE Trans. Antennas Propag. 2010, 61, 5200–5213. [Google Scholar] [CrossRef] [Green Version]
- Bal, K.; Kothari, V.K. Permittivity of woven fabrics: A comparison of dielectric formulas for air-fiber mixture. IEEE Trans. Dielect. Electr. Insul. 2010, 17, 881–889. [Google Scholar] [CrossRef]
- Hertleer, C.; van Laere, C.; Rogier, H.; van Langenhove, L. Influence of relative humidity on textile antenna performance. Text. Res. J. 2010, 80, 177–183. [Google Scholar] [CrossRef]
- Teyseyre, A.R.; Campo, M.R. An Overview of 3D Software Visualization. IEEE Trans. Vis. Comput. Graph. 2009, 15, 87–105. [Google Scholar] [CrossRef] [PubMed]
- Papachristou, E. Effective Integration of 3D Virtual Prototype in Product Development of Textile and Clothing Industry. Ph.D. Thesis, School of Production Engineering & Management, Technical University of Crete, Chania, Greece, 2016. [Google Scholar]
- Knight, C. System and Software Visualization. In Handbook of Software Engineering and Knowledge Engineering; World Scientific: Singapore, 2000. [Google Scholar]
- Young, P.; Munro, M. Visualizing Software in Virtual Reality. In Proceedings of the Sixth Int’l Workshop Program Comprehension (IWPC ’98), Ischia, Italy, 24–26 June 1998; p. 19. [Google Scholar]
- Sayem, A.S. Virtual Prototyping for Fashion 4.0. In Industry 4.0. Shaping the Future of the Digital World, 1st ed.; da Silva Bartolo, P.J., da Silva, F.M., Jaradat, S., Bartolo, H., Eds.; Taylor & Francis Group: Manchester, UK, 2020; pp. 193–196. [Google Scholar]
- Sayem, A.S.M.; Kennon, R.; Clarke, N. 3D CAD systems for the clothing industry. Int. J. Fash. Des. Technol. Educ. 2009, 3, 45–53. [Google Scholar] [CrossRef]
- WhichPLM. The WhichPLM Report, The 3D Issue, 5th ed.; WhichPLM Limited: Lancashire, UK, 2015. [Google Scholar]
- TexProcess. Available online: https://texprocess.messefrankfurt.com/frankfurt/en.html (accessed on 20 February 2022).
- 3D Fashion Summit. Organised by International Hellenic University (Department of Creative Design & Clothing) & SEPEE (Hellenic Clothing Association), Chaired by Dr. Evridiki Papachristou (Assistant Professor IHU). Available online: https://www.ihu.gr/event/3d-fashion-summit. (accessed on 20 May 2021).
- Modaris 3D. Available online: https://www.gerbertechnology.com/fashion-apparel/design/accumark-3d/ (accessed on 20 February 2022).
- Clo3D. Available online: https://www.clo3d.com/ (accessed on 20 February 2022).
- Lectra. Available online: https://www.lectra.com/en/products/modaris-expert (accessed on 20 February 2022).
- Optitex. Available online: https://optitex.com/products/2d-and-3d-cad-software/ (accessed on 20 February 2022).
- Style 3D. Available online: https://www.linctex.com/ (accessed on 20 February 2022).
- V-Stitcher. Available online: https://browzwear.com/ (accessed on 20 February 2022).
- Tuka 3D. Available online: https://tukatech.com/ (accessed on 20 February 2022).
- The Interline, From Render to Real: Delivering on the Promise of Digital Design to On-Demand Production. The Interline (7 June 2021). Available online: https://www.theinterline.com/06/2021/from-render-to-real-delivering-on-the-promise-of-digital-design-to-on-demand-production/ (accessed on 20 February 2022).
- Gupta, D. New directions in the field of anthropometry, sizing and clothing fit. In Anthropometry, Apparel Sizing and Design; Norsasdah, Z., Gupta, D., Eds.; The Textile Institute, Woodhead Publishing: Duxforth, UK, 2020. [Google Scholar]
- Taylor, G. How this New Digital Fabric Library Cuts the Headaches of Textile Sampling. Sourcing Journal. 19 March 2021. Available online: https://sourcingjournal.com/topics/technology/swatchon-clo-digital-fabrics-sampling-visual-search-3d-design-textile-269153/ (accessed on 20 February 2022).
- Grice, P. Digital Pattern Cutting for Fashion with Lectra Modaris: From 2D Pattern Modification to 3D Prototyping; Bloomsbury: Bloomsbury, UK, 2019. [Google Scholar]
- Papachristou, E.; Bilalis, N. Should the fashion industry confront the sustainability challenge with 3D prototyping technology? Int. J. Sustain. Eng. 2017, 10, 207–214. [Google Scholar] [CrossRef]
- Jhanji, Y. Computer-Aided Design—Garment Designing and Patternmaking in Automation in Garment Manufacturing; Elsevier, Woodhead Publishing: Duxforth, UK, 2018; pp. 253–290. [Google Scholar]
- Apparel Resources, Tukatech Launches “Tuka3D 2022” That Eliminates the Need for Making FIT Samples. Apparel resources News Desk. 19 November 2021. Available online: https://vn.apparelresources.com/technology-news/manufacturing-tech/tukatech-launches-tuka3d-2022-eliminates-need-making-fit-samples/ (accessed on 20 February 2022).
- xTex. Available online: https://www.vizoo3d.com/xtex-software (accessed on 20 February 2022).
- Scanatic Nuno Fabric. Available online: https://www.tg3ds.com/3d-digital-fabric-scanner (accessed on 20 February 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papachristou, E.; Anastassiu, H.T. Application of 3D Virtual Prototyping Technology to the Integration of Wearable Antennas into Fashion Garments. Technologies 2022, 10, 62. https://doi.org/10.3390/technologies10030062
Papachristou E, Anastassiu HT. Application of 3D Virtual Prototyping Technology to the Integration of Wearable Antennas into Fashion Garments. Technologies. 2022; 10(3):62. https://doi.org/10.3390/technologies10030062
Chicago/Turabian StylePapachristou, Evridiki, and Hristos T. Anastassiu. 2022. "Application of 3D Virtual Prototyping Technology to the Integration of Wearable Antennas into Fashion Garments" Technologies 10, no. 3: 62. https://doi.org/10.3390/technologies10030062