Voice Characteristics in Smith–Magenis Syndrome: An Acoustic Study of Laryngeal Biomechanics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials for Phonation Analysis
2.2. Participants
2.3. Collection of Voice Samples
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Agar, Georgi, Chris Oliver, Jayne Trickett, Lucy Licence, and Caroline Richards. 2020. Sleep disorders in children with Angelman and Smith-Magenis syndromes: The assessment of potential causes of disrupted settling and night time waking. Research in Developmental Disabilities 97: 1–11. [Google Scholar] [CrossRef]
- Chenausky, Karen, Joel MacAuslan, and Richard Goldhor. 2011. Acoustic Analysis of PD Speech. Parkinson’s Disease 2011: 435232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Cicco, Mauricio, Rita Padoanb, Giovanni Felisatia, D Dilanid, Eugenia Morettib, Silvana Guerneric, and Angelo Selicorni. 2001. Otorhinolaringologic manifestation of Smith—Magenis Syndrome. International Journal of Pediatric Otorhinolaryngology 59: 147–50. [Google Scholar] [CrossRef]
- Dykens, Elisabeth, and Ann Smith. 1998. Distinctiveness and correlates of maladaptive behaviour in children and adolescents with Smith-Magenis syndrome. Journal of Intellectual Disability Research 42: 481–89. [Google Scholar] [CrossRef]
- Dykens, Elisabeth, Brenda Finucane, and Claire Gayley. 1997. Brief report: Cognitive and behavioral profiles in persons with Smith-Magenis syndrome. Journal of Autism and Developmental Disorders 27: 203–11. [Google Scholar] [CrossRef] [PubMed]
- Elsea, Sarah, and Santhosh Girirajan. 2008. Smith-Magenis syndrome. European Journal of Human Genetics 16: 412–21. [Google Scholar] [CrossRef] [Green Version]
- Evans, Sarah, Nick Neave, and Delia Wakelin. 2006. Relationships between vocal characteristics and body size and shape in human males: An evolutionary explanation for a deep male voice. Biological Psychology 72: 160–63. [Google Scholar] [CrossRef]
- Fant, Gunnar, Johan Liljencrants, and Qi-guang Lin. 1985. A four-parameter model of glottal flow. STL-QPSR 4: 1–13. [Google Scholar]
- Garayzábal, Elena, Ana Osório, María Lens, and Adriana Sampaio. 2014. Concrete and relational vocabulary: Comparison between Williams and Smith–Magenis syndromes. Research in Developmental Disabilities 35: 3365–71. [Google Scholar] [CrossRef]
- Garayzábal Heinze, Elena, María Lens Villaverde, Tatitana Conde, Luis Felipe Moura, Montserrat Fernández, and Adriana Sampaio. 2011. Funcionamiento cognitivo general y habilidades psicolingüísticas en niños con síndrome de Smith-Magenis. Psicothema 23: 725–31. [Google Scholar]
- Gómez, Pedro, Roberto Fernández, Victoria Rodellar, Víctor Nieto, Agustín Álvarez, Luis Mazaira, Rafael Martínez, and Juan Ignacio Godino. 2009. Glottal Source Biometrical Signature for Voice Pathology Detection. Speech Communication 51: 759–81. [Google Scholar] [CrossRef] [Green Version]
- Gómez, Pedro, Victoria Rodellar, Víctor Nieto, Cristina Muñoz, Luis Mazaira, Carlos Ramírez, Mario Fernández, and Elvira Toribio. 2011. Neurological Disease Detection and Monitoring from Voice Production. In Advances in Nonlinear Speech Processing. NOLISP 2011. Lecture Notes in Computer Science. Edited by Carlos M. Travieso-González and Jesús Alonso-Hernández. Berlin/Heidelberg: Springer, vol. 7015, pp. 1–8. [Google Scholar] [CrossRef]
- Gómez, Pedro, Victoria Rodellar, Víctor Nieto, Rafael Martínez, Agustín Álvarez, Bartolomé Scola, Carlos Ramírez, Daniel Poletti, and Mario Fernández. 2013a. BioMetPhon: A System to Monitor Phonation Quality in the Clinics. Paper presented at the 5th International Conference on e-Health, Telemedicione and Social Medicine, Nice, France, 24 February—1 March 2013; Edited by Julia van Gemert-Pijnen and Hans Ossebaard. Red Hook: Curran Associates Inc., pp. 253–58. [Google Scholar]
- Gómez, Pedro, Víctor Nieto, Victoria Rodellar, Agustín Álvarez, Luis mazaira, Rafael Martínez, Cristina Muñoz, Mario Fernández, and Carlos Ramírez. 2013b. Estimating Tremor in Vocal Fold Biomechanics for Neurological Disease Characterization. Paper presented at the 18th International Conference on Digital Signal Processing (DSP) 2013, Santorini, Greece, 1–3 July 2013; Piscataway: IEEE. Available online: http://ieeexplore.ieee.org/servlet/opac?punumber=6599036 (accessed on 27 April 2020).
- Gómez, Pedro, Agustín Álvarez-Marquina, Athnasios Tsanas, Carlos Alfredo Lázaro-Carrascosa, Victoria Rodellar-Biarge, Víctor Nieto-Lluis, and Rafael Martínez-Olalla. 2016. Phonation Biomechanics in Quantifying Parkinson’s Disease Symptom Severity. In Recent Advances in Nonlinear Speech Processing. Edited by Anna Esposito, Marcos Faundez-Zanuy, Antonietta M. Esposito, Gennaro Cordasco, Thomas Drugman, Jordi Solé-Casals and Francesco Carlo Morabito. Cham: Springer International Publishing, pp. 93–112. [Google Scholar]
- Gómez, Pedro, Daniel Palacios-Alonso, Victoria Rodellar-Biarge, Agustín Álvarez-Marquina, Víctor Nieto-Lluis, and Rafael Martínez-Olalla. 2017. Parkinson’s disease monitoring by biomechanical instability of phonation. Neurocomputing 255: 3–16. [Google Scholar] [CrossRef]
- Gómez-Vilda, Pedro, Roberto Fernández-Baillo, Alberto Nieto, Francisco Dıaz, Francisco J. Fernández-Camacho, Victoria Rodellar, Agustín Álvarez, and Rafael Martınez. 2007. Evaluation of Voice Pathology Based on the Estimation of Vocal Fold Biomechanical Parameters. Journal of Voice 21: 450–76. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, Frank, Richard Lewis, Lorraine Potocki, Daniel Glaze, Julie Parke, James Killian, Mary Ada Murphy, Daniel Williamson, Frank Brown, Robert Dutton, and et al. 1996. Multi-disciplinary clinical study of Smith-Magenis syndrome (deletion 17p11. 2). American Journal of Medical Genetics 62: 247–54. [Google Scholar] [CrossRef]
- Gropman, Andrea, Ann Smith, JE Allanson, and Frank Greenberg. 1998. Smith Magenis syndrome: Aspects of the infant phenotype. The American Journal of Human Genetics 63: A19. [Google Scholar]
- Gropman, Andrea, Wallace Duncan, and Ann Smith. 2006. Neurologic and developmental features of the Smith-Magenis syndrome (del 17p11.2). Pediatric Neurology 34: 337–50. [Google Scholar] [CrossRef]
- Harel, Brian, Michael Cannizzaro, Henrí Cohen, Nicole Reilly, and Peter Snyder. 2004. Acoustic characteristics of Parkinsonian speech: A potential biomarker of early disease progression and treatment. Journal of Neurolinguistics 17: 439–53. [Google Scholar] [CrossRef]
- Harries, Meredydd, John Walker, D. M. Williams, Sara Hawkins, and Ieuan Hughes. 1997. Changes in the male voice at puberty. Archives of Disease in Childhood 77: 445–47. [Google Scholar] [CrossRef] [Green Version]
- Heinze, Elena Garayzábal, and María Lens. 2013. Guía de Intervención Logopédica: El Síndrome de Smith-Magenis. Madrid: Síntesis. [Google Scholar]
- Hidalgo de la Guía, Irene. 2019. El Nivel Fónico de la Población con Síndrome de Smith Magenis: Particularidades Fonatorias y Fonético-Fonológicas. Comparativa con Síndrome de Williams, Síndrome de Down y Desarrollo Típico. Ph.D. dissertation, Universidad Autónoma de Madrid, Madrid, Spain. [Google Scholar]
- Hidalgo, Irene, and Elena Garayzábal. 2019. Diferencias fonológicas entre síndromes del neurodesarrollo: Evidencias a partir de los procesos de simplificación fonológica más frecuentes. Revista de Invetigación en Logopedia 9: 81–106. [Google Scholar] [CrossRef]
- Hidalgo, Irene, Pedro Gómez, and Elena Garayzábal. 2018. Biomechanical Description of Phonation in Children Affected by Williams Syndrome. Journal of Voice 32: 515.e15–515.e28. [Google Scholar] [CrossRef]
- Hidalgo, Irene, Elena Garayzábal, Pedro Gómez-Vilda, and Daniel Pacios-Alonso. Forthcoming. Specificities of Phonation Biomechanics in Down Syndrome Children. Biomedical Signal Processing and Control.
- Hollien, Harry, Rachel Green, and Karen Massey. 1994. Longitudinal research on adolescent voice change in males. The Journal of the Acoustical Society of America 96: 2646–54. [Google Scholar] [CrossRef] [PubMed]
- Martin, Stacy, Pamela Wolters, and Ann Smith. 2006. Adaptive and maladaptive behavior in children with Smith-Magenis Syndrome. Journal of Autism and Developmental Disorders 36: 541–52. [Google Scholar] [CrossRef]
- Morrison, Murray D., and Linda A. Rammage. 1993. Muscle misuse voice disorders: Description and classification. Acta oto-laryngologica 113: 428–34. [Google Scholar] [CrossRef] [PubMed]
- Nag, Heidi, and Terje Nærland. 2020. Age-related changes in behavioural and emotional problems in Smith–Magenis syndrome measured with the Developmental Behavior Checklist. Journal of Intellectual Disabilities. [Google Scholar] [CrossRef] [Green Version]
- Osório, Ana, Raquel Cruz, Adriana Sampaio, Elena Garayzábal, Ángel Carracedo, and Montserrat Férnandez Prieto. 2012. Cognitive functioning in children and adults with Smith-Magenis Syndrome. European Journal of Medical Genetics 55: 394–99. [Google Scholar] [CrossRef] [Green Version]
- Pisanski, Katarzyna, Paul J. Fraccaro, Cara C. Tigue, Jillian J. O’Connor, Susanne Röder, Paul W. Andrews, Bernahrd Fink, Lise DeBruine, Benedict Jones, and David R. Feinberg. 2014. Vocal indicators of body size in men and women: A meta-analysis. Animal Behaviour 95: 89–99. [Google Scholar] [CrossRef]
- Pisanski, Katarzyna, Benedict C. Jones, Bernhard Fink, Jillian J. O’Connor, Lise M. DeBruine, Susanne Röder, and David R. Feinberg. 2016. Voice parameters predict sex-specific body morphology in men and women. Animal Behaviour 112: 13–22. [Google Scholar] [CrossRef] [Green Version]
- Rendall, Drew, Sophie Kollias, Christine Ney, and Peter Lloyd. 2005. Pitch (F0) and formant profiles of human vowels and vowel-like baboon grunts: The role of vocalizer body size and voice-acoustic allometry. The Journal of the Acoustical Society of America 117: 944–55. [Google Scholar] [CrossRef]
- Sarimski, Klaus. 2004. Communicative competence and behavioural phenotype in children with Smith-Magenis syndrome. Genetic Counselling 15: 347–55. [Google Scholar]
- Sataloff, Robert. T., Yola D. Heman-Ackah, and Mary J. Hawkshaw. 2007. Clinical anatomy and physiology of the voice. Otolaryngologic clinics of north America 40: 909–29. [Google Scholar] [CrossRef]
- Shayota, Brian, and Sarah Elsea. 2019. Behavior and sleep disturbance in Smith–Magenis syndrome. Current Opinion in Psychiatry 32: 73–78. [Google Scholar] [CrossRef]
- Smith, Ann, Loris McGavran, and Gail Waldstein. 1982. Deletion of the 17 short arm in two patients with facial clefts. American Journal of Human Genetics 34: A410. [Google Scholar]
- Smith, Ann C. M., Rebecca S. Morse, Wendy Introne, and Wallace C. Duncan Jr. 2019. Twenty-four-hour motor activity and body temperature patterns suggest altered central circadian timekeeping in Smith-Magenis syndrome, a neurodevelopmental disorder. American Journal of Medical Genetics Part A 179: 224–36. [Google Scholar] [CrossRef] [PubMed]
- Solomon, Beth, Linda McCullah, D. Krasenwich, and Ann Smith. 2002. Oral sensory motor, swallowing and speech findings in Smith Magenis syndrome: A research update. American Society of Human Genetic Research 71: 271. [Google Scholar]
- Tsanas, Athanasios. 2012. Accurate Telemonitoring of Parkinson’s Disease Symptom Severity Using Nonlinear Speech Signal Processing and Statistical Machine Learning. Ph.D. thesis, Oxford University, Oxford, UK. [Google Scholar]
- Udwin, Orlee, Carolyn Webber, and Isobele Horn. 2001. Abilities and attainment in Smith-Magenis syndrome. Development Medicine and Child Neurology 43: 823–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webber, Carolyn. 1999. Cognitive and Behavioural Phenotype of Children with Smith-Magenis Syndrome. Ph.D. thesis, University of Leicester, Leicester, UK. [Google Scholar]
- Whiteside, Sandra. 2001. Sex-specific fundamental and formant frequency patterns in a cross-sectional study. The Journal of the Acoustical Society of America 110: 464–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whiteside, Sandra, Luisa Henry, and Rachel Dobbin. 2004. Sex differences in voice onset time: A developmental study of phonetic context effects in British English. The Journal of the Acoustical Society of America 116: 1179–83. [Google Scholar] [CrossRef] [Green Version]
- Wilde, Lucy, Daniel Silva, and Chris Oliver. 2013. The nature of social preference and interactions in Smith–Magenis syndrome. Research in Developmental Disabilities 34: 4355–65. [Google Scholar] [CrossRef]
- Wolters, Pamela, Andrea Gropman, Staci Martin, Michaele Smith, Hanna Hildenbr, Carmen Brewer, and Ann Smith. 2009. Neurodevelopment of children under 3 years of age with Smith-Magenis syndrome. Pediatric Neurology 41: 250–58. [Google Scholar] [CrossRef] [Green Version]
- Yunusova, Yana, Gary Weismer, John Westbury, and Mary Lindstrom. 2008. Articulatory movements during vowels in speakers with dysarthria and healthy controls. Journal of Speech, Language, and Hearing Research 51: 596–611. [Google Scholar] [CrossRef]
Feature Number | Description |
---|---|
1. | Pitch |
2. | Jitter |
3. | Shimmer |
5. | Noise-harmonics ratio |
6 | Energy average |
7–20 | 14 features: cepstral description of the glottal source |
21–34 | 14 features: related with maxima and minima of glottal source power spectral density |
35–46 | 12 features: biomechanical descriptor of the vocal folds (body and cover) |
47–58 | 12 features: temporal descriptors of the glottal source (contact and open phase) |
59–62 | 4 features: glottal gap (flow, recovery, contact, and adduction) |
63–65 | 3 features: indicators of neurological alteration |
66–72 | 7 features: estimation of tremor |
Feature | Description |
---|---|
1. Fundamental frequency (F0) | Fundamental phonation frequency |
2. Jitter | Normalized difference in F0 between neighbor phonation cycles |
3. Shimmer | Normalized difference in average amplitude between neighbor phonation cycles |
5. Noise–Harmonic Ratio | Ratio between turbulent and harmonic spectral components |
35. Body Dynamic Mass | Amount of body mass contributing to oscillation |
37. Body Stiffness | Transversal dynamic tension on the vocal fold body |
38. Body Mass Unbalance | Relative change in feature 35 between neighbor phonation cycles |
40. Body Stiffness Unbalance | Relative change in feature 37 between neighbor phonation cycles |
41. Cover Dynamic Mass | Amount of cover mass contributing to oscillation |
43. Cover Stiffness | Transversal dynamic tension on the vocal fold cover |
44. Cover Mass Unbalance | Normalized difference in feature 41 between neighbor phonation cycles |
46. Cover Stiffness Unbalance | Normalized difference in feature 43 between neighbor phonation cycles |
60. Contact defect | Percent of airflow escape during the closed phase |
61. Adduction defect | Percent of glottal gap seen altered during adduction |
62. Permanent gap | Percent of glottal gap seen during the recovery phase |
67. Physiological Tremor | Amplitude of the vocal fold stiffness low-frequency component |
69. Neuromotor Tremor | Amplitude of the vocal fold stiffness mid-frequency component |
71. Flutter Tremor | Amplitude of the vocal fold stiffness high-frequency component |
72. Global Tremor | Root Mean Square Amplitude of the vocal fold stiffness tremor |
Participants | Sex | Age (Years/Months) | Height (m) | Weight (Kg) | Voice Type |
---|---|---|---|---|---|
SMS-14 | male | 16;00 | 1.56 | 54 | 1 |
SMS-15 | female | 16;01 | 1.55 | 50 | 1 |
SMS-16 | female | 17;01 | 1.48 | 34 | 1 |
SMS-17 | male | 17;04 | 1.80 | 75 | 1 |
SMS-18 | male | 18;06 | 1.62 | 55 | 1 |
SMS-19 | female | 18;09 | 1.66 | 77 | 1 |
SMS-20 | male | 21;02 | 1.55 | 55 | 1 |
SMS-21 | male | 22;06 | 1.73 | 86 | 1 |
SMS-22 | male | 33;04 | 1.72 | 73 | 1 |
SMS14 | SMS15 | SMS16 | SMS17 | SMS18 | SMS19 | SMS20 | SMS21 | SMS22 | ||
---|---|---|---|---|---|---|---|---|---|---|
N | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | |
1. Absolute Pitch (Hz) | Mean | 275 | 114 | 294 | 162 | 154 | 195 | 164 | 175 | 160 |
St. Desv. | 15.40 | 4.37 | 24.71 | 7.35 | 3.56 | 18.71 | 5.34 | 4.71 | 2.36 | |
2. Jitter (rel.) | Mean | 0.0113 | 0.0510 | 0.0070 | 0.0062 | 0.0045 | 0.0122 | 0.0051 | 0.0045 | 0.0156 |
St. Desv. | 0.0059 | 0.0480 | 0.0027 | 0.0017 | 0.0016 | 0.0088 | 0.0009 | 0.0008 | 0.0075 | |
3. Shimmer (rel.) | Mean | 0.0140 | 0.0417 | 0.0061 | 0.0152 | 0.0083 | 0.0216 | 0.0100 | 0.0082 | 0.0162 |
St. Desv. | 0.0040 | 0.0192 | 0.0018 | 0.0063 | 0.0025 | 0.0132 | 0.0031 | 0.0011 | 0.0018 | |
5. NHR (rel.) | Mean | 0.7053 | 0.6368 | 0.7038 | 0.5883 | 0.5919 | 0.5757 | 0.6378 | 0.5580 | 0.5635 |
St. Desv. | 0.1083 | 0.0326 | 0.0589 | 0.0440 | 0.0615 | 0.0207 | 0.0375 | 0.0239 | 0.0520 | |
35. Body Mass (mg) | Mean | 0.0090 | 0.0299 | 0.0083 | 0.0153 | 0.0160 | 0.0138 | 0.0151 | 0.0140 | 0.0156 |
St. Desv. | 0.0006 | 0.0145 | 0.0008 | 0.0007 | 0.0005 | 0.0028 | 0.0006 | 0.0004 | 0.0004 | |
37. Body Stiffness (mN/m) | Mean | 26,859 | 16,098 | 28,231 | 15,930 | 14,978 | 20,358 | 16,084 | 16,934 | 15,946 |
St. Desv. | 1433 | 8836 | 2453 | 821 | 343 | 2507 | 420 | 479 | 395 | |
38. Body Mass Unbalance (rel.) | Mean | 0.0039 | 0.2231 | 0.0033 | 0.0022 | 0.0012 | 0.0232 | 0.0018 | 0.0016 | 0.0092 |
St. Desv. | 0.0018 | 0.3190 | 0.0025 | 0.0012 | 0.0006 | 0.0430 | 0.0007 | 0.0009 | 0.0095 | |
40. Body Stiffness Unbalance (rel.) | Mean | 0.0229 | 0.3055 | 0.0107 | 0.0118 | 0.0079 | 0.0458 | 0.0092 | 0.0076 | 0.0405 |
St. Desv. | 0.0139 | 0.3753 | 0.0045 | 0.0038 | 0.0032 | 0.0626 | 0.0024 | 0.0010 | 0.0258 | |
41. Cover Mass (mg) | Mean | 0.0066 | 0.0099 | 0.0075 | 0.0054 | 0.0062 | 0.0055 | 0.0093 | 0.0071 | 0.0052 |
St. Desv. | 0.0015 | 0.0044 | 0.0039 | 0.0007 | 0.0002 | 0.0005 | 0.0015 | 0.0003 | 0.0018 | |
43. Cover Stiffness (mN/m) | Mean | 20,251 | 10,355 | 25,536 | 8398 | 7832 | 13,011 | 11,025 | 9784 | 11,202 |
St. Desv. | 3734 | 10,644 | 5936 | 929 | 289 | 2563 | 1941 | 523 | 6091 | |
44. Cover Mass Unbalance (rel.) | Mean | 0.0526 | 0.1818 | 0.0284 | 0.0250 | 0.0173 | 0.0775 | 0.0312 | 0.0238 | 0.1393 |
St. Desv. | 0.0104 | 0.2186 | 0.0044 | 0.0094 | 0.0021 | 0.0799 | 0.0093 | 0.0026 | 0.1673 | |
46. Cover Stiffness Unbalance (rel.) | Mean | 0.0598 | 0.2638 | 0.0329 | 0.0263 | 0.0139 | 0.0975 | 0.0269 | 0.0222 | 0.1488 |
St. Desv. | 0.0155 | 0.3245 | 0.0039 | 0.0135 | 0.0027 | 0.1070 | 0.0049 | 0.0029 | 0.1931 | |
60. Contact GAP (rel.) | Mean | 0.0984 | 0.2170 | 0.0827 | 0.2749 | 0.1486 | 0.1492 | 0.1919 | 0.1079 | 0.3002 |
St. Desv. | 0.0463 | 0.1581 | 0.0666 | 0.0703 | 0.0320 | 0.0520 | 0.0918 | 0.0123 | 0.0468 | |
61. Adduction GAP (rel.) | Mean | 0.0225 | 0.1632 | 0.0100 | 0.0215 | 0.0125 | 0.0317 | 0.0057 | 0.0114 | 0.0526 |
St. Desv. | 0.0274 | 0.0989 | 0.0039 | 0.0113 | 0.0027 | 0.0175 | 0.0028 | 0.0073 | 0.0384 | |
62. Permanent GAP (rel.) | Mean | 0.0217 | 0.0000 | 0.6233 | 0.0000 | 0.0000 | 0.0010 | 0.0149 | 0.0047 | 0.0000 |
St. Desv. | 0.0335 | 0.0000 | 0.2082 | 0.0000 | 0.0000 | 0.0021 | 0.0177 | 0.0066 | 0.0000 | |
67.PhysTremor Est. Amplitude (%) | Mean | 0.3407 | 3.26 | 0.1490 | 0.2245 | 0.0727 | 1.04 | 0.1742 | 0.0988 | 0.1300 |
St. Desv. | 0.1697 | 5.13 | 0.0695 | 0.1258 | 0.0495 | 1.33 | 0.1436 | 0.0699 | 0.0654 | |
69. NeurTrem. Est. Amplitude (%) | Mean | 0.2830 | 2.82 | 0.1439 | 0.2090 | 0.0735 | 1.05 | 0.1691 | 0.0965 | 0.1201 |
St. Desv. | 0.1552 | 4.79 | 0.0899 | 0.1140 | 0.0427 | 1.34 | 0.1427 | 0.0668 | 0.0683 | |
71. FlutTremor Est. Amplitude (%) | Mean | 0.2020 | 2.17 | 0.0867 | 0.1672 | 0.0601 | 0.8637 | 0.1406 | 0.0860 | 0.0874 |
St. Desv. | 0.0940 | 3.65 | 0.0463 | 0.0989 | 0.0376 | 1.32 | 0.1143 | 0.0675 | 0.0495 | |
72. Global Tremor (rMSA) (rel.) | Mean | 0.0050 | 0.0804 | 0.0023 | 0.0065 | 0.0022 | 0.0232 | 0.0049 | 0.0025 | 0.0035 |
St. Desv. | 0.0027 | 0.1119 | 0.0012 | 0.0039 | 0.0012 | 0.0312 | 0.0040 | 0.0016 | 0.0016 |
Kolmogorov—Smirnov Z | SMS14 | SMS15 | SMS16 | SMS17 | SMS18 | SMS19 | SMS20 | SMS21 | SMS22 |
---|---|---|---|---|---|---|---|---|---|
N | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
1. Absolute Pitch (Hz) | |||||||||
2. Jitter (rel.) | |||||||||
3. Shimmer (rel.) | |||||||||
5. NHR (rel.) | |||||||||
35. Body Mass (mg) | |||||||||
37. Body Stiffness (mN/m) | |||||||||
38. Body Mass Unbalance (rel.) | |||||||||
40. Body Stiffness Unbalance (rel.) | |||||||||
41. Cover Mass (mg) | |||||||||
43. Cover Stiffness (mN/m) | |||||||||
44. Cover Mass Unbalance (rel.) | |||||||||
46. Cover Stiffness Unbalance (rel.) | |||||||||
60. Contact gap (rel.) | |||||||||
61. Adduction gap (rel.) | |||||||||
62. Permanent gap (rel.) | |||||||||
67. PhysTremor Est. Amplitude (%) | |||||||||
69. NeurTremor Est. Amplitude (%) | |||||||||
71. FlutTremor Est. Amplitude (%) | |||||||||
72. Global Tremor (rMSA) (rel.) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hidalgo-De la Guía, I.; Garayzábal-Heinze, E.; Gómez-Vilda, P. Voice Characteristics in Smith–Magenis Syndrome: An Acoustic Study of Laryngeal Biomechanics. Languages 2020, 5, 31. https://doi.org/10.3390/languages5030031
Hidalgo-De la Guía I, Garayzábal-Heinze E, Gómez-Vilda P. Voice Characteristics in Smith–Magenis Syndrome: An Acoustic Study of Laryngeal Biomechanics. Languages. 2020; 5(3):31. https://doi.org/10.3390/languages5030031
Chicago/Turabian StyleHidalgo-De la Guía, Irene, Elena Garayzábal-Heinze, and Pedro Gómez-Vilda. 2020. "Voice Characteristics in Smith–Magenis Syndrome: An Acoustic Study of Laryngeal Biomechanics" Languages 5, no. 3: 31. https://doi.org/10.3390/languages5030031
APA StyleHidalgo-De la Guía, I., Garayzábal-Heinze, E., & Gómez-Vilda, P. (2020). Voice Characteristics in Smith–Magenis Syndrome: An Acoustic Study of Laryngeal Biomechanics. Languages, 5(3), 31. https://doi.org/10.3390/languages5030031