An Experimental Approach to Inform Venus Astrobiology Mission Design and Science Objectives
Abstract
:1. Introduction
2. Venus: A Challenging Environment for Life as We Know It
3. The Astrobiological Exploration of Venus Can Start in Earth’s Laboratories
VLF Biology Experiment | Objective | Connection to VLF Mission Science | References |
---|---|---|---|
Reactivity of Organic Molecules in Concentrated Sulfuric Acid | |||
Assessment of Chemical Stability and Reactivity of Organics in Concentrated Sulfuric Acid | 1. Assess which classes of organic molecules are reactive and which are stable in concentrated sulfuric acid, and to what degree. 2. Develop a comprehensive predictive database of sulfuric acid reactivity, with a focus on chemical functional groups. | Inform instrument range and target capabilities, and enable data interpretation. | [30,56,57,73,77] |
Fluorescent Properties of Organics in the Venusian Atmosphere | 1. Determine the categories and properties of autofluorescent organic compounds dissolved in concentrated sulfuric acid. | Inform the design of the AFN instrument for the Rocket Lab mission by identifying optimal wavelength(s) for laser excitation of fluorescent organic compounds potentially present in the Venusian atmosphere. | [30,73] |
Possibility for Life | |||
Vesicle Formation in Concentrated Sulfuric Acid | 1. Assess whether Earth-life-like bilayer membranes are stable, and can form vesicles in concentrated sulfuric acid. 2. Assess whether sulfuric acid-stable membranes can sequester canonical (Earth-like) biochemistry or water. | Enable the testing of instrumentation tolerance if lipid molecules are encountered in concentrated sulfuric acid, and inform future hypothesis-driven experiments about the limits of compartmentalization inspired by Earth life. | |
False Positives and Forward Contamination | |||
Miller–Urey Type Experiments in Concentrated Sulfuric Acid | 1. Assess whether complex organic chemistry can be generated in sulfuric acid with relevant input energy. 2. Determine which organic molecules could in principle be produced abiotically in liquid sulfuric acid and therefore serve as baseline markers. | False positive assessment: organic molecules produced during such high-energy reactions need not be made by life. | |
Degradation Products of Cellular Material in Concentrated Sulfuric Acid | 1. Assess which cellular components of model Earth microbial life, if any, survive in concentrated sulfuric acid, for how long, and otherwise characterize the molecular profile of the resultant hydrolyzed/reacted material. | Forward contamination assessment. |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Margulis, L.; Lovelock, J.E. Biological modulation of the Earth’s atmosphere. Icarus 1974, 21, 471–489. [Google Scholar] [CrossRef]
- Sasselov, D.D.; Grotzinger, J.P.; Sutherland, J.D. The origin of life as a planetary phenomenon. Sci. Adv. 2020, 6, eaax3419. [Google Scholar] [CrossRef] [Green Version]
- Smith, E.; Morowitz, H.J. The Origin and Nature of Life on Earth: The Emergence of the Fourth Geosphere; Cambridge University Press: Cambridge, UK, 2016; ISBN 131648985X. [Google Scholar]
- Giffin, C.E.; Lovelock, J.E. Planetary atmospheres-Compositional and other changes associated with the presence of life. Adv. Astronaut. Sci. 1969, 25, 179–193. [Google Scholar]
- Azua-Bustos, A.; Vega-Martínez, C. The potential for detecting ‘life as we don’t know it’by fractal complexity analysis. Int. J. Astrobiol. 2013, 12, 314–320. [Google Scholar] [CrossRef]
- Pace, N.R. The universal nature of biochemistry. Proc. Natl. Acad. Sci. USA 2001, 98, 805–808. [Google Scholar] [CrossRef] [Green Version]
- Lingam, M.; Loeb, A. Life in the Cosmos: From Biosignatures to Technosignatures; Harvard University Press: Cambridge, MA, USA, 2021; ISBN 0674987578. [Google Scholar]
- Schulze-Makuch, D.; Irwin, L.N. Life in the Universe; Springer: Berlin/Heidelberg, Germany, 2004; ISBN 3540206272. [Google Scholar]
- Bains, W. Many chemistries could be used to build living systems. Astrobiology 2004, 4, 137–167. [Google Scholar] [CrossRef]
- Kopparapu, R.K.; Hébrard, E.; Belikov, R.; Batalha, N.M.; Mulders, G.D.; Stark, C.; Teal, D.; Domagal-Goldman, S.; Mandell, A. Exoplanet classification and yield estimates for direct imaging missions. Astrophys. J. 2018, 856, 122. [Google Scholar] [CrossRef]
- Öberg, K.I.; Bergin, E.A. Astrochemistry and compositions of planetary systems. Phys. Rep. 2021, 893, 1–48. [Google Scholar]
- Höning, D.; Hansen-Goos, H.; Airo, A.; Spohn, T. Biotic vs. abiotic Earth: A model for mantle hydration and continental coverage. Planet. Space Sci. 2014, 98, 5–13. [Google Scholar] [CrossRef] [Green Version]
- Limaye, S.S.; Mogul, R.; Smith, D.J.; Ansari, A.H.; Słowik, G.P.; Vaishampayan, P. Venus’ Spectral Signatures and the Potential for Life in the Clouds. Astrobiology 2018, 18, 1181–1198. [Google Scholar] [CrossRef] [PubMed]
- Lovelock, J.E. A physical basis for life detection experiments. Nature 1965, 207, 568–570. [Google Scholar] [CrossRef]
- Limaye, S.S.; Mogul, R.; Baines, K.H.; Bullock, M.A.; Cockell, C.; Cutts, J.A.; Gentry, D.M.; Grinspoon, D.H.; Head, J.W.; Jessup, K.-L. Venus, an astrobiology target. Astrobiology 2021, 21, 1163–1185. [Google Scholar] [CrossRef]
- Balbi, A.; Grimaldi, C. Quantifying the information impact of future searches for exoplanetary biosignatures. Proc. Natl. Acad. Sci. USA 2020, 117, 21031–21036. [Google Scholar] [CrossRef]
- Kane, S.R.; Arney, G.; Crisp, D.; Domagal-Goldman, S.; Glaze, L.S.; Goldblatt, C.; Grinspoon, D.; Head, J.W.; Lenardic, A.; Unterborn, C. Venus as a Laboratory for Exoplanetary Science. J. Geophys. Res. Planets 2019, 124, 2015–2028. [Google Scholar] [CrossRef] [Green Version]
- Baross, J.; Benner, S.A.; Cody, G.D.; Copley, S.D.; Pace, N.R.; Scott, J.H.; Shapiro, R.; Sogin, M.L.; Stein, J.L.; Summons, R.; et al. The limits of Organic Life in Planetary Systems; National Academies Press: Washington, DC, USA, 2007; ISBN 0309179564. [Google Scholar]
- Pätzold, M.; Häusler, B.; Bird, M.K.; Tellmann, S.; Mattei, R.; Asmar, S.W.; Dehant, V.; Eidel, W.; Imamura, T.; Simpson, R.A. The structure of Venus’ middle atmosphere and ionosphere. Nature 2007, 450, 657–660. [Google Scholar] [CrossRef]
- Limaye, S.S.; Grassi, D.; Mahieux, A.; Migliorini, A.; Tellmann, S.; Titov, D. Venus atmospheric thermal structure and radiative balance. Space Sci. Rev. 2018, 214, 102. [Google Scholar] [CrossRef] [Green Version]
- Morowitz, H.; Sagan, C. Life in the clouds of venus? Nature 1967, 215, 1259–1260. [Google Scholar] [CrossRef]
- Schulze-Makuch, D.; Grinspoon, D.H.; Abbas, O.; Irwin, L.N.; Bullock, M.A. A sulfur-based survival strategy for putative phototrophic life in the Venusian atmosphere. Astrobiology 2004, 4, 11–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izenberg, N.R.; Gentry, D.M.; Smith, D.J.; Gilmore, M.S.; Grinspoon, D.H.; Bullock, M.A.; Boston, P.J.; Słowik, G.P. The Venus Life Equation. Astrobiology 2021, 21, 1305–1315. [Google Scholar] [CrossRef] [PubMed]
- Seager, S.; Petkowski, J.J.; Gao, P.; Bains, W.; Bryan, N.C.; Ranjan, S.; Greaves, J. The Venusian Lower Atmosphere Haze as a Depot for Desiccated Microbial Life: A Proposed Life Cycle for Persistence of the Venusian Aerial Biosphere. Astrobiology 2021, 21, 1206–1223. [Google Scholar] [CrossRef] [PubMed]
- Cockell, C.S. Life on venus. Planet. Space Sci. 1999, 47, 1487–1501. [Google Scholar] [CrossRef]
- Kotsyurbenko, O.R.; Cordova, J.A.; Belov, A.A.; Cheptsov, V.S.; Kölbl, D.; Khrunyk, Y.Y.; Kryuchkova, M.O.; Milojevic, T.; Mogul, R.; Sasaki, S. Exobiology of the Venusian Clouds: New Insights into Habitability through Terrestrial Models and Methods of Detection. Astrobiology 2021, 21, 1186–1205. [Google Scholar] [CrossRef] [PubMed]
- Schulze-Makuch, D.; Irwin, L.N. Reassessing the possibility of life on venus: Proposal for an astrobiology mission. Astrobiology 2002, 2, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Hein, A.M.; Lingam, M.; Eubanks, T.M.; Hibberd, A.; Fries, D.; Blase, W.P. A precursor Balloon mission for Venusian astrobiology. Astrophys. J. Lett. 2020, 903, L36. [Google Scholar] [CrossRef]
- Baines, K.H.; Nikolić, D.; Cutts, J.A.; Delitsky, M.L.; Renard, J.-B.; Madzunkov, S.M.; Barge, L.M.; Mousis, O.; Wilson, C.; Limaye, S.S. Investigation of Venus cloud aerosol and gas composition including potential biogenic materials via an aerosol-sampling instrument package. Astrobiology 2021, 21, 1316–1323. [Google Scholar] [CrossRef] [PubMed]
- French, R.; Mandy, C.; Hunter, R.; Mosleh, E.; Sinclair, D.; Beck, P.; Seager, S.; Petkowski, J.J.; Carr, C.E.; Grinspoon, D.H.; et al. Rocket Lab Mission to Venus. Aerospace 2022, 9, 445. [Google Scholar] [CrossRef]
- Seager, S.; Petkowski, J.J.; Carr, C.E.; Saikia, S.J.; Agrawal, R.; Buchanan, W.P.; Grinspoon, D.H.; Weber, M.U.; Klupar, P.; Worden, S.P.; et al. Venus Life Finder Habitability Mission: Motivation, Science Objectives, and Instrumentation. Aerospace. 2022, in review. [CrossRef]
- Seager, S.; Petkowski, J.J.; Carr, C.E.; Grinspoon, D.; Ehlmann, B.; Saikia, S.J.; Agrawal, R.; Buchanan, W.; Weber, M.U.; French, R. Venus Life Finder Mission Study. arXiv 2021, arXiv:2112.05153. [Google Scholar]
- Seager, S.; Petkowski, J.J.; Carr, C.E.; Grinspoon, D.H.; Ehlmann, B.L.; Saikia, S.J.; Agrawal, R.; Buchanan, W.P.; Weber, M.U.; French, R.; et al. Venus Life Finder Missions Motivation and Summary. Aerospace 2022, 9, 385. [Google Scholar] [CrossRef]
- Agrawal, R.; Buchanan, W.P.; Arora, A.; Girija, A.P.; de Jong, M.; Seager, S.; Petkowski, J.J.; Saikia, S.J.; Carr, C.E.; Grinspoon, D.H.; et al. Mission Architecture to Characterize Habitability of Venus Cloud Layers via an Aerial Platform. Aerospace 2022, 9, 359. [Google Scholar] [CrossRef]
- Buchanan, W.P.; de Jong, M.; Agrawal, R.; Petkowski, J.J.; Arora, A.; Saikia, S.J.; Seager, S.; Longuski, J. Aerial Platform Design Options for a Life-Finding Mission at Venus. Aerospace 2022, 9, 363. [Google Scholar] [CrossRef]
- Rimmer, P.B.; Jordan, S.; Constantinou, T.; Woitke, P.; Shorttle, O.; Paschodimas, A.; Hobbs, R. Hydroxide salts in the clouds of Venus: Their effect on the sulfur cycle and cloud droplet pH. Planet. Sci. J. 2021, 2, 133. [Google Scholar] [CrossRef]
- Mogul, R.; Limaye, S.S.; Way, M.J.; Cordova, J.A. Venus’ Mass Spectra Show Signs of Disequilibria in the Middle Clouds. Geophys. Res. Lett. 2021, 48, e2020GL091327. [Google Scholar] [CrossRef] [PubMed]
- Mogul, R.; Limaye, S.S.; Lee, Y.J.; Pasillas, M. Potential for Phototrophy in Venus’ Clouds. Astrobiology 2021, 21, 1237–1249. [Google Scholar] [CrossRef] [PubMed]
- Bains, W.; Petkowski, J.J.; Rimmer, P.B.; Seager, S. Production of Ammonia Makes Venusian Clouds Habitable and Explains Observed Cloud-Level Chemical Anomalies. Proc. Natl. Acad. Sci. USA 2021, 118, e2110889118. [Google Scholar] [CrossRef] [PubMed]
- Bains, W.; Petkowski, J.J.; Seager, S.; Ranjan, S.; Sousa-Silva, C.; Rimmer, P.B.; Zhan, Z.; Greaves, J.S.; Richards, A.M.S. Phosphine on Venus Cannot be Explained by Conventional Processes. Astrobiology 2021, 21, 1277–1304. [Google Scholar] [CrossRef] [PubMed]
- Hallsworth, J.E.; Koop, T.; Dallas, T.D.; Zorzano, M.-P.; Burkhardt, J.; Golyshina, O.V.; Martín-Torres, J.; Dymond, M.K.; Ball, P.; McKay, C.P. Water activity in Venus’s uninhabitable clouds and other planetary atmospheres. Nat. Astron. 2021, 5, 665–675. [Google Scholar] [CrossRef]
- Hunten, D.M.; Colin, L.; Donahue, T.M.; Moroz, V.I. Venus; University of Arizona Press: Tucson, AZ, USA, 2022; ISBN 0816546584. [Google Scholar]
- Bougher, S.W.; Hunten, D.M.; Phillips, R.J. Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment; University of Arizona Press: Tucson, AZ, USA, 2022; ISBN 0816547904. [Google Scholar]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wiley & Sons: Hoboken, NJ, USA, 2016; ISBN 1118947401. [Google Scholar]
- Williams, D.R. Earth Fact Sheet. Available online: https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html (accessed on 22 August 2022).
- Williams, D.R. Venus Fact Sheet. Available online: https://nssdc.gsfc.nasa.gov/planetary/factsheet/venusfact.html (accessed on 22 August 2022).
- Byrne, P.K.; Ghail, R.C.; Şengör, A.M.C.; James, P.B.; Klimczak, C.; Solomon, S.C. A globally fragmented and mobile lithosphere on Venus. Proc. Natl. Acad. Sci. USA 2021, 118, e2025919118. [Google Scholar] [CrossRef]
- Titov, D.V.; Ignatiev, N.I.; McGouldrick, K.; Wilquet, V.; Wilson, C.F. Clouds and hazes of Venus. Space Sci. Rev. 2018, 214, 126. [Google Scholar] [CrossRef] [Green Version]
- Kliore, A.J.; Moroz, V.I.; Keating, G.M. The Venus International Reference Atmosphere; Elsevier Science & Technology: Oxford, UK, 1985; Volume 5. [Google Scholar]
- Moroz, V.I.; Zasova, L.V. VIRA-2: A review of inputs for updating the Venus International Reference Atmosphere. Adv. Sp. Res. 1997, 19, 1191–1201. [Google Scholar] [CrossRef]
- Bézard, B.; Russell, C.; Satoh, T.; Smrekar, S.; Wilson, C. Venus III: The View after Venus Express; Springer: Berlin/Heidelberg, Germany, 2020; ISBN 9402419357. [Google Scholar]
- Ignatiev, N.I.; Titov, D.V.; Piccioni, G.; Drossart, P.; Markiewicz, W.J.; Cottini, V.; Roatsch, T.; Almeida, M.; Manoel, N. Altimetry of the Venus cloud tops from the Venus Express observations. J. Geophys. Res. Planets 2009, 114, E00B43. [Google Scholar] [CrossRef]
- Peplowski, P.N.; Lawrence, D.J.; Wilson, J.T. Chemically distinct regions of Venus’s atmosphere revealed by measured N 2 concentrations. Nat. Astron. 2020, 4, 947–950. [Google Scholar] [CrossRef]
- Taylor, F.; Grinspoon, D. Climate evolution of Venus. J. Geophys. Res. Planets 2009, 114, E00B40. [Google Scholar] [CrossRef]
- Cleaves, H.J.; Chalmers, J.H. Extremophiles may be irrelevant to the origin of life. Astrobiology 2004, 4, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Bains, W.; Petkowski, J.J.; Zhan, Z.; Seager, S. Evaluating Alternatives to Water as Solvents for Life: The Example of Sulfuric Acid. Life 2021, 11, 400. [Google Scholar] [CrossRef]
- Bains, W.; Petkowski, J.J.; Seager, S. A Data Resource for Sulfuric Acid Reactivity of Organic Chemicals. Data 2021, 6, 24. [Google Scholar] [CrossRef]
- Worth, R.J.; Sigurdsson, S.; House, C.H. Seeding life on the moons of the outer planets via lithopanspermia. Astrobiology 2013, 13, 1155–1165. [Google Scholar] [CrossRef] [Green Version]
- Cabot, S.H.C.; Laughlin, G. Lunar Exploration as a Probe of Ancient Venus. Planet. Sci. J. 2020, 1, 66. [Google Scholar] [CrossRef]
- Miller, S.L. A Production of Amino Acids under Possible Primitive Earth Conditions. Science 1953, 117, 528–529. [Google Scholar] [CrossRef] [Green Version]
- Cleaves, H.J.; Chalmers, J.H.; Lazcano, A.; Miller, S.L.; Bada, J.L. A reassessment of prebiotic organic synthesis in neutral planetary atmospheres. Orig. Life Evol. Biosph. 2008, 38, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, R.D. Lightning detection on Venus: A critical review. Prog. Earth Planet. Sci. 2018, 5, 34. [Google Scholar] [CrossRef] [Green Version]
- Chan, M.A.; Hinman, N.W.; Potter-McIntyre, S.L.; Schubert, K.E.; Gillams, R.J.; Awramik, S.M.; Boston, P.J.; Bower, D.M.; Des Marais, D.J.; Farmer, J.D. Deciphering biosignatures in planetary contexts. Astrobiology 2019, 19, 1075–1102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ligterink, N.F.W.; Kipfer, K.A.; Gruchola, S.; Boeren, N.J.; Keresztes Schmidt, P.; de Koning, C.P.; Tulej, M.; Wurz, P.; Riedo, A. The ORIGIN Space Instrument for Detecting Biosignatures and Habitability Indicators on a Venus Life Finder Mission. Aerospace 2022, 9, 312. [Google Scholar] [CrossRef]
- Zeigler, D.R.; Prágai, Z.; Rodriguez, S.; Chevreux, B.; Muffler, A.; Albert, T.; Bai, R.; Wyss, M.; Perkins, J.B. The origins of 168, W23, and other Bacillus subtilis legacy strains. J. Bacteriol. 2008, 190, 6983–6995. [Google Scholar] [CrossRef] [Green Version]
- Tirumalai, M.R.; Rastogi, R.; Zamani, N.; O’Bryant Williams, E.; Allen, S.; Diouf, F.; Kwende, S.; Weinstock, G.M.; Venkateswaran, K.J.; Fox, G.E. Candidate genes that may be responsible for the unusual resistances exhibited by Bacillus pumilus SAFR-032 spores. PLoS ONE 2013, 8, e66012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wassmann, M.; Moeller, R.; Rabbow, E.; Panitz, C.; Horneck, G.; Reitz, G.; Douki, T.; Cadet, J.; Stan-Lotter, H.; Cockell, C.S. Survival of spores of the UV-resistant Bacillus subtilis strain MW01 after exposure to low-earth orbit and simulated martian conditions: Data from the space experiment ADAPT on EXPOSE-E. Astrobiology 2012, 12, 498–507. [Google Scholar] [CrossRef] [Green Version]
- Facius, R.; Bücker, H.; Hildebrand, D.; Horneck, G.; Höltz, G.; Reitz, G.; Schäfer, M.; Toth, B. Radiobiological results from the Bacillus subtilis Biostack experiments within the Apollo and the ASTP space flights. In Life Sciences and Space Research; Elsevier: Amsterdam, The Netherlands, 1978; pp. 151–156. [Google Scholar]
- Luckey, M. Membrane Structural Biology: With Biochemical and Biophysical Foundations; Cambridge University Press: Cambridge, UK, 2014; ISBN 1107729335. [Google Scholar]
- Bangham, A.D.; Horne, R.W. Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J. Mol. Biol. 1964, 8, 660-IN10. [Google Scholar] [CrossRef]
- Gebicki, J.M.; Hicks, M. Ufasomes are stable particles surrounded by unsaturated fatty acid membranes. Nature 1973, 243, 232–234. [Google Scholar] [CrossRef] [PubMed]
- Demchenko, A.P.; Mély, Y.; Duportail, G.; Klymchenko, A.S. Monitoring biophysical properties of lipid membranes by environment-sensitive fluorescent probes. Biophys. J. 2009, 96, 3461–3470. [Google Scholar] [CrossRef] [Green Version]
- Baumgardner, D.; Fisher, T.; Newton, R.; Roden, C.; Zmarzly, P.; Seager, S.; Petkowski, J.J.; Carr, C.E.; Špaček, J.; Benner, S.A.; et al. Deducing the Composition of Venus Cloud Particles with the Autofluorescence Nephelometer (AFN). Aerospace 2022, 9, 492. [Google Scholar] [CrossRef]
- Love, R.M. Spectroscopic studies of carbohydrates. 1. The action of sulphuric acid on sugars. Biochem. J. 1953, 55, 126–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brooks, B.T.; Humphrey, I. The Action of Concentrated Sulfuric Acid on Olefins, with Particular Reference to the Refining of Petroleum Distillates. J. Am. Chem. Soc. 1918, 40, 822–856. [Google Scholar] [CrossRef] [Green Version]
- Kramer, G.M. Oxidation of paraffins in sulfuric acid. J. Org. Chem. 1967, 32, 1916–1918. [Google Scholar] [CrossRef]
- Spacek, J. Organic Carbon Cycle in the Atmosphere of Venus. arXiv 2021, arXiv:2108.02286. [Google Scholar]
Earth | Venus * | |
---|---|---|
Basic Planetary Parameters | ||
Mass (⊕) | 1.0 | 0.82 |
Radius (⊕) | 1.0 | 0.95 |
Surface gravity (g) | 1.0 | 0.9 |
Year length (Earth days) | 365 | 225 |
Day length; one rotation on its axis (Earth days) | 1 | 243 |
Atmospheric superrotation (Earth days) | n/a | 4 |
Surface conditions | ||
Surface temperature (°C) | 15 | 465 |
Surface pressure (bar) | 1 | 92 |
Volcanism | active | active |
Form of crust | Plate tectonics | “Jostling” crustal tectonics |
Atmospheric conditions | ||
Main atmospheric gases | 78% N2, 21% O2, 1% Ar | 96.5% CO2, 3.5% N2 |
Dominant liquid | H2O | concentrated H2SO4 |
Clouds—main composition | H2O | 85% H2SO4, 15% H2O (putative) |
Clouds—avg. altitude range (km) | 0–20 (variable) | 48–70 (stable) * |
Clouds—temp. range (°C) | 40 (surface)–(−73) (20 km) | 100 (at 48 km)–0 (at 60 km) |
Clouds—pressure range (bar) | 1 (surface)–0.1 (20 km) | 2 (at 48 km)–0.4 (at 60 km) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duzdevich, D.; Petkowski, J.J.; Bains, W.; Cleaves, H.J., II; Carr, C.E.; Borowska, E.I.; Azua-Bustos, A.; Cable, M.L.; Dorrington, G.E.; Grinspoon, D.H.; et al. An Experimental Approach to Inform Venus Astrobiology Mission Design and Science Objectives. Aerospace 2022, 9, 597. https://doi.org/10.3390/aerospace9100597
Duzdevich D, Petkowski JJ, Bains W, Cleaves HJ II, Carr CE, Borowska EI, Azua-Bustos A, Cable ML, Dorrington GE, Grinspoon DH, et al. An Experimental Approach to Inform Venus Astrobiology Mission Design and Science Objectives. Aerospace. 2022; 9(10):597. https://doi.org/10.3390/aerospace9100597
Chicago/Turabian StyleDuzdevich, Daniel, Janusz J. Petkowski, William Bains, H. James Cleaves, II, Christopher E. Carr, Ewa I. Borowska, Armando Azua-Bustos, Morgan L. Cable, Graham E. Dorrington, David H. Grinspoon, and et al. 2022. "An Experimental Approach to Inform Venus Astrobiology Mission Design and Science Objectives" Aerospace 9, no. 10: 597. https://doi.org/10.3390/aerospace9100597
APA StyleDuzdevich, D., Petkowski, J. J., Bains, W., Cleaves, H. J., II, Carr, C. E., Borowska, E. I., Azua-Bustos, A., Cable, M. L., Dorrington, G. E., Grinspoon, D. H., Ligterink, N. F. W., Riedo, A., Wurz, P., & Seager, S. (2022). An Experimental Approach to Inform Venus Astrobiology Mission Design and Science Objectives. Aerospace, 9(10), 597. https://doi.org/10.3390/aerospace9100597