Review: The Effects of Supersonic Aviation on Ozone and Climate
Abstract
:1. Introduction
2. Historical Context
3. Prospects on Various Concepts
4. Emission Inventories and Scenarios
- The number of supersonic vehicles available and the market that they serve (passenger mainliner and/or business jet), including the airports that they will operate from.
- Whether the supersonic demand is in addition to existing subsonic demand or replacing existing subsonic operations (entire operation or part of the operation such as business class only in passenger mainliner) and the rate of supersonic fleet growth and subsonic fleet replacements, if any, and the number of vehicles available for this.
- Whether the supersonic vehicle is permitted to fly at supersonic speeds over land and consequently if the flight will traverse the coastline(s) to save flight time or if the flight will require a fuel stop.
- Emissions indices for species such as NOx that are dependent on engine performance and atmospheric ambient conditions.
- Whether the emissions generated are uni- or bi-directional (i.e., the outbound flight characteristics are assumed to be the same as the inbound).
5. Atmospheric Effects of Supersonic Aviation
5.1. Effect of Nitrogen Oxides—Homogeneous Chemistry
5.2. Aerosols—Direct Effect
5.3. Aerosols—Indirect Effect through Heterogeneous Chemistry
5.4. Stratospheric Water Vapour Effects
5.5. Formation of Contrails and Contrail Cirrus
5.6. Carbon Dioxide Effects
6. A Synthesis of Prior Studies’ Results
7. Regulatory Issues
8. Discussion
9. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AESA | Atmospheric Effects of Stratospheric Aircraft Project |
AirClim | climate response model |
ASCENT | Aviation Sustainability Centre |
BC | black carbon |
CAEE | Committee on Aviation Engine Emissions |
CAEP | Committee on Aviation Environmental Protection |
CIAP | Climatic Impact Assessment Program |
CCM | climate-chemistry model |
CESM/WACCM4 | Community Earth System Model/Whole Atmosphere Community Climate Model version 4 |
COMESA | Committee on Meteorological Effects of Stratospheric Aircraft |
COVOS | Comité d’Etudes sur les Conséquences des Vols Stratosphériques |
CTM | chemical transport model |
EASA | European Aviation Safety Agency |
ECHAM | European Centre for Medium-Range Weather Forecast (ECMWF) Hamburg GCM |
EI | emission index |
ERF | effective radiative forcing |
E39/C | ECHAM4/L39 chemistry model from the German Aerospace Center |
FAA | Federal Aviation Administration |
GCM | general circulation model |
GEOS-Chem | Goddard Earth Observing System chemistry model |
HAPP | High Altitude Pollution Program |
HC | unburned hydrocarbons |
HISAC | environmentally friendly high-speed aircraft |
HSRP | High-Speed Research Program |
ICAO | International Civil Aviation Organization |
IPCC | Intergovernmental Panel on Climate Change |
LTO | Landing and Take-Off |
MDO | multidisciplinary design optimisation |
MOREandLESS | MDO and REgulations for Low-boom and Environmentally Sustainable Supersonic aviation |
NAS | National Academy of Sciences |
NASA | National Aeronautics and Space Administration |
NOx | nitrogen oxides (NO + NO2) |
nvPM | non-volatile particulate matter |
OsloCTM2 | model from the University of Oslo |
PCC | persistent contrail condition |
RF | radiative forcing |
RPK | revenue passenger kilometre |
SARP | standards and recommended practices |
SCENIC | scenario of aircraft emissions and impact studies on atmosphere and climate |
SCM | simple climate model |
SENECA | (LTO) noiSe and EmissioNs of supErsoniC Aircraft |
SLIMCAT | model from the University of Cambridge |
SST | supersonic transport |
UARP | Upper Atmospheric Research Program |
ULAQ-CCM | chemistry climate model of the University of L‘Aquila |
ULAQ-CTM | chemical transport model of the University of L‘Aquila |
ULAQ-GCM | general circulation model of the University of L‘Aquila |
UT/LS | upper troposphere/lower stratosphere |
UV | ultraviolet |
References
- Johnston, H. Reduction of stratospheric ozone by nitrogen oxide catalysts from SST exhaust. Science 1971, 173, 517–522. [Google Scholar] [CrossRef] [PubMed]
- Crutzen, P.J. SST’s: A threat to the Earth’s ozone shield. Ambio 1972, 1, 41–51. [Google Scholar]
- Tuck, A.F. Perspective on aircraft in the stratosphere: 50 years from COMESA through the ozone hole to climate. Q. J. R. Meteorolog. Soc. 2021, 147, 713–727. [Google Scholar] [CrossRef]
- IPCC. Aviation and the Global Atmosphere; Penner, J.E., Lister, D.H., Griggs, D.J., Dokken, D.J., McFarland, M., Eds.; Cambridge University Press: Cambridge, UK, 1999; p. 373. [Google Scholar]
- Lee, D.S.; Pitari, G.; Grewe, V.; Gierens, K.; Penner, J.E.; Petzold, A.; Prather, M.J.; Schumann, U.; Bais, A.; Berntsen, T.; et al. Transport impacts on atmosphere and climate: Aviation. Atmos. Environ. 2010, 44, 4678–4734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holmes, C.D.; Tang, Q.; Prather, M.J. Uncertainties in climate assessment for the case of aviation NO. Proc. Natl. Acad. Sci. USA 2011, 108, 10997–11002. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.S.; Fahey, D.W.; Skowron, A.; Allen, M.R.; Burkhardt, U.; Chen, Q.; Doherty, S.J.; Freeman, S.; Forster, P.M.; Fuglestvedt, J.; et al. The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018. Atmos. Environ. 2021, 244, 117834. [Google Scholar] [CrossRef] [PubMed]
- Kinnison, D.; Brasseur, G.P.; Baughcum, S.L.; Zhang, J.; Wuebbles, D. The impact on the ozone layer of a potential fleet of civil hypersonic aircraft. Earth’s Future 2020, 8, e2020EF001626. [Google Scholar] [CrossRef]
- Grewe, V.; Stenke, A.; Ponater, M.; Sausen, R.; Pitari, G.; Iachetti, D.; Rogers, H.; Dessens, O.; Pyle, J.; Isaksen, I.S.A.; et al. Climate impact of supersonic air traffic: An approach to optimize a potential future supersonic fleet–results from the EU-project SCENIC. Atmos. Chem. Phys. 2007, 7, 5129–5145. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Wuebbles, D.; Kinnison, D.; Baughcum, S.L. Potential impacts of supersonic aircraft emissions on ozone and resulting forcing on climate. An update on historical analysis. J. Geophys. Res. Atmos. 2021, 126, e2020JD034130. [Google Scholar] [CrossRef]
- Speth, R.L.; Eastham, S.D.; Fritz, T.M.; Sanz-Morére, I.; Agarwal, A.; Prashanth, P.; Allroggen, F.; Barrett, S.R.H. Global Environmental Impact of Supersonic Cruise Aircraft in the Stratosphere; NASA Glenn Research Center: Cleveland, OH, USA, 2021. [Google Scholar]
- Grewe, V.; Plohr, M.; Cerino, G.; Di Muzio, M.; Deremaux, Y.; Galerneau, M.; de Saint Martin, P.; Chaika, T.; Hasselrot, A.; Tengzelius, U.; et al. Estimates of the climate impact of future small-scale supersonic transport aircraft–results from the HISAC EU-project. Aeronaut. J. 2010, 114, 199–206. [Google Scholar] [CrossRef] [Green Version]
- Committee on Aircraft Engine Emissions. Aircraft pollution at high altitudes. In Proceedings of the First Meeting of the Committee on Aircraft Engine Emissions (CAEE-WP/11), Montreal, QC, Canada, 12–22 June 1978. [Google Scholar]
- Committee on Aircraft Engine Emissions. Stratospheric aircraft pollution. In Proceedings of the First Meeting of the Committee on Aircraft Engine Emissions (CAEE-WP/22), Montreal, QC, Canada, 12–22 June 1978. [Google Scholar]
- Committee on Aircraft Engine Emissions. Aircraft engine emissions in the stratosphere. In Proceedings of the First Meeting of the Committee on Aircraft Engine Emissions (CAEE-WP/24), Montreal, QC, Canada, 12–22 June 1978. [Google Scholar]
- Carisosica, S.A.; Lock, J.W.; Boyd, I.D.; Lewis, M.J.; Hallion, R.P. Commerical Development of Civilian Supersonic Aircraft. IDA Science and Tecnology Policy Institute, IDA Document D-10845. 2019. Available online: https://www.ida.org/-/media/feature/publications/c/co/commercial-development-of-civilian-supersonic-aircraft/d-10845.ashx (accessed on 12 August 2021).
- Kowalok, M.E. Common threads: Research lessons from acid rain, ozone depletion, and global warming. Environ. Sci. Policy Sustain. Dev. 1993, 35, 12–38. [Google Scholar] [CrossRef]
- Wilson, C.M.; Matthews, W.H. Man’s Impact on the Global Environment. Report of the Study of Critical Environmental Problems (SCEP); MIT Press: Cambridge, MA, USA, 1970. [Google Scholar]
- Harrison, H. Stratospheric ozone with added water vapor: Influence of high-altitude aircraft. Science 1970, 170, 734–736. [Google Scholar] [CrossRef] [PubMed]
- Crutzen, P.J. The influence of nitrogen oxides on the atmospheric ozone content. Q. J. R. Met. Soc. 1970, 96, 320–325. [Google Scholar] [CrossRef]
- Crutzen, P.J. Ozone production rates in an oxygen-hydrogen-nitrogen oxide atmosphere. J. Geophys. Res. 1971, 76, 7311–7327. [Google Scholar] [CrossRef]
- SMIC. Inadvertent Climate Modification, Report of the Study of Man’s Impact on Climate. Science 1972, 176, 38. [Google Scholar]
- CTAB. Environmental Aspects of the Supersonic Transport: A Recommended Program for Research and Measurement; Report to the Commerce Technical Advisory Board; U.S. Department of Commerce: Washington, DC, USA, 1972. [Google Scholar]
- Australian Academy of Sciences. Atmospheric Effects of Supersonic Aircraft; Technical Report No. 15; Australian Academy of Science: Canberra, Australia, 1972. [Google Scholar]
- U.S. Government Print. The Supersonic Transport; U.S. Government Print: Washington, DC, USA, 1971.
- National Academy of Sciences. Biological Impacts of Increased Intensities of Solar Ultraviolet Radiation; The National Academies Press: Washington, DC, USA, 1973. [Google Scholar]
- Johnston, H.S. A turning point. Scientist 1996, 10, 9–12. [Google Scholar]
- Grobecker, A.J.; Coroniti, S.C.; Cannon, R.H., Jr. Report of Findings: The Effects of Stratospheric Pollution by Aircraft. Climatic Impact Assessment Program Report DOT-TSC-75-50; U.S. Department of Transportation: Washington, DC, USA, 1974.
- Wayne, R.P. Chemistry of Atmospheres; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Morrisette, P.M. The evolution of policy responses to stratospheric ozone depletion. Nat. Resour. J. 1989, 29, 793–820. [Google Scholar]
- National Academy of Sciences. Environmental Impact of Stratospheric Flight: Biological and Climatic Effects of Aircraft Emissions in the Stratosphere; The National Academies Press: Washington, DC, USA, 1975. [Google Scholar]
- Committee on the Meteorological Effects of Stratospheric Aircraft (COMESA). The Report of the Committee on Meteorological Effects of Stratospheric Aircraft; United Kingdom Meteorological Office: Bracknell, UK, 1976; Volumes 1 and 2. [Google Scholar]
- Comité d’Études sur les Conséquences des Vols Stratosphèriques (COVOS). Rapport Finale, COVOS, Activités 1972–1976; Société Météorologique de France: Boulogne, France, 1976. [Google Scholar]
- Broderick, A.J. Stratospheric effects from aviation. J. Aircr. 1978, 15, 643–653. [Google Scholar] [CrossRef]
- Crutzen, P.A. Discussion of the chemistry of some minor constituents in the stratosphere and troposphere. Pure Appl. Geophys. 1973, 106, 1385–1399. [Google Scholar] [CrossRef]
- Oliver, R.C.; Bauer, E.; Wasylkiwskyj, W. Recent Developments in the Estimation of Potential Effects of High Altitude Aircraft Emissions on Ozone and Climate; Technical Report No. AD-A-063586; Institute for Defense Analyses: Arlington, VA, USA, 1978. [Google Scholar]
- Johnston, H.S.; Prather, M.J.; Watson, R.T. The Atmospheric Effects of Stratospheric Aircraft: A Topical Review; NASA: Washington, DC, USA, 1991. [Google Scholar]
- Douglass, A.R.; Carroll, M.A.; DeMore, W.B.; Holton, J.R.; Isaksen, I.S.A.; Johnston, H.S.; Ko, M.K. The Atmospheric Effects of Stratospheric Aircraft: A Current Consensus; NASA: Washington, DC, USA, 1991. [Google Scholar]
- Johnston, H.S.; Kinnison, D.E.; Wuebbles, D.J. Nitrogen oxides from high-altitude aircraft: An update of potential effects on ozone. J. Geophys. Res. Atmos. 1989, 94, 16351–16363. [Google Scholar] [CrossRef]
- Prather, M.J. (Ed.) The Atmospheric Effects of Stratospheric Aircraft: A First Program Report; National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program: Washington, DC, USA, 1992; Volume 1272. [Google Scholar]
- Stolarski, R.S.; Wesoky, H.L. The Atmospheric Efects of Stratospheric Aircraft: A Second Program Report; NASA: Washington, DC, USA, 1993. [Google Scholar]
- Stolarski, R.S.; Wesoky, H.L. The Atmospheric Effects of Stratospheric Aircraft: A Third Program Report; NASA: Washington, DC, USA, 1993. [Google Scholar]
- Albritton, D.L.; Brune, W.H.; Douglass, A.R.; Dryer, F.L.; Ko, M.K.W.; Koib, C.E.; Miake-Lye, R.C.; Prather, M.J.; Ravishankara, A.R.; Rood, R.B.; et al. The Atmospheric Effects of Stratospheric Aircraft: Interim Assessment Report of the NASA High-Speed Research Program; NASA: Washington, DC, USA, 1993. [Google Scholar]
- National Research Council. Atmospheric Effects of Stratospheric Aircraft: An Evaluation of NASA’s Interim Assessment; National Academy Press: Washington, DC, USA, 1994; Volume 196324. [Google Scholar]
- Stolarski, R.S.; Wesoky, H.L. The Atmospheric Effects of Stratospheric Aircraft: A Fourth Program Report; NASA: Washington, DC, USA, 1995. [Google Scholar]
- National Research Council. A Review of NASA’s ’Atmospheric Effects of Stratospheric Aircraft’ Project; The National Academies Press: Washington, DC, USA, 1999. [Google Scholar]
- Zhang, J.; Wuebbles, D.; Kinnison, D.; Baughcum, S.L. Stratospheric Ozone and Climate Forcing Sensitivity to Cruise Altitudes for Fleets of Potential Supersonic Transport Aircraft. J. Geophys. Res. Atmos. 2021, 126, e2021JD034971. [Google Scholar] [CrossRef]
- Boom—Overture. Available online: https://boomsupersonic.com/overture (accessed on 12 August 2021).
- The Spike S-512 Supersonic Business Jet. Available online: https://www.spikeaerospace.com/s-512-supersonic-jet/ (accessed on 12 August 2021).
- Supersonic Business Jet Developer Aerion Folds. Available online: https://www.flightglobal.com/business-aviation/supersonic-business-jet-developer-aerion-folds/143867.article (accessed on 12 August 2021).
- Berton, J.J.; Huff, D.L.; Geiselhart, K.A.; Seidel, J.A. Supersonic Technology Concept Aeroplanes for Environmental Studies. In Proceedings of the AIAA SciTech Forum and Exposition, Orlando, FL, USA, 6–10 January 2020; Available online: https://ntrs.nasa.gov/api/citations/20200000513/downloads/20200000513.pdf (accessed on 21 October 2021).
- Aviation Week. TsAGI Reveals Supersonic Commercial Aircraft Demonstrator. Available online: https://aviationweek.com/air-transport/aircraft-propulsion/tsagi-reveals-supersonic-commercial-aircraft-demonstrator (accessed on 21 October 2021).
- Rutherford, D.; Graver, B.; Chen, C. Noise and Climate Impacts of an Unconstrained Commercial Supersonic Network; Working Paper 2019-02; The International Council on Clean Transportation: Washington, DC, USA, 2019. [Google Scholar]
- Mavris, D.; Crossley, W.; Tai, J.; DeLaurentis, D. Project 010 Aircraft Technology Modeling and Assessment; Technical Report; Georgia Institute of Technology and Purdue University: Atlanta, GA, USA, 2019. [Google Scholar]
- Baughcum, S.L.; Henderson, S.C. Aircraft Emission Scenarios Projected in Year 2015 for the NASA Technology Concept Aircraft (TCA) High Speed Civil Transport; Technical Report No. 207635; National Aeronautics and Space Administration, Langley Research Center: Hampton, VA, USA, 1998. [Google Scholar]
- Stenke, A.; Grewe, V.; Pechtl, S. Do supersonic aircraft avoid contrails? Atmos. Chem. Phys. 2008, 8, 955–967. [Google Scholar] [CrossRef] [Green Version]
- Kharina, A.; MacDonald, T.; Rutherford, D. Environmental Performance of Emerging Supersonic Transport Aircraft; The International Council On Clean Transportation: Washington, DC, USA, 2018. [Google Scholar]
- Lin, X.; Trainer, M.; Liu, S.C. On the nonlinearity of the tropospheric ozone production. J. Geophys. Res. Atmos. 1988, 93, 15879–15888. [Google Scholar] [CrossRef] [Green Version]
- Søvde, O.A.; Gauss, M.; Isaksen, I.S.A.; Pitari, G.; Marizy, C. Aircraft pollution—A futuristic view. Atmos. Chem. Phys. 2007, 7, 3621–3632. [Google Scholar] [CrossRef] [Green Version]
- Lary, D.J. Catalytic destruction of stratospheric ozone. J. Geophys. Res. Atmos. 1997, 102, 21515–21526. [Google Scholar] [CrossRef]
- Forster, P.M.; Shine, K.P. Radiative forcing and temperature trends from stratospheric ozone changes. J. Geophys. Res. Atmos. 1997, 102, 10841–10855. [Google Scholar] [CrossRef]
- Pitari, G.; Iachetti, D.; Mancini, E.; Montanaro, V.; Luca, N.D.; Marizy, C.; Dessens, O.; Rogers, H.; Pyle, J.; Grewe, V.; et al. Radiative forcing from particle emissions by future supersonic aircraft. Atmos. Chem. Phys. 2008, 8, 4069–4084. [Google Scholar] [CrossRef] [Green Version]
- Tie, X.; Brasseur, G. The response of stratospheric ozone to volcanic eruptions: Sensitivity to atmospheric chlorine loading. Geophys. Res. Lett. 1995, 22, 3035–3038. [Google Scholar] [CrossRef]
- Pitari, G.; Aquila, V.; Kravitz, B.; Robock, A.; Watanabe, S.; Cionni, I.; De Luca, N.; Di Genova, G.; Mancini, E.; Tilmes, S. Stratospheric ozone response to sulfate geoengineering: Results from the Geoengineering Model Intercomparison Project (GeoMIP). J. Geophys. Res. Atmos. 2014, 119, 2629–2653. [Google Scholar] [CrossRef]
- Tilmes, S.; Garcia, R.R.; Kinnison, D.E.; Gettelman, A.; Rasch, P.J. Impact of geoengineered aerosols on the troposphere and stratosphere. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Solomon, S.; Rosenlof, K.H.; Portmann, R.W.; Daniel, J.S.; Davis, S.M.; Sanford, T.J.; Plattner, G.K. Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science 2010, 327, 1219–1223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gettelman, A. The evolution of aircraft emissions in the stratosphere. Geophys. Res. Lett. 1998, 25, 2129e2132. [Google Scholar] [CrossRef] [Green Version]
- Pitari, G.; Mancini, E. Climatic impact of future supersonic aircraft: Role of water vapour and ozone feedback on circulation. Phys. Chem. Earth Part C 2001, 26, 571–576. [Google Scholar] [CrossRef]
- Kawa, S.R.; Anderson, J.G.; Baughcum, S.L.; Brock, C.A.; Brune, W.H.; Cohen, R.C.; Kinnison, D.E.; Newman, P.A.; Rodriguez, J.M.; Stolarski, R.S.; et al. Assessment of the Effects of High-Speed Aircraft in the Stratosphere: 1998 (National Aeronautics and Space Administration Report); Technical Report No. 1999-209237; National Academies Press: Washington, DC, USA, 1999. [Google Scholar]
- Wilcox, L.J.; Shine, K.P.; Hoskins, B.J. Radiative forcing due to aviation water vapour emissions. Atmos. Environ. 2012, 63, 1–13. [Google Scholar]
- Frömming, C.; Ponater, M.; Dahlmann, K.; Grewe, V.; Lee, D.S.; Sausen, R. Aviation-induced radiative forcing and surface temperature change in dependency of the emission altitude. J. Geophys. Res. Atmos. 2012, 117, 9717–9736. [Google Scholar] [CrossRef] [Green Version]
- Lim, L.L.; Lee, D.S.; Owen, B.; Skowron, A.; Matthes, S.; Burkhardt, U.; Dietmüller, S.; Pitari, G.; Di Genova, G.; Iachetti, D.; et al. REACT4C: Simplified mitigation studies. In Proceedings of the TAC Conference, Bad Kohlgrub, Germany, 22–25 June 2015; pp. 181–185. [Google Scholar]
- Forster, C.; Stohl, A.; James, P.; Thouret, V. The residence times of aircraft emissions in the stratosphere using a mean emission inventory and emissions along actual flight tracks. J. Geophys. Res. 2003, 108, 8524. [Google Scholar] [CrossRef] [Green Version]
- Myhre, G.; Kvalevåg, M.; Raedel, G.; Cook, J.; Shine, K.P.; Clark, H.; Karcher, F.; Markowicz, K.; Kardas, A.; Wolkenberg, P.; et al. Intercomparison of radiative forcing calculations of stratospheric water vapour and contrails. Meteorol. Z. 2009, 18, 585. [Google Scholar] [CrossRef] [Green Version]
- Matthes, S.; Lim, L.; Burkhardt, U.; Dahlmann, K.; Dietmüller, S.; Grewe, V.; Haslerud, A.S.; Hendricks, J.; Owen, B.; Pitari, G.; et al. Mitigation of non-CO2 aviation’s climate impact by changing cruise altitudes. Aerospace 2021, 8, 36. [Google Scholar] [CrossRef]
- Kärcher, B. Formation and radiative forcing of contrail cirrus. Nat. Commun. 2018, 9, 1824. [Google Scholar] [CrossRef] [PubMed]
- Bräuer, T.; Voigt, C.; Sauer, D.; Kaufmann, S.; Hahn, V.; Scheibe, M.; Schlager, H.; Huber, F.; Le Clercq, P.; Moore, R.; et al. Reduced ice number concentrations in contrails from low aromatic biofuel blends. Atmos. Chem. Phys. Discuss. 2021, 21, 16817–16826. [Google Scholar] [CrossRef]
- Dessens, O.; Rogers, H.L.; Pyle, J.A. A change in the calculated impact of supersonic aircraft NOx emissions on the atmosphere. Aeronaut. J. 2007, 111, 311–314. [Google Scholar] [CrossRef]
- Grewe, V.; Stenke, A. AirClim: An efficient tool for climate evaluation of aircraft technology. Atmos. Chem. Phys. 2008, 8, 4621–4639. [Google Scholar] [CrossRef] [Green Version]
- Environment Publications. Available online: https://www.icao.int/environmental-protection/Pages/environment-publications.aspx (accessed on 12 August 2021).
- Committee on Aviation Environmental Protection Report (Doc 10126). In Proceedings of the 11th Meeting of the Committee on Aviation Environmental Protection, Montreal, QC, Canada, 4–15 February 2019.
- Russel, R.; Maurice, L.; Devine, R. Supersonic flight and sustainability: A new horizon. Bridge 2020, 50, 28–33. [Google Scholar]
- Ramaswamy, V. Radiative forcing of climate change. In Climate Change 2001: The Scientific Basis; Houghton, J.T., Ed.; Cambridge University Press: New York, NY, USA, 2001; pp. 349–416. [Google Scholar]
- Etminan, M.; Myhre, G.; Highwood, E.J.; Shine, K.P. Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing. Geophys. Res. Lett. 2016, 43, 12–614. [Google Scholar] [CrossRef]
- Grewe, V.; Stenke, A.; Plohr, M.; Korovkin, V.D. Climate functions for the use in multi-disciplinary optimisation in the pre-design of supersonic business jet. Aeronaut. J. 2010, 114, 259–269. [Google Scholar] [CrossRef]
- Kremser, S.; Thomason, L.W.; von Hobe, M.; Hermann, M.; Deshler, T.; Timmreck, C.; Toohey, M.; Stenke, A.; Schwarz, J.P.; Weigel, R.; et al. Stratospheric aerosol—Observations, processes, and impact on climate. Rev. Geophys. 2016, 54, 278–335. [Google Scholar] [CrossRef]
- Righi, M.; Hendricks, J.; Lohmann, U.; Beer, C.G.; Hahn, V.; Heinold, B.; Heller, R.; Krämer, M.; Ponater, M.; Rolf, C.; et al. Coupling aerosols to (cirrus) clouds in the global EMAC-MADE3 aerosol–climate model. Geosci. Model Dev. 2020, 13, 1635–1661. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.S.; Fahey, D.W.; Forster, P.M.; Newton, P.J.; Wit, R.C.; Lim, L.L.; Owen, B.; Sausen, R. Aviation and global climate change in the 21st century. Atmos. Environ. 2009, 43, 3520–3537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Søvde, O.A.; Matthes, S.; Skowron, A.; Iachetti, D.; Lim, L.; Owen, B.; Hodnebrog, Ø.; Di Genova, G.; Pitari, G.; Lee, D.S.; et al. Aircraft emission mitigation by changing route altitude: A multi-model estimate of aircraft NOx emission impact on O3 photochemistry. Atmos. Environ. 2014, 95, 468–479. [Google Scholar] [CrossRef]
IPCC [4,55] | SCENIC [9] | HISAC [12] | NASA [11] | |
---|---|---|---|---|
Reference aircraft (type) | Boeing (Airliner) | Airbus (Airliner) | Dassault, Alenia, Sukhoi (BizJet) | Concorde (Airliner) |
Mean cruise altitude (km) | 17–20 | 16–19 | 15–16 | 16.7 |
Number of aircraft | 500/1000 | 501 | 250 | 440–470 |
Passengers | 309 | 250 | 8 | 60 |
Speed (Mach) | 2.4 | 2.0 | 1.6–1.8 | 1.6 |
Maximum range (NM) | 5000 | 5400 | 4000 | 4500 |
Fuel consumption (Tg/year) | 70/140 | 60 | 0.4 | 16.8 |
EI(NOx) (g(NO2)/kg (fuel)) | 5 | 4.6 | 10.5–12 | 8.8 |
EI(H2O) (kg(H2O)/kg (fuel)) | 1.23 | 1.25 | n/a | 1.26 |
Time of full fleet | 2050 | 2050 | 2050 | 2035 |
IPCC [4] 1 | SCENIC [9] 2 | SCENIC [62] | HISAC [12] 3 | Zhang et al., 2021 [10] 4 | NASA [11] 5 | |
---|---|---|---|---|---|---|
Fleet assumptions | ||||||
Mean cruise altitude (km) | 17–20 | 16–19 | 16–19 | 15–16 | 17–20 | 16.7 |
H2O emissions (Tg(H2O)/yr) | 86.1/172.2 | 75 | 75 | 0.5 *** | 58.1/103.9 **** | 21.2 |
NOx emissions (Tg(NO2)/yr) | 0.35/0.70 | 0.27 | 0.27 | <0.005 | 0.24/0.42 **** | 0.17 ***** |
Fuel consumption (Tg/yr) | 70/140 | 60 | 60 | 0.4 | 47/84 | 16.8 |
Climate effects | ||||||
CO2 (RF, mW m−2) | n.a./6 | 3.3 a | 4.1 **/n.a. | |||
H2O (RF, mW m−2) | 50 (17, 150)/99 | 23.1 | 40.9 d | 41.9/74.1 | 1.3 * [1.2] | |
O3 (RF, mW m−2) | −10 (−40, 10)/−17 | −2.8 | −3.2 c/−2.5 d | 3.8/2.1 | 3.3 * [3.0] | |
CH4 (RF, mW m−2) | n.a./5 | −1.6 | 0.08 * [−0.4] | |||
Contrails (RF, mW m−2) | n.a./−11 | −0.6 b | ||||
BC (RF, mW m−2) | 4.6 c | −1.3 * [−1.4] | ||||
SO4 (RF, mW m−2) | −11.4 c | −5.2 * [−5.2] | ||||
Total (RF, mW m−2) | n.a./82 | 22 (9, 29) | 0.1 | −2.4 *^ [−3.2] | ||
Total (temperature, mK) | n.a./1.4 | 21 | 0.08 (0.07, 0.1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matthes, S.; Lee, D.S.; De Leon, R.R.; Lim, L.; Owen, B.; Skowron, A.; Thor, R.N.; Terrenoire, E. Review: The Effects of Supersonic Aviation on Ozone and Climate. Aerospace 2022, 9, 41. https://doi.org/10.3390/aerospace9010041
Matthes S, Lee DS, De Leon RR, Lim L, Owen B, Skowron A, Thor RN, Terrenoire E. Review: The Effects of Supersonic Aviation on Ozone and Climate. Aerospace. 2022; 9(1):41. https://doi.org/10.3390/aerospace9010041
Chicago/Turabian StyleMatthes, Sigrun, David S. Lee, Ruben Rodriguez De Leon, Ling Lim, Bethan Owen, Agnieszka Skowron, Robin N. Thor, and Etienne Terrenoire. 2022. "Review: The Effects of Supersonic Aviation on Ozone and Climate" Aerospace 9, no. 1: 41. https://doi.org/10.3390/aerospace9010041
APA StyleMatthes, S., Lee, D. S., De Leon, R. R., Lim, L., Owen, B., Skowron, A., Thor, R. N., & Terrenoire, E. (2022). Review: The Effects of Supersonic Aviation on Ozone and Climate. Aerospace, 9(1), 41. https://doi.org/10.3390/aerospace9010041