Shape Optimization of Labyrinth Seals to Improve Sealing Performance
Abstract
:1. Introduction
2. Objective Function and Design Variables
3. Optimization Method
3.1. CFD Method
3.2. Surrogate Model Based on LS-SVM
3.3. Chaotic Optimization Algorithm
4. Analysis of Results
4.1. CFD Model Validation
4.2. Surrogate Model Validation
4.3. Analysis of Calculation Results from LS-SVM
4.4. Optimization Processes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nayaka, C. Effect of rotation on leakage and windage heating in labyrinth seals with honeycomb lands. J. Eng. Gas Turbines Power Trans. ASME 2020, 142, 081001. [Google Scholar] [CrossRef]
- Suryanarayanan, S.; Morrison, G.L. Labyrinth seal discharge coefficient for rectangular cavities. In Proceedings of the ASME 2009 Fluids Engineering Division Summer Meeting, Vail, CO, USA, 2–6 August 2009. FEDSM2009-78152. [Google Scholar]
- Witting, S.; Schelling, U.; Kim, S.; Jacobsen, K. Numerical predictions and measurements of discharge coefficient in labyrinth seals. In Proceedings of the ASME International Gas Turbine Conference & Exhibition, Anaheim, CA, USA, 31 May–4 June 1987; The American Society of Mechanical Engineerings: Farifield, NY, USA, 1987. 87-GT-188. [Google Scholar]
- Du, F.Q.; Ji, H.F.; Shuai, H.S.; Zhang, B.; Wang, D.; Lu, H.Y.; Deng, M.C. Orthogonal experiment of effect of fin geometrical parameters on leakage of straight-labyrinth seals. J. Aerosp. Power 2013, 28, 825–831. [Google Scholar]
- Anker, J.E.; Mayer, J.F. Simulation of the interaction of labyrinth seal leakage flow and main flow in an axial turbine. In ASME Turbo Expo 2002: Power for Land, Sea and Air; The American Society of Mechanical Engineerings: Farifield, NY, USA, 2002; GT2002-30348. [Google Scholar]
- Pychynski, T.; Dullenkopf, K.; Bauer, H.J.; Mikut, R. Modeling the labyrinth seal discharge coefficient using data mining methods. In ASME Turbo Expo 2010: Power for Land, Sea, and Air; The American Society of Mechanical Engineerings: Farifield, NY, USA, 2010; GT2010-2266. [Google Scholar]
- Asok, S.P.; Sankaranarayanasamy, K.; Sundararajan, T.; Rajesh, K.; Ganeshan, S.G. Neural network and CFD-based optimisation of square cavity and curved cavity static labyrinth seals. Tribol. Int. 2007, 40, 1204–1216. [Google Scholar] [CrossRef]
- Kim, T.S.; Cha, K.S. Comparative analysis of the influence of labyrinth seal configuration on leakage behavior. J. Mech. Sci. Technol. 2009, 23, 2830–2838. [Google Scholar] [CrossRef]
- Schramm, V.; Denecke, J.; Kim, S.; Witting, S. Shape optimization of a labyrinth seal applying the simulated annealing method. Int. J. Rotating Mach. 2004, 10, 365–371. [Google Scholar] [CrossRef]
- Wang, Z.H.; Xu, L.Q.; Xi, G. Numerical investigation of the labyrinth seal design for a low flow coefficient centrifugal compressor. In ASME Turbo Expo 2010, Power for Land, Sea and Air; The American Society of Mechanical Engineerings: Farifield, NY, USA, 2010; GT2010-23096. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Wang, C.H.; Zhang, J.Z.; Zhou, J.H. Prediction of film-cooling effectiveness based on support vector machine. Appl. Therm. Eng. 2015, 83, 82–93. [Google Scholar] [CrossRef]
- Shayeghi, H.; Shayanfar, H.A.; Jalizadeh, S.; Safari, A. Multi-machine power system stabilizers design using chaotic optimization algorithm. Energy Convers. Manag. 2010, 51, 1572–1580. [Google Scholar] [CrossRef]
- Santos, C.L. Turning of PID controller for an automatic regulator voltage system using chaotic optimization approach. ChaosSolitons Fractals 2009, 39, 1504–1514. [Google Scholar] [CrossRef]
- Willenborg, K.; Kim, S.; Witting, S. Effects of Reynolds number and pressure ratio on leakage loss and heat transfer in a stepped labyrinth seal. ASME J. Turbomach. 2011, 123, 815–822. [Google Scholar] [CrossRef]
- Morrison, G.L.; Adnan, A.G. Experimental and computational analysis of a gas compressor windback seal. In ASME Turbo Expo 2007: Power for Land, Sea, and Air; The American Society of Mechanical Engineerings: Farifield, NY, USA, 2007; GT2007-27986. [Google Scholar]
- Suykens, J.A.K.; Vandewalle, J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9, 293–300. [Google Scholar] [CrossRef]
- Wang, H.C.; Fang, H.R.; Meng, L.; Xu, F.X. A pre-warning system of abnormal energy consumption in lead smelting based on LSSVR-RP-CI. J. Cent. South Univ. 2019, 26, 2175–2184. [Google Scholar] [CrossRef]
- Jiaqiang, E.; Wang, C.H.; Gong, J.K.; Wang, Y.N. A new adaptive mutative scale chaos optimization algorithm and its application. Control Theory Appl. 2008, 6, 141–145. [Google Scholar]
- Qin, H.Q.; Lu, D.G.; Zhong, D.W.; Wang, Y.; Song, Y. Experimental and numerical investigation for the geometrical parameters effect on the labyrinth-seal flow characteristics of fast reactor fuel assembly. Ann. Nucl. Energy 2020, 135, 106964. [Google Scholar] [CrossRef]
- Ji, G.J.; Ji, H.H. Numerical and experimental investigation of pressure loss and critical sealing characteristics of straight-through labyrinth seals. J. Aerosp. Power 2008, 23, 415–420. [Google Scholar]
Design Variable | Symbol | Unit | Lower Bound | Upper Bound |
---|---|---|---|---|
Fin clearance | c | mm | 0.2 | 0.6 |
Fin width | w | mm | 0.1 | 0.7 |
Fin height | H | mm | 3 | 7 |
Fin pitch | B | mm | 3 | 9 |
Fin backward expansion angle | α | ° | 0 | 15 |
Fin forward expansion angle | β | ° | 0 | 15 |
Number | c (mm) | w (mm) | H (mm) | B (mm) | α(°) | Β(°) | Cd,cal | Cd,exp |
---|---|---|---|---|---|---|---|---|
1 | 0.2 | 0.7 | 3 | 3 | 0 | 0 | 0.438 | 0.450 |
2 | 0.3 | 0.7 | 4 | 4 | 5 | 5 | 0.491 | 0.500 |
3 | 0.5 | 0.7 | 5 | 6 | 8 | 8 | 0.530 | 0.581 |
4 | 0.4 | 0.7 | 6 | 7 | 12 | 12 | 0.403 | 0.389 |
5 | 0.6 | 0.7 | 7 | 9 | 15 | 15 | 0.500 | 0.449 |
6 | 0.2 | 0.5 | 4 | 6 | 12 | 15 | 0.322 | 0.361 |
7 | 0.3 | 0.5 | 5 | 7 | 15 | 0 | 0.365 | 0.426 |
8 | 0.5 | 0.5 | 6 | 9 | 0 | 5 | 0.409 | 0.440 |
9 | 0.4 | 0.5 | 7 | 3 | 5 | 8 | 0.573 | 0.641 |
10 | 0.6 | 0.5 | 3 | 4 | 8 | 12 | 0.608 | 0.551 |
11 | 0.2 | 0.3 | 5 | 9 | 5 | 12 | 0.340 | 0.357 |
12 | 0.3 | 0.3 | 6 | 3 | 8 | 15 | 0.472 | 0.427 |
13 | 0.5 | 0.3 | 7 | 4 | 12 | 0 | 0.609 | 0.595 |
14 | 0.4 | 0.3 | 3 | 6 | 15 | 5 | 0.514 | 0.476 |
15 | 0.6 | 0.3 | 4 | 7 | 0 | 8 | 0.511 | 0.494 |
16 | 0.2 | 0.2 | 6 | 4 | 15 | 8 | 0.460 | 0.516 |
17 | 0.3 | 0.2 | 7 | 6 | 0 | 12 | 0.409 | 0.386 |
18 | 0.5 | 0.2 | 3 | 7 | 5 | 15 | 0.342 | 0.36 |
19 | 0.4 | 0.2 | 4 | 9 | 8 | 0 | 0.412 | 0.369 |
20 | 0.6 | 0.2 | 5 | 3 | 12 | 5 | 0.652 | 0.587 |
21 | 0.2 | 0.1 | 7 | 7 | 8 | 5 | 0.363 | 0.331 |
22 | 0.3 | 0.1 | 3 | 9 | 12 | 8 | 0.292 | 0.274 |
23 | 0.5 | 0.1 | 4 | 3 | 15 | 12 | 0.557 | 0.509 |
24 | 0.4 | 0.1 | 5 | 4 | 0 | 15 | 0.373 | 0.344 |
25 | 0.6 | 0.1 | 6 | 6 | 5 | 0 | 0.539 | 0.497 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Wang, C. Shape Optimization of Labyrinth Seals to Improve Sealing Performance. Aerospace 2021, 8, 92. https://doi.org/10.3390/aerospace8040092
Zhao Y, Wang C. Shape Optimization of Labyrinth Seals to Improve Sealing Performance. Aerospace. 2021; 8(4):92. https://doi.org/10.3390/aerospace8040092
Chicago/Turabian StyleZhao, Yizhen, and Chunhua Wang. 2021. "Shape Optimization of Labyrinth Seals to Improve Sealing Performance" Aerospace 8, no. 4: 92. https://doi.org/10.3390/aerospace8040092
APA StyleZhao, Y., & Wang, C. (2021). Shape Optimization of Labyrinth Seals to Improve Sealing Performance. Aerospace, 8(4), 92. https://doi.org/10.3390/aerospace8040092