Constrained Urban Airspace Design for Large-Scale Drone-Based Delivery Traffic
Abstract
:1. Introduction
2. Background
2.1. Airspace Structure
2.2. Road and Street Structure
2.3. Conflicts and Intrusions
2.4. Traffic Segmentation and Alignment
2.5. Constrained Urban Airspace
3. Design of Urban Airspace Concepts for Constrained Environments
3.1. Flying over Streets
3.2. Preliminary Investigations and Key Observations
3.2.1. Turning Flights
3.2.2. Through and Turn Altitude Layers
3.3. Concept Design Features
3.3.1. Two-Way
- 315 < ≤ 045: North bound layers
- 045 < ≤ 135: East bound layers
- 135 < ≤ 225: South bound layers
- 225 < ≤ 315: West bound layers
3.3.2. One-Way
- 315 < ≤ 045: North bound layer
- 045 < ≤ 135: East bound layer
- 135 < ≤ 225: South bound layer
- 225 < ≤ 315: West bound layer
Algorithm 1: Heuristic to align flight altitudes to their travel direction. |
if or then |
else |
if or then |
end if |
end if |
3.4. Concept Comparison
4. Simulation Design
4.1. Simulation Development
4.1.1. Simulation Platform
4.1.2. Testing Region
4.1.3. Conflict Detection and Resolution
4.1.4. Urban Airspace Concept Implementation
4.2. Independent Variables
- urban airspace concepts: two-way and one-way designs;
- airborne separation assurance conditions: with and without tactical conflict resolution; and,
- traffic demand: low, medium, and high traffic densities.
4.3. Dependent Measures
4.3.1. Safety
4.3.2. Stability
4.3.3. Throughput
4.3.4. Average Number of Turns
4.3.5. Cumulative Travel Time
4.4. Experimental Hypotheses
5. Results
5.1. Safety
5.2. Stability
5.3. Throughput
5.4. Average Number of Turns
5.5. Cumulative Travel Time
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Floreano, D.; Wood, R.J. Science, technology and the future of small autonomous drones. Nature 2015, 521, 460–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Candiago, S.; Remondino, F.; De Giglio, M.; Dubbini, M.; Gattelli, M. Evaluating Multispectral Images and Vegetation Indices for Precision Farming Applications from UAV Images. Remote Sens. 2015, 7, 4026–4047. [Google Scholar] [CrossRef] [Green Version]
- King, A. Technology: The future of agriculture. Nature 2017, 544, S21–S23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coops, N.; Goodbody, T.R.H.; Lin, C. Four steps to extend drone use in research. Nature 2019, 572, 433–435. [Google Scholar] [CrossRef] [PubMed]
- Francisco, M. Organ delivery by 1000 drones. Nat. Biotechnol. 2016, 34, 684. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Shah, K.; Mauntel, C.; Shah, S. Drone delivery of medications: Review of the landscape and legal considerations. Bull. Am. Soc. Hosp. Pharm. 2018, 75, 153–158. [Google Scholar] [CrossRef]
- Kasliwal, A.; Furbush, N.J.; Gawron, J.H.; Mcbride, J.R.; Wallington, T.J.; Kleine, R.D.D.; Kim, H.C.; Keoleian, G.A. Role of flying cars in sustainable mobility. Nat. Commun. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Bamburry, D. Drones: Designed for product delivery. Des. Manag. Rev. 2015, 26, 40–48. [Google Scholar] [CrossRef]
- Frachtenberg, E. Practical drone delivery. Computer 2019, 52, 53–57. [Google Scholar] [CrossRef]
- Hawkins, A.J. UPS Seeks Government Approval for ‘Advanced’ Drone Delivery Service: The Delivery Giant Could be Permitted to Fly Drones over Populated Areas. 2019. Available online: https://www.theverge.com/2019/7/23/20707470/ups-drone-delivery-faa-certification-approval (accessed on 12 October 2020).
- Krader, K. Uber Wants Your Next Big Mac to Be Delivered by Drone. 2019. Available online: https://www.bloomberg.com/news/articles/2019-06-12/uber-announces-plans-to-deliver-big-macs-by-drone-this-summer (accessed on 12 October 2020).
- FedEx. Drone Deliveries Coming Soon, as Wing Unveils Plans for First-of-its-Kind Trial with FedEx and Walgreens. 2019. Available online: https://www.freightcomms.net/drone-deliveries-coming-soon-as-wing-unveils-plans-for-first-of-its-kind-trial-with-fedex-and-walgreens/ (accessed on 12 October 2020).
- Levin, A. Amazon’s Drone Delivery Fleet Hits Milestone with FAA Clearance. 2020. Available online: https://www.bloombergquint.com/business/amazon-s-drone-delivery-fleet-hits-milestone-with-faa-clearance (accessed on 12 October 2020).
- Stolaroff, J.K.; Samaras, C.; Mitchell, A.S.; Ceperley, D.; Neill, E.R.O.; Lubers, A. Energy use and life cycle greenhouse gas emissions of drones for commercial package delivery. Nat. Commun. 2018, 1–13. [Google Scholar] [CrossRef]
- Doole, M.; Ellerbroek, J.; Hoekstra, J. Drone delivery: Urban airspace traffic density estimation. In Proceedings of the SESAR Innovation Days, Salzburg, Austria, 3–7 December 2018. [Google Scholar]
- Doole, M.; Ellerbroek, J.; Hoekstra, J. Estimation of traffic density from drone-based delivery in very low level urban airspace. J. Air Transp. Manag. 2020, 88, 101862. [Google Scholar] [CrossRef]
- Sunil, E.; Hoekstra, J.; Ellerbroek, J.; Bussink, F.; Nieuwenhuisen, D.; Vidosavljevic, A.; Kern, S. Metropolis: Relating Airspace Structure and Capacity for Extreme Traffic Densities. In Proceedings of the 11th USA/Europe Air Traffic Management Research and Development Seminar, Lisbon, Portugal, 23–26 June 2015. [Google Scholar]
- Sunil, E.; Hoekstra, J.; Ellerbroek, J.; Bussink, F.; Nieuwenhuisen, D.; Vidosavljevic, A.; Kern, S. Analysis of airspace structure and capacity for decentralised separation using fast-time simulations. J. Guid. Control. Dyn. 2017, 40, 38–51. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, J.M.; Maas, J.; Tra, M.; Sunil, E. How do layered airspace design parameters affect airspace capacity and safety? In Proceedings of the 7th International Conference on Research in Air Transportation, Philadelphia, PA, USA, 20–24 June 2016. [Google Scholar]
- Hoekstra, J.M.; Ellerbroek, J.; Sunil, E.; Maas, J. Geovectoring: Reducing Traffic Complexity to Increase the Capacity of UAV airspace. In Proceedings of the 8th International Conference for Research in Air Transportation, Barcelona, Spain, 26–29 June 2018. [Google Scholar]
- Sunil, E.; Ellerbroek, J.; Hoekstra, J.M.; Maas, J. Three-dimensional conflict count models for unstructured and layered airspace designs. Transp. Res. Part C Emerg. Technol. 2018, 95, 295–319. [Google Scholar] [CrossRef]
- Primatesta, S.; Guglieri, G.; Rizzo, A. A Risk-Aware Path Planning Strategy for UAVs in Urban Environments. J. Intell. Robot. Syst. 2019, 629–643. [Google Scholar] [CrossRef]
- Xu, C.; Member, S.; Liao, X. Recent Research Progress of Unmanned Aerial Vehicle Regulation Policies and Technologies in Urban Low Altitude. IEEE Access 2020, 8, 74175–74194. [Google Scholar] [CrossRef]
- Pang, B.; Dai, F.; Low, K.H. Risk Assessment Model for UAV Cost-Effective Path Planning in Urban Environments. IEEE Access 2020, 8. [Google Scholar] [CrossRef]
- Bahabry, A.; Wan, X.; Ghazzai, H.; Menouar, H.; Vesonder, G.; Massoud, Y. Low-Altitude Navigation for Multi-Rotor Drones in Urban Areas. IEEE Access 2019, 7, 87716–87731. [Google Scholar] [CrossRef]
- Barrado, C.; Boyero, M.; Brucculeri, L.; Ferrara, G.; Hately, A.; Hullah, P.; Martin-marrero, D.; Pastor, E.; Rushton, A.P.; Volkert, A. U-Space Concept of Operations: A Key Enabler for Opening Airspace to Emerging Low-Altitude Operations. Aerospace 2020, 7, 24. [Google Scholar] [CrossRef] [Green Version]
- Sunil, E. Analyzing and Modeling Capacity for Decentralized Air Traffic Control. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Ford, R. On the use of height rules in off-route airspace. J. Navig. 1983, 2, 269–287. [Google Scholar] [CrossRef]
- ICAO. Annex 2, Rules of the Air; ICAO: Montreal, QC, Canada, 2005. [Google Scholar]
- Barrington-leigh, C.; Millard-ball, A. A century of sprawl in the United States. Proc. Natl. Acad. Sci. USA 2015, 112, 8244–8249. [Google Scholar] [CrossRef] [Green Version]
- Chakroborty, P.; Das, A. Principles of Transportation Engineering; PHI Learning Pvt. Ltd.: Delhi, India, 2005; p. 520. [Google Scholar]
- Fortuijn, L. Turbo Roundabouts Design Principles and Safety Performance. Transp. Res. Rec. J. Transp. Res. Board 2009, 2096, 16–24. [Google Scholar] [CrossRef]
- Gayah, V.V.; Daganzo, C.F. Analytical Capacity Comparison of One-Way and Two-Way Signalized Street Networks. Transp. Res. Rec. J. Transp. Res. Board 2012, 2301, 76–85. [Google Scholar] [CrossRef]
- Petrovsky, A.; Doole, M.; Ellerbroek, J.; Hoekstra, J.M.; Tomasello, F. Challenges with obstacle data for manned and unmanned aviation. Int. Arch. Photogramm. Remote Sens. Spat. Inf.-Sci. 2018, 42, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Slinn, M.; Matthews, P.; Guest, P. Traffic Engineering Design: Principles and Practice; Butterworth-Heinemann: Oxford, UK, 2005; pp. 76–163. [Google Scholar] [CrossRef]
- Garber, N.; Hoel, L. Traffic & Highway Engineering; Cengage Learning: Boston, MA, USA, 2008; p. 937. [Google Scholar]
- Kutz, M. Handbook of Transportation Engineering; McGraw-Hill: New York, NY, USA, 2013; Volume 42, p. 363. [Google Scholar] [CrossRef]
- Ortigosa, J.; Gayah, V.V.; Menendez, M. Transportmetrica B: Transport Dynamics Analysis of one-way and two-way street configurations on urban grid networks ABSTRACT. Transp. B Transp. Dyn. 2017, 7, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Boeing, G. Urban spatial order: Street network orientation, configuration, and entropy. Appl. Netw. Sci. 2019, 4, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Agatz, N.; Bouman, P.; Schmidt, M. Optimization Approaches for the Traveling Salesman Problem with Drone Optimization Approaches for the Traveling Salesman Problem with Drone. Transp. Sci. 2018, 52, 965–981. [Google Scholar] [CrossRef]
- Hoekstra, J.; Ellerbroek, J.; Hoekstra, J.M. BlueSky ATC Simulator Project: An Open Data and Open Source Approach Three-Dimensional Airborne Separation Assistance Displays View project BlueSky-Open source ATM simulator View project BlueSky ATC Simulator Project: An Open Data and Open Source Approach. In Proceedings of the 7th International Conference for Research on Air Transport (ICRAT), Philadelphia, PA, USA, 20–24 June 2016. [Google Scholar]
- BlueSky. TUDelft-CNS-ATM/BlueSky. 2020. Available online: https://github.com/TUDelft-CNS-ATM/bluesky (accessed on 3 March 2020).
- Hampson, M. Maryland Test Confirms Drones Can Safely Deliver Human Organs. In IEEE Spectrum; Information Inc.: Bethesda, MD, USA, 2018. [Google Scholar]
- Ding, Y. E-Commerce Giant JD.Com’s New Delivery Drone Takes Flight. 2021. Available online: https://www.caixinglobal.com/2020-12-25/e-commerce-giant-jdcoms-new-delivery-drone-takes-flight-101643197.html (accessed on 19 January 2021).
- Gudmundsson, A.; Mohajeri, N. Entropy and order in urban street networks. Sci. Rep. 2013, 3, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Boeing, G. Exploring Urban Form through OpenStreetMap Data: A Visual Introduction. In Urban Experience and Design: Comtemporary Perspectives on Improving the Public Realm; Routledge: London, UK, 2020; pp. 167–184. [Google Scholar]
- Barrington-Leigh, C.; Millard-Ball, A. More connected urban roads reduce US GHG emissions. Environ. Res. Lett. 2017, 12. [Google Scholar] [CrossRef]
- Barrington-leigh, C.; Millard-ball, A. Global trends toward urban street-network sprawl. Proc. Natl. Acad. Sci. USA 2020, 117, 1941–1950. [Google Scholar] [CrossRef] [Green Version]
- Rajendran, S.; Zack, J. Insights on strategic air taxi network infrastructure locations using an iterative constrained clustering approach. Transp. Res. Part E Logist. Transp. Rev. 2019, 128, 470–505. [Google Scholar] [CrossRef]
- Rajendran, S.; Shulman, J. Study of emerging air taxi network operation using discrete-event systems simulation approach. J. Air Transp. Manag. 2020, 87, 101857. [Google Scholar] [CrossRef]
- Boeing, G. Computers, Environment and Urban Systems OSMnx: New methods for acquiring, constructing, analyzing, and visualizing complex street networks. Comput. Environ. Urban Syst. 2017, 65, 126–139. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, M.; Ellerbroek, J.; Hoekstra, J.M. Review of Conflict Resolution Methods for Manned and Unmanned Aviation. Aerospace 2020, 6, 79. [Google Scholar] [CrossRef]
- Bulusu, V. Urban Air Mobility: Deconstructing the Next Revolution in Urban Transportation—Feasibility, Capacity and Productivity. Ph.D. Thesis, UC Berkeley, Berkeley, CA, USA, 2019. [Google Scholar]
- Sacharny, D.; Henderson, T.C. A lane-based approach for lage-scale strategic conflict management for UAS service suppliers. In Proceedings of the 2019 International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, GA, USA, 11–14 June 2019. [Google Scholar]
- Weinert, A.; Campbell, S.; Vela, A.; Schuldt, D.; Kurucar, J. Well-clear recommendation for small unmanned aircraft systems based on unmitigated collision risk. J. Air Transp. 2018, 26. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, L.E.; Jessen, I.; Owen, M.; Silbermann, J.; Wood, P. ACAS sXU: Robust decentralized detect and avoid for small unmanned aircraft systems. In Proceedings of the 2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC), San Diego, CA, USA, 8–12 September 2019. [Google Scholar] [CrossRef]
- Hagberg, A.; Schult, D.; Swart, P. Exploring network structure, dynamics, and function using NetworkX. In Proceedings of the 7th Python in Science Conference (SciPy2008), Pasadena, CA, USA, 19–24 August 2008; Volume 836, pp. 11–15. [Google Scholar]
- Krozel, J.; Peters, M.; Bilimoria, K.D.; Field, M.; Lee, C.; Mitchell, J.S.B. System Performance Characteristics of Centralized and Decentralized Air Traffic Separation Strategies. In Proceedings of the 4th USA/Europe Air Traffic Management R&D Seminar, Santa Fe, NM, USA, 3–7 December 2001; pp. 1–11. [Google Scholar]
- Jardin, M.R. Analytical Relationships Between Conflict Counts and Air-Traffic Density. J. Guid. Control Dyn. 2005, 28. [Google Scholar] [CrossRef]
- Loder, A.; Ambühl, L.; Menendez, M.; Axhausen, K.W. Understanding traffic capacity of urban networks. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, J.M.; Ruigrok, R.C.J.; Van Gent, R.N.H.W. Free Flight in a Crowded Airspace? In Proceedings of the 3rd USA/Europe Air Traffic Management R&D Seminar, Naples, Italy, 13–16 June 2000. [Google Scholar]
- Hoekstra, J.M.; Van Gent, R.N.; Ruigrok, R.C. Designing for Safety: The ‘Free Flight’ Air Traffic Management Concept. Reliab. Eng. Syst. Saf. 2002, 75. [Google Scholar] [CrossRef] [Green Version]
- Viana, M.P.; Strano, E.; Bordin, P.; Barthelemy, M. The simplicity of planar networks. Sci. Rep. 2013, 3, 1–6. [Google Scholar] [CrossRef]
- Barthelemy, M. From paths to blocks: New measures for street patterns. Environ. Plan. B Urban Anal. City Sci. 2017, 44, 257–271. [Google Scholar] [CrossRef]
- Barrington-leigh, C.; Millard-ball, A. A global assessment of street-network sprawl. PLoS ONE 2019, 14, e223078. [Google Scholar] [CrossRef]
Concept | Advantages | Disadvantages |
---|---|---|
Two-way | • Flight-plans do not have to obey one-way directional constraints and thus no forced horizontal distribution. | |
• Traffic has less vertical layers per cardinal direction. | ||
One-way | • Better airspace utilisation due to additional layers per cardinal direction. | |
• Due to the imposed horizontal constraints, opposite traffic flows are spatially separated. | • Flight routes may be less efficient due to the imposed one-way directional constraints. |
Parameter | DJI Matrice 600 Pro |
---|---|
Speed [m/s] | 5–10.3 |
Vertical speed [m/s] | −5–5 |
Mass [kg] | 15 |
Maximum bank angle [] | 35 |
Acceleration/deceleration [m/] | 1.5 |
Low | Medium | High | |
---|---|---|---|
Traffic density (drones/km) | 55 | 61 | 73 |
Inflow rate (drones/min) | 54 | 60 | 72 |
Hourly demand (drones/h) | 3240 | 3600 | 4320 |
Demand per depot (drones/depot) | 1080 | 1200 | 1440 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doole, M.; Ellerbroek, J.; Knoop, V.L.; Hoekstra, J.M. Constrained Urban Airspace Design for Large-Scale Drone-Based Delivery Traffic. Aerospace 2021, 8, 38. https://doi.org/10.3390/aerospace8020038
Doole M, Ellerbroek J, Knoop VL, Hoekstra JM. Constrained Urban Airspace Design for Large-Scale Drone-Based Delivery Traffic. Aerospace. 2021; 8(2):38. https://doi.org/10.3390/aerospace8020038
Chicago/Turabian StyleDoole, Malik, Joost Ellerbroek, Victor L. Knoop, and Jacco M. Hoekstra. 2021. "Constrained Urban Airspace Design for Large-Scale Drone-Based Delivery Traffic" Aerospace 8, no. 2: 38. https://doi.org/10.3390/aerospace8020038
APA StyleDoole, M., Ellerbroek, J., Knoop, V. L., & Hoekstra, J. M. (2021). Constrained Urban Airspace Design for Large-Scale Drone-Based Delivery Traffic. Aerospace, 8(2), 38. https://doi.org/10.3390/aerospace8020038