A Novel Self-Deployable Solar Sail System Activated by Shape Memory Alloys
Abstract
:1. Introduction
2. Materials and Sail Prototype Geometry
2.1. Sail Configuration 1 (SC1)
2.2. Sail Configuration 2 (SC2)
2.3. Folding Methods
2.4. Folding Configuration 1 (FC1)
2.5. Folding Configuration 2 (FC2)
3. Experimental Set-Up and Conditions
- (1)
- Bell jar;
- (2)
- Photodiode;
- (3)
- Thermocouples;
- (4)
- Pressure transducer;
- (5)
- Lighting system;
- (6)
- Vacuum (rotary) pump.
4. Results and Discussion
- −
- In the comparison between test 1 and test 2, SC2 showed shorter times (850 s vs. 1127 s in terms of O.t.F.) due to the better positioning of the actuators compared to SC1.
- −
- In the comparison between test 2 and test 3, reduction in terms of O.t.F. can be due to the different folding configurations (some actuators facing the radiation in FC2).
- −
- In the comparison between test 3 (air) and test 4 (Ar), a remarkable reduction of the O.t.S. and O.t.F. was measured, about −30% for both of them, due to the lower thermal capacity of Ar.
- −
- In the comparison between test 3 and test 5, the greatest reduction of the O.t.S., O.t.F. was measured. In particular −75% for O.t.S., −95% for O.t.F., due to the different heat transfer mechanisms. In test 3, thermal convection and radiation was dominant, while in test 5, the main heat transfer mechanism was thermal radiation.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tsiolkowsky, K.E. Extension of Man into Outer Space. Proc. Symp. Jet Propuls. 1921, 2. [Google Scholar]
- Tsuda, Y.; Mori, O.; Funase, R.; Sawada, H.; Yamamoto, T.; Saiki, T.; Endo, T.; Kawaguchi, J. Flight status of IKAROS deep space solar demonstrator. Acta Astronaut. 2011, 69, 833–840. [Google Scholar] [CrossRef]
- Niccolai, L.; Anderlini, A.; Mengali, G.; Quarta, A.A. Impact of solar sail wind fluctuations on electric sail mission design. Aerosp. Sci. Technol. 2018, 82, 38–45. [Google Scholar] [CrossRef]
- Leipold, M.; Eiden, M.; Garner, C.E.; Herbeck, L.; Kassing, D.; Niederstadt, T.; Kruger, T.; Pagel, G.; Rezazad, M.; Rozemejjer, H.; et al. Solar sail technology development and demonstration. Acta Astronaut. 2003, 52, 317–326. [Google Scholar] [CrossRef]
- Colin, R. Solar Sailing: Technology, Dynamics and Mission Applications; Springer Science and Business Media: Berlin, Germany, 2004. [Google Scholar]
- Block, J.; Straubel, M.; Wiedemann, M. Ultralight deployable booms for solar sails and other large gossamer structures in space. Acta Astronaut. 2011, 68, 984–992. [Google Scholar] [CrossRef]
- Johnson, L.; Young, R.; Montgomery, E.; Alhorn, D. Status of solar sail technology within NASA. Adv. Space. Res. 2011, 48, 1687–1694. [Google Scholar] [CrossRef] [Green Version]
- Mariner 10, NASA. National Space Science Data Center (NSSDC). Available online: https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1973-085A (accessed on 3 July 2019).
- Leipold, M.; Garner, C.E.; Freeland, R.; Herrmann, A.; Noca, M.; Pagel, G.; Sebolt, W.; Sprague, G.; Unckenbold, W. Odissee—A proposal for demonstration of a solar sail in earth orbit. Acta Astronaut. 1999, 45, 557–566. [Google Scholar] [CrossRef]
- Mori, O.; Sawada, H.; Funase, R.; Endo, T.; Morimoto, M.; Yamamoto, T.; Tsuda, Y.; Kawakatsu, Y.; Kawaguchi, J. Development of first Solar Power Sail Demonstrator—Ikaros. In Proceedings of the 21st International Symposium on Space Flight Dynamics, Toulouse, France, 28 September–2 October 2009. [Google Scholar]
- Johnson, L.; Whorton, M.; Heaton, A.; Pinson, R.; Laue, G.; Adams, C. NanoSail-D: A solar sail demonstration mission. Acta Astronaut. 2011, 68, 571–575. [Google Scholar] [CrossRef] [Green Version]
- Nehrenz, M.; Diaz, A.; Svitek, T.; Biddy, C. Initial design and simulation of the LightSail-1 attitude determination and control system. In Proceedings of the 2nd International Symposium on Solar Sailing, New York, NY, USA, 20–22 July 2010; pp. 135–140. [Google Scholar]
- Mu, J.; Gong, S.; Li, J. Reflectivity-controlled solar sail formation flying for magnetosphere mission. Aerosp. Sci. Technol. 2013, 30, 339–348. [Google Scholar] [CrossRef]
- Fernandez, J.M.; Lappas, V.J.; Daton-Lovett, A.J. Completely stripped solar sail concept using bi-stable reeled composite booms. Acta Astronaut. 2011, 69, 78–85. [Google Scholar] [CrossRef]
- Fu, B.; Eke, F. Further investigation of the body torques on a square solar sail due to the displacement of the sail attachment points. Aerosp. Sci. Technol. 2016, 50, 281–294. [Google Scholar] [CrossRef]
- Roman Kezera, Y.A. Thickness requirement for solar sail foils. Acta Astronaut. 2009, 65, 507–518. [Google Scholar]
- Dalla Vedova, F.; Henrion, H.; Leipold, M.; Girot, T.; Vaudemont, R.; Belmonte, T.; Fleury, K.; Le Couls, O. The Solar Sail Materials (SSM) Project—Status of activities. Adv. Space Res. 2011, 48, 1922–1926. [Google Scholar] [CrossRef]
- Costanza, G.; Tata, M.E. Design and characterization of a small-scale solar sail deployed by NiTi Shape Memory Actuators. Procedia Struct. Integr. 2016, 2, 1451–1456. [Google Scholar] [CrossRef]
- Costanza, G.; Tata, M.E. A novel methodology for solar sail opening employing shape memory alloy elements. J. Intell. Mater. Syst. Struct. 2018, 29, 1793–1798. [Google Scholar] [CrossRef]
- Costanza, G.; Tata, M.E.; Libertini, R. Effect of temperature on the mechanical behavior of Ni-Ti Shape Memory Sheets. In Proceedings of the TMS2016 145th Annual Meeting Supplemental Proceedings, Nashville, TN, USA, 14–18 February 2016; pp. 433–439. [Google Scholar]
- Costanza, G.; Paoloni, S.; Tata, M.E. IR thermography and resistivity investigations on Ni-Ti shape memory alloys. Key Eng. Mater. 2014, 605, 23–26. [Google Scholar] [CrossRef]
- Costanza, G.; Tata, M.E.; Calisti, C. Nitinol one-way shape memory springs: Thermomechanical characterization and actuator design. Sens. Actuators A Phys. 2010, 157, 113–117. [Google Scholar] [CrossRef]
- Costanza, G.; Leoncini, G.; Quadrini, F.; Tata, M.E. Design and characterization of a small-scale solar sail prototype by integrating NiTi SMA and carbon fibre composite. Adv. Mater. Sci. Eng. 2017, 2017, 8467971. [Google Scholar] [CrossRef]
- Bottini, L.; Boschetto, A.; Costanza, G.; Tata, M.E. Shape memory activated self deployable solar sails: Small-scale prototypes manufacturing and planarity analisys by 3D Laser Scanner. Actuators 2019, 8, 38. [Google Scholar]
- Kezerashvili, R.Y. Solar Sail: Materials and Space Environmental Effects. In Solar Sail; Springer: Berlin, Germany, 2014; pp. 573–592. [Google Scholar] [Green Version]
Test | Sail | Fluid | Pressure (mbar) | Folding Method |
---|---|---|---|---|
1 | SC1 | Air | 1000 | FC1 |
2 | SC2 | Air | 1000 | FC1 |
3 | SC2 | Air | 1000 | FC2 |
4 | SC2 | Argon | 1000 | FC2 |
5 | SC2 | Air | 0.06 | FC2 |
Test | Sail | Fluid | Pressure (mbar) | Folding Method | O.t.S. (s) | O.t.F. (s) | O.T.S. (°C) | O.T.F. (°C) |
---|---|---|---|---|---|---|---|---|
1 | SC1 | Air | 1000 | FC1 | 20 | 1127 | 50.0 | 88.0 |
2 | SC2 | Air | 1000 | FC1 | 20 | 850 | 53.0 | 84.2 |
3 | SC2 | Air | 1000 | FC2 | 20 | 842 | 53.2 | 88.8 |
4 | SC2 | Argon | 1000 | FC2 | 14 | 601 | 51.0 | 85.1 |
5 | SC2 | Air | 0.06 | FC2 | 5 | 46 | 26.0 | 81.0 |
Fluid | h (20 °C) | h (60 °C) |
---|---|---|
Air | 1.52ΔT1/4L4 | 1.46ΔT1/4L4 |
Ar | 1.08ΔT1/4L4 | 1.03ΔT1/4L4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bovesecchi, G.; Corasaniti, S.; Costanza, G.; Tata, M.E. A Novel Self-Deployable Solar Sail System Activated by Shape Memory Alloys. Aerospace 2019, 6, 78. https://doi.org/10.3390/aerospace6070078
Bovesecchi G, Corasaniti S, Costanza G, Tata ME. A Novel Self-Deployable Solar Sail System Activated by Shape Memory Alloys. Aerospace. 2019; 6(7):78. https://doi.org/10.3390/aerospace6070078
Chicago/Turabian StyleBovesecchi, Gianluigi, Sandra Corasaniti, Girolamo Costanza, and Maria Elisa Tata. 2019. "A Novel Self-Deployable Solar Sail System Activated by Shape Memory Alloys" Aerospace 6, no. 7: 78. https://doi.org/10.3390/aerospace6070078
APA StyleBovesecchi, G., Corasaniti, S., Costanza, G., & Tata, M. E. (2019). A Novel Self-Deployable Solar Sail System Activated by Shape Memory Alloys. Aerospace, 6(7), 78. https://doi.org/10.3390/aerospace6070078