# Experimental Implementation of a Passive Millimeter-Wave Fast Sequential Lobing Radiometric Seeker Sensor

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. General Theory

## 3. Radiometric Delta Signals Calculation

## 4. Angular Accuracy Estimation

## 5. Estimated Results

^{2}), with a radiometric contrast $\Delta {T}_{T}\cong 100$ (K). A SNR of ≥8 (dB) (P

_{d}= 0.9 and P

_{fa}= 10

^{−6}respectively the detection probability and false alarm probability) ensures an angular error of ∼0.45 mrad (∼ 2/100 of degree) at a distance R∼ 2 Km, as reported in Figure 8 and Figure 9.

_{T}is the target radiometric contrast. With the parameters equal to those used previously, it follows that $\gamma \cong 0.098$ and $\gamma \cong 1.69$, which corresponds to

## 6. Extension to a Pseudo-Monopulse Architecture

_{s}is small enough, it is possible to evaluate the ratio

- X
_{1}is a Gaussian random variable with expected value ${\mu}_{1}={T}_{A}-{T}_{B}$ and variance ${\sigma}^{2}={\sigma}_{A}^{2}+{\sigma}_{B}^{2}$. - Y
_{1}is a Gaussian random variable with expected value ${\mu}_{2}={T}_{A}+{T}_{B}$ and variance ${\sigma}^{2}={\sigma}_{A}^{2}+{\sigma}_{B}^{2}$.

## 7. Experimental Results

## 8. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Alimenti, F.; Bonafoni, S.; Leone, S.; Tasselli, G.; Basili, P.; Roselli, L.; Solbach, K. A Low-Cost Microwave Radiometer for the Detection of Fire in Forest Environments. IEEE Trans. Geosci. Remote Sens.
**2008**, 46, 2632–2643. [Google Scholar] [CrossRef] - Alimenti, F.; Roselli, L.; Bonafoni, S. Microwave Radiometers for Fire Detection in Trains: Theory and Feasibility Study
^{†}. Sensors**2016**, 16. [Google Scholar] [CrossRef] [PubMed] - Jacobs, E.L.; Furxhi, O. Target identification and navigation performance modeling of a passive millimeter wave imager. Appl. Opt.
**2010**, 49, E94–E105. [Google Scholar] [CrossRef] [PubMed] - Nanzer, J. Microwave and Millimeter-Wave Remote Sensing for Security Applications; Artech House: Norwood, MA, USA, 2012. [Google Scholar]
- Kapilevich, B.; Litvak, B.; Shulzinger, A.; Einat, M. Portable Passive Millimeter-Wave Sensor for Detecting Concealed Weapons and Explosives Hidden on a Human Body. IEEE Sens. J.
**2013**, 13, 4224–4228. [Google Scholar] [CrossRef] - James, D. Radar Homing Guidance for Tactical Missiles; Mac Millan Education Ltd.: London, UK, 1986. [Google Scholar]
- Patton, R.B., Jr.; Wilson, C.L. The VARR Method, a Technique for Determining the Effective Power Patterns of Millimeter-Wave Radiometric Antennas; BRL Report No. 1322; Defense Technical Information Center: Fort Belvoir, VA, USA, 1966. [Google Scholar]
- Balanis, C.A. Antenna Theory: Analysis and Design, 2nd ed.; John Wiley and Sons Inc.: Hoboken, NJ, USA, 1997. [Google Scholar]
- Otoshi, T.Y. Noise Temperature Theory and Applications for Deep Space Communications Antenna Systems; Artech House: Norwood, MA, USA, 2008. [Google Scholar]
- Racette, P.E.; Lang, R.H. Radiometer design analysis based upon measurement uncertainty. Radio Sci.
**2005**, 4, RS5004. [Google Scholar] [CrossRef] - Skou, N. Microwave Radiometer Systems: Design and Analysis, 2nd ed.; Artech House: Norwood, MA, USA, 2006. [Google Scholar]
- Stuart, A.; Ord, K. Kendall’s Advanced Theory of Statistics, 6th ed.; Arnold: London, UK, 1998; Volume 1. [Google Scholar]
- Levanon, N. Radar Principles; John Wiley and Sons Inc.: New York, NY, USA, 1988. [Google Scholar]
- Barton, D.K.; Sherman, S.M. Monopulse Radar Theory and Practice, 2nd ed.; Artech House: Norwood, MA, USA, 2011. [Google Scholar]
- Klein, L.A. Millimeter-Wave and Infrared Multisensor Design and Signal Processing; Artech House: Norwood, MA, USA, 1997. [Google Scholar]

**Figure 7.**Radiometric deltas extracted numerically (blue) and using the closed approximated formula (yellow) for different values of parameter x.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Rossi, M.; Liberati, R.M.; Frasca, M.; Angelini, M. Experimental Implementation of a Passive Millimeter-Wave Fast Sequential Lobing Radiometric Seeker Sensor. *Aerospace* **2018**, *5*, 11.
https://doi.org/10.3390/aerospace5010011

**AMA Style**

Rossi M, Liberati RM, Frasca M, Angelini M. Experimental Implementation of a Passive Millimeter-Wave Fast Sequential Lobing Radiometric Seeker Sensor. *Aerospace*. 2018; 5(1):11.
https://doi.org/10.3390/aerospace5010011

**Chicago/Turabian Style**

Rossi, Massimiliano, Riccardo Maria Liberati, Marco Frasca, and Mauro Angelini. 2018. "Experimental Implementation of a Passive Millimeter-Wave Fast Sequential Lobing Radiometric Seeker Sensor" *Aerospace* 5, no. 1: 11.
https://doi.org/10.3390/aerospace5010011