A Study of Mechanical Behavior of Folding and Welding Connections of Kapton Films While Manufacturing a Solar Sail
Abstract
1. Introduction
2. Folding Model
2.1. One-Dimensional Approximation Theory
2.2. Numerical Simulation Analysis
2.2.1. Simplified Model
2.2.2. Folding Simulation
2.3. Folding Test
2.3.1. Continuous Loading
2.3.2. Stepwise Loading
2.3.3. Thin-Film Material Property Test
2.4. Comparison of Results
2.4.1. Analysis of One-Dimensional Approximation Theory
2.4.2. Comparative Analysis of Test
3. Welding Performance Test
3.1. Test Preparation
3.2. Test Results
3.3. The Tension and Elongation Required to Eliminate Weld Wrinkles
4. Conclusions
- (1)
- During the process of folding and compressing of thin film, the rebound force of bent thin film increases as the thin-film spacing decreases. When the thin-film spacing h is large, the increase in the rebound force is not obvious. However, when the spacing is less than a certain value, rebound force increases significantly; meanwhile, compression speed has an impact on the rebound force of the thin films. During film folding, the σMises values for 50 µm and 125 µm films deviate from their tensile yield strengths by only 1.6% and 1.7%, respectively, validating the one-dimensional model’s predictive accuracy.
- (2)
- The stress–strain curves and mechanical properties of the commonly used solar sail thin film named as Kapton® 200NH were measured by experiments. As creep phenomenon of Kapton film under load is obvious, it should be fully considered in structural design and analysis.
- (3)
- By comparing the failure strength of the welded specimens under different temperatures and pressures, it can be seen that the weld seams are qualified under various welding pressures after the temperature reaches 290 °C. Therefore, it is indicated that welding temperature of Kapton film is approximately 290 °C, and welding effect has little to do with the pressure. For 50 µm Kapton film with a 10 mm weld, wrinkle elimination required a tensile force of 9.61 N and an elongation of 0.43%.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
θ | Angle between s direction and horizontal axis x |
u,w | Neutral-axis displacement |
Rx, Rz | Reaction force |
κ | Curvature |
v | Poisson’s ratio |
h | Fold spacing |
ε | Strain |
σMises | Mises yield stress |
t | Thin-film thickness |
y1 | Linear segment |
σy | Yield strength |
s | Length of neutral axis of the thin film unit |
Ms | Bending moment |
I | Second moment of area |
Ts | Axial force |
E | Elastic modulus |
P | Contact reaction force |
σ | Stress |
B | Membrane width |
θ0 | Rotation angle at s = a + b |
y2 | Curved segment |
y3 | Linear segment |
εy | Yield strain |
Δh | Difference between the thin-film spacing at each moment and the initial moment |
References
- Liyanage, P.M.; Gangasudan, N.; Mallikarachchi, H.M.Y.C. Modified spiral folding pattern for deployable membranes. Aerosp. Sci. Technol. 2021, 117, 106926. [Google Scholar] [CrossRef]
- Yuan, L.; Song, R.; Wang, F.; Wei, J.; Liu, J. Comparison of two folded methods of solar sails. Aerospace 2022, 9, 746. [Google Scholar] [CrossRef]
- Amodio, A.M.; Visser, P.; Heiligers, J. Dynamical modelling of NASA’s ACS3 solar sail mission. Aerosp. Sci. Technol. 2025, 161, 110146. [Google Scholar] [CrossRef]
- Chen, J.; Shi, A.; He, Y.; Dai, H.; Pei, Y. Nonlinear nonmodal analysis of solar sail orbit robust stability. Acta Astronaut. 2025, 236, 755–769. [Google Scholar] [CrossRef]
- Boni, L.; Quarta, A.A.; Mengali, G. Thermal-structural analysis of a square solar sail. Acta Astronaut. 2019, 154, 268–277. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Zhang, W.; Zhang, Y.F.; Amer, A. Nonlinear waves in solar sail telescopic mast under temperature effect. Aerosp. Sci. Technol. 2025, 166, 110614. [Google Scholar] [CrossRef]
- Zou, J.; Li, D.; Wang, J. High-precision numerical calculation method of solar radiation pressure force for wrinkled solar sails. Proc. Inst. Mech. Eng. G J. Aerosp. Eng. 2022, 236, 2463–2471. [Google Scholar] [CrossRef]
- Seefeldt, P.; Dachwald, B. Temperature increase on folded solar sail membranes. Adv. Space Res. 2021, 67, 2688–2695. [Google Scholar] [CrossRef]
- Fu, B.; Sperber, E.; Eke, F. Solar sail technology—A state of the art review. Prog. Aerosp. Sci. 2016, 86, 1–19. [Google Scholar] [CrossRef]
- Kucukdeger, E.; Tong, Y.; Singh, M.; Zhang, J.; Harding, L.K.; Salado, A.; Ellingson, S.W.; Johnson, B.N. Conformal 3D printing of non-planar antennas on wrinkled and folded Kapton films using point cloud data. Flex. Print. Electron. 2021, 6, 044002. [Google Scholar] [CrossRef]
- Ouyang, J.; Liu, Y.; Liu, J.; Wang, M.; Feng, J. Research on a folded Blumlein line using Kapton film as dielectrics. Plasma Sci. Technol. 2008, 10, 231–234. [Google Scholar] [CrossRef]
- Mierunalan, S.; Dassanayake, S.P.; Mallikarachchi, H.M.Y.C.; Upadhyay, S.H. Simulation of ultra-thin membranes with creases. Int. J. Mech. Mater. Des. 2023, 19, 73–94. [Google Scholar] [CrossRef]
- Kamaliya, P.K.; Upadhyay, S.H.; Mallikarachchi, H.M.Y.C. Investigation of wrinkling behaviour in creased thin-film laminates. Int. J. Mech. Mater. Des. 2021, 17, 899–913. [Google Scholar] [CrossRef]
- Shin, H.; Wang, S.; Tateyama, S.; Kaneko, D.; Kaneko, T. Preparation of a ductile biopolyimide film by copolymerization. Ind. Eng. Chem. Res. 2016, 55, 8761–8766. [Google Scholar] [CrossRef]
- Colin, J. Buckling and folding of a ductile thin film on a rigid substrate. Mech. Res. Commun. 2024, 135, 104237. [Google Scholar] [CrossRef]
- Su, X.; Tu, Z.; Ji, L.; Wu, H.; Xu, H.; Liu, C. Foldable electrochromic NiO films. J. Vac. Sci. Technol. A 2023, 41, 043414. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, Z.; Ren, H.; He, Z.; Li, H.; Fu, D. Dynamical reverse folding and residual gas expansion models of flexible thin films. J. Vac. Sci. Technol. A Vac. Surf. Film. 2024, 42, 013403. [Google Scholar] [CrossRef]
- Satou, Y.; Furuya, H. Mechanical properties of Z-fold membrane under elasto-plastic deformation. J. Space Eng. 2011, 4, 14–26. [Google Scholar] [CrossRef]
- Xia, Z.M.; Wang, C.G.; Tan, H.F. Elastoplastic folding behavior of membrane ribbon based on plane strain beam theory. Int. J. Solids Struct. 2018, 143, 167–174. [Google Scholar] [CrossRef]
- Thiria, B.; Adda-Bedia, M. Relaxation mechanisms in the unfolding of thin sheets. Phys. Rev. Lett. 2011, 107, 025506. [Google Scholar] [CrossRef]
- Benusiglio, A.; Mansard, V.; Biance, A.L.; Bocquet, L. The anatomy of a crease, from folding to ironing. Soft Matter 2012, 8, 3342–3347. [Google Scholar] [CrossRef]
- Jules, T.; Lechenault, F.; Adda-Bedia, M. Local mechanical description of an elastic fold. Soft Matter 2019, 15, 1619–1626. [Google Scholar] [CrossRef]
- Nishizawa, T.; Sakamoto, H.; Okuma, M.; Furuya, H.; Sato, Y.; Okuizumi, N.; Shirasawa, Y.; Mori, O. Evaluation of crease effects on out-of-plane stiffness of solar sails. Trans. JSASS Aerosp. Technol. Jpn. 2014, 12, 107–113. [Google Scholar] [CrossRef]
- Liu, K.; Paulino, G.H. Nonlinear mechanics of non-rigid origami: An efficient computational approach. Proc. R. Soc. A MPES 2017, 473, 2206. [Google Scholar] [CrossRef]
- Xia, Z.M.; Wang, C.G.; Tan, H.F. Quasi-static unfolding mechanics of a creased membrane based on a finite deformation crease–beam model. Int. J. Solids Struct. 2020, 207, 104–112. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y.; Yang, Y.; Wang, J.; Kang, H.; Yang, H.; Zhang, D.; Cheng, Z.; Xie, Z.; Tan, H.; et al. A weldable MXene film assisted by water. Matter 2022, 5, 1042–1055. [Google Scholar] [CrossRef]
- Ramirez, J.A.B.; Krasnikov, D.V.; Butt, H.A.; Dmitrieva, V.A.; Serebrennikova, S.I.; Trepalin, O.R.; Vildanova, A.R.; Kondrashov, V.A.; Goldt, A.E.; Dzhurinskiy, D.V.; et al. Ethylene-induced welding of single-walled carbon nanotube films to enhance mechanical and optoelectronic properties. Carbon 2025, 238, 120230. [Google Scholar] [CrossRef]
- Du, B.; Chen, L.; Liu, H.; He, Q.; Qin, W.; Li, W. Resistance welding of glass fiber reinforced thermoplastic composite: Experimental investigation and process parameter optimization. Chin. J. Aeronaut. 2020, 33, 3469–3478. [Google Scholar] [CrossRef]
- Chan, W.X.; Ng, S.H.; Li, K.H.H.; Park, W.-T.; Yoon, Y.-J. Micro-ultrasonic welding using thermoplastic-elastomeric composite film. J. Mater. Process. Technol. 2016, 236, 183–188. [Google Scholar] [CrossRef]
- Wang, T.; Yasuda, K.; Nishikawa, H. Study on the SPCC and CFRTP hybrid joint performance produced with additional Nylon-6 interlayer by ultrasonic plastic welding. Polymers 2022, 14, 5235. [Google Scholar] [CrossRef]
- Ran, Z.; Shang, H.; Ma, B.; Li, R.; Shangguan, F.; Yu, D. Microstructure and mechanical properties of AlN/Al joints brazing by a sputtering Al/Cu bilayer film solder. Materials 2022, 15, 2674. [Google Scholar] [CrossRef] [PubMed]
- Miura, K. Method of packaging and deployment of large membranes in space. In Proceedings of the 31st International Astronautical Federation Congress, Tokyo, Japan, 1–10 September 1980; Available online: https://api.semanticscholar.org/CorpusID:137872225 (accessed on 5 September 2025).
- Satou, Y.; Furuya, H. FEM analyses for wrapping fold model of membrane retracted by guided-pin mechanics. In Proceedings of the 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Orlando, FL, USA, 12–15 April 2010. [Google Scholar] [CrossRef]
Time T (h) | 50 μm | 125 μm | ||
---|---|---|---|---|
50 g | 100 g | 200 g | 500 g | |
6 h | −0.42 | −0.46 | −0.94 | −1.09 |
12 h | −0.41 | −0.47 | −1.02 | −1.09 |
18 h | −0.41 | −0.46 | −1.04 | −1.10 |
Mean value | −0.41 | −0.46 | −1.00 | −1.09 |
Thickness t (μm) | 50 | 125 |
Elastic modulus E (Gpa) | 2.842 | 2.940 |
Yield strength σy (Mpa) | 60.716 | 60.821 |
Yield strain εy | 0.024 | 0.023 |
Linear segment y1 | 2824x − 1.957 | 2940x + 2.216 |
Curved segment y2 | −2813x2 + 1250x + 32.85 | −3167x2 + 1323x + 35.60 |
Linear segment y3 | 143.6x + 145.0 | 176.1x + 143.1 |
Thickness t (μm) | 50 | 125 |
Elastic modulus E (Gpa) | 2.842 | 2.940 |
Thin-film width b (mm) | 1 | 1 |
Moment of inertia of cross-section I = bt3/12 (mm4) | 1.0417 × 10−5 | 1.6276 × 10−4 |
Function of P-h | P = (0.14530/h)2 | P = (0.58604/h)2 |
Thickness t (μm) | Critical Spacing h (mm) | Critical Load P (N/mm) | σMises (Mpa) | Yield Strength (Mpa) | Errors |
---|---|---|---|---|---|
50 | 1.42 | 0.01047 | 59.73 | 60.72 | 1.6% |
125 | 3.56 | 0.02710 | 61.84 | 60.82 | 1.7% |
Numbers | M | 290 °C | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0 N | 50 N | 100 N | 150 N | 200 N | ||||||
−1 | 70.03 | 73.53 | 74.09 | 75.12 | 69.05 | 72.94 | ||||
−2 | 69.22 | 72.80 | 72.03 | 73.60 | 69.51 | 71.05 | ||||
−3 | 67.57 | 73.44 | 74.63 | 77.39 | 70.83 | 70.55 | ||||
Average | 68.94 | 73.25 | 73.58 | 75.37 | 69.80 | 71.51 | ||||
Numbers | 295 °C | 300 °C | ||||||||
0 N | 50 N | 100 N | 150 N | 200 N | 0 N | 50 N | 100 N | 150 N | 200 N | |
−1 | 75.44 | 69.51 | 70.98 | 72.39 | 71.87 | 67.37 | 74.81 | 68.54 | 73.51 | 69.63 |
−2 | 76.00 | 70.26 | 71.08 | 69.55 | 70.23 | 70.68 | 75.45 | 69.39 | 72.26 | 66.68 |
−3 | 77.27 | 71.62 | 64.93 | 69.58 | 69.59 | 71.65 | 76.90 | 67.54 | 72.41 | 67.10 |
Average | 76.24 | 70.46 | 68.99 | 70.51 | 70.56 | 69.90 | 75.72 | 68.49 | 72.73 | 67.80 |
Numbers | 305 °C | 310 °C | ||||||||
0 N | 50 N | 100 N | 150 N | 200 N | 0 N | 50 N | 100 N | 150 N | 200 N | |
−1 | 73.59 | 74.87 | 72.59 | 68.48 | 79.34 | 75.18 | 76.37 | 73.52 | 71.24 | 70.04 |
−2 | 74.77 | 62.28 | 73.44 | 68.67 | 76.03 | 74.85 | 75.64 | 73.46 | 72.15 | 60.02 |
−3 | 75.61 | 73.06 | 72.73 | 69.37 | 77.20 | 73.24 | 74.12 | 70.93 | 70.69 | 71.36 |
Average | 74.66 | 70.07 | 72.92 | 68.84 | 77.53 | 74.42 | 75.38 | 72.63 | 71.36 | 67.14 |
Specimen Numbers | The Pulling Force When Wrinkles Disappear/N | Elongation/% |
---|---|---|
1 | 9.64 | 0.41 |
2 | 9.33 | 0.43 |
3 | 9.87 | 0.46 |
Average | 9.61 | 0.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Liu, H.; Qiao, E.; Chen, W. A Study of Mechanical Behavior of Folding and Welding Connections of Kapton Films While Manufacturing a Solar Sail. Aerospace 2025, 12, 836. https://doi.org/10.3390/aerospace12090836
Hu Y, Liu H, Qiao E, Chen W. A Study of Mechanical Behavior of Folding and Welding Connections of Kapton Films While Manufacturing a Solar Sail. Aerospace. 2025; 12(9):836. https://doi.org/10.3390/aerospace12090836
Chicago/Turabian StyleHu, Yu, Hao Liu, Enze Qiao, and Wujun Chen. 2025. "A Study of Mechanical Behavior of Folding and Welding Connections of Kapton Films While Manufacturing a Solar Sail" Aerospace 12, no. 9: 836. https://doi.org/10.3390/aerospace12090836
APA StyleHu, Y., Liu, H., Qiao, E., & Chen, W. (2025). A Study of Mechanical Behavior of Folding and Welding Connections of Kapton Films While Manufacturing a Solar Sail. Aerospace, 12(9), 836. https://doi.org/10.3390/aerospace12090836