On Space Debris Removal by Lasers: Can Spatially and Temporally Shaped Laser Pulses Be Advantageous for Propulsion?
Abstract
1. Introduction
2. Laser Propulsion as the Technique for Space Debris Removal
3. Laser Beam Shaping for Optimization of Momentum Transfer
3.1. Adaptive Optimization of Laser Pulses
3.2. Double Pulses with Variable Separation Time
3.3. Dual Wavelength Laser Pulses
3.4. Burst Mode Lasers
3.5. Spatial Beam Shaping
3.6. Beam Splitting Using Diffractive Optical Elements
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kessler, D.J.; Cour-Palais, B.G. Collision frequency of artificial satellites: The creation of a debris belt. J. Geophys. Res. Space Phys. 1978, 83, 2637–2646. [Google Scholar] [CrossRef]
- European Space Agency. ESA’s Annual Space Environment Report, GEN-DB-LOG-00288-OPS-SD, 121p. 2024. Available online: https://www.sdo.esoc.esa.int/environment_report/Space_Environment_Report_latest.pdf (accessed on 1 August 2025).
- Adushkin, V.V.; Aksenov, O.Y.; Veniaminov, S.S.; Kozlov, S.I.; Tyurenkova, V.V. The small orbital debris population and its impact on space activities and ecological safety. Acta Astronaut. 2020, 176, 591–597. [Google Scholar] [CrossRef]
- Hayashi, F.; Kioka, A.; Ishii, T.; Nakamura, T. Unveiling the resource potential of space debris: A forecast of valuable metals to 2050. Waste Manag. 2025, 193, 376–385. [Google Scholar] [CrossRef] [PubMed]
- Schulz, L.; Glassmeier, K.-H. On the anthropogenic and natural injection of matter into Earth’s atmosphere. Adv. Space Res. 2021, 67, 1002–1025. [Google Scholar] [CrossRef]
- Pardini, C.; Anselmo, L. Orbital re-entries of human-made space objects: Drawbacks for the upper atmosphere and the safety of people. J. Space Saf. Eng. 2025, 12, 274–283. [Google Scholar] [CrossRef]
- Available online: https://rhinosdream.com/illustration (accessed on 1 August 2025).
- Liu, L.; Jia, P.; Huang, Y.; Nan, J.; Lichtfouse, E. Space industrialization. Environ. Chem. Lett. 2023, 21, 1–7. [Google Scholar] [CrossRef]
- Leonard, R.; Williams, I.D. Viability of a circular economy for space debris. Waste Manag. 2023, 155, 19–28. [Google Scholar] [CrossRef]
- Available online: https://sdup.esoc.esa.int/discosweb/statistics/#:~:text=Space%20debris%20by%20the%20numbers,1%20mm%20to%201%20cm (accessed on 1 August 2025).
- Fung, T.-Y.; Shi, Q.; Roy, S.S.; Schmitt, R.N.; Guariniello, C.; DeLaurentis, D.A. Conceptual design for a space debris orbital recycling station utilizing MBSE approach. In Proceedings of the 2023 IEEE Aerospace Conference, Big Sky, MT, USA, 4–11 March 2023; pp. 1–16. [Google Scholar] [CrossRef]
- Filho, W.L.; Abubakar, I.R.; Hunt, J.D.; Maria Alzira Pimenta Dinis, M.A.D. Managing space debris: Risks, mitigation measures, and sustainability challenges. Sustain. Futures 2025, 10, 100849. [Google Scholar] [CrossRef]
- Shan, M.; Guo, J.; Gill, E. Review and comparison of active space debris capturing and removal methods. Prog. Aerosp. Sci. 2016, 80, 18–32. [Google Scholar] [CrossRef]
- Zhao, P.; Liu, J.; Wu, C. Survey on research and development of on-orbit active debris removal methods. Sci. China Technol. Sci. 2020, 63, 2188–2210. [Google Scholar] [CrossRef]
- Ledkov, A.; Aslanov, V. Review of contact and contactless active space debris removal approaches. Prog. Aerosp. Sci. 2022, 134, 100858. [Google Scholar] [CrossRef]
- Yalçın, B.C.; Martinez, C.; Hubert Delisle, M.; Rodriguez, G.; Zheng, J.; Olivares-Mendez, M. ET-Class: An energy transfer-based classification of space debris removal methods and missions. Front. Space Technol. 2022, 3, 792944. [Google Scholar] [CrossRef]
- Bigdeli, M.; Srivastava, R.; Scaraggi, M. Mechanics of space debris removal: A review. Aerospace 2025, 12, 277. [Google Scholar] [CrossRef]
- Arshad, M.; Bazzocchi, M.C.F.; Hussain, F. Emerging strategies in close proximity operations for space debris removal: A review. Acta Astronaut. 2025, 228, 996–1022. [Google Scholar] [CrossRef]
- Aglietti, G.S.; Taylor, B.; Fellowes, S.; Salmon, T.; Retat, I.; Hall, A.; Chabot, T.; Pisseloup, A.; Cox, C.; Zarkesh, A.; et al. The active space debris removal mission RemoveDebris. Part 2: In orbit operations. Acta Actranaut. 2020, 168, 310–322. [Google Scholar] [CrossRef]
- Papadopoulos, E.; Aghili, F.; Ma, O.; Lampariello, R. Robotic manipulation and capture in space: A survey. Front. Robot. AI 2021, 8, 686723. [Google Scholar] [CrossRef] [PubMed]
- Poozhiyil, M.; Nair, M.H.; Rai, M.C.; Hall, A.; Meringolo, C.; Shilton, M.; Kay, C.; Forte, D.; Sweeting, M.; Antoniou, N.; et al. Active debris removal: A review and case study on LEOPARD Phase 0-A mission. Adv. Space Res. 2023, 72, 3386–3413. [Google Scholar] [CrossRef]
- Rybus, T. Robotic manipulators for in-orbit servicing and active debris removal: Review and comparison. Prog. Aerosp. Sci. 2024, 151, 101055. [Google Scholar] [CrossRef]
- Abbott, J.J. Roboticists are grappling with space debris. Sci. Robot. 2025, 10, eadt5685. [Google Scholar] [CrossRef]
- Bombardelli, C.; Peláez, J. Ion beam shepherd for contactless space debris removal. J. Guid. Control Dyn. 2011, 34, 916–920. [Google Scholar] [CrossRef]
- Schaub, H.; Sternovsky, Z. Active space debris charging for contactless electrostatic disposal maneuvers. Adv. Space Res. 2014, 53, 110–118. [Google Scholar] [CrossRef]
- Monroe, D.K. Space debris removal using high-power ground-based laser. In Proc. SPIE 2121, Laser Power Beaming; SPIE: Bellingham, WA, USA, 1994; Volume 2121. [Google Scholar] [CrossRef]
- Phipps, C.R.; Albrecht, G.; Friedman, H.; Gavel, D.; George, E.V.; Murray, J.; Ho, C.; Priedhorsky, W.; Michaelis, M.M.; Reilly, J.P. ORION: Clearing near-Earth space debris using a 20-kW, 530-nm, Earth-based, repetitively pulsed laser. Laser Part. Beams 1996, 14, 1–44. [Google Scholar] [CrossRef]
- Schall, W.O. Removal of small space debris with orbiting lasers. In High-Power Laser Ablation; Proc. SPIE: Bellingham, WA, USA, 1998; Volume 3343. [Google Scholar] [CrossRef]
- Phipps, C.R.; Baker, K.L.; Libby, S.B.; Liedahl, D.A.; Olivier, S.S.; Pleasance, L.D.; Rubenchik, A.; Trebes, J.E.; George, E.V.; Marcovici, B.; et al. Removing orbital debris with lasers. Adv. Space Res. 2012, 49, 1283–1300. [Google Scholar] [CrossRef]
- Esmiller, B.; Jacquelard, C.; Eckel, H.A.; Wnuk, E. Space debris removal by ground- based lasers: Main conclusions of the European project CLEANSPACE. Appl. Opt. 2014, 53, I45–I54. [Google Scholar] [CrossRef]
- Soulard, R.; Quinn, M.N.; Tajima, T.; Mourou, G. ICAN: A novel laser architecture for space debris removal. Acta Astronaut. 2014, 105, 192–200. [Google Scholar] [CrossRef]
- Walker, L.; Vasile, M. Space debris remediation using space-based lasers. Adv. Space Res. 2023, 72, 2786–2800. [Google Scholar] [CrossRef]
- Lu, E.T.; Love, S.G. Gravitational tractor for towing asteroids. Nature 2005, 438, 177–178. [Google Scholar] [CrossRef]
- Kantrowitz, A. Propulsion to orbit by ground based lasers. Aeronaut. Astronaut. 1972, 9, 40–42. [Google Scholar]
- Kelley, M.J.; Perdue, S.M.; Helvajian, H.; McVey, J.P.; Peterson, G.; Sorge, M.E. A novel large area fan-shaped lidar sensor for space debris: Laboratory demonstration and model validation. In Proc. SPIE 11832, CubeSats and SmallSats for Remote Sensing V; SPIE: Bellingham, WA, USA, 2021; Volume 11832, p. 1183209. [Google Scholar] [CrossRef]
- Perruci, A.; Lee, D.D. LIDAR-based relative navigation for unknown space objects using 3D extended target tracking. J. Aeronaut. Sci. 2025, 72, 24. [Google Scholar] [CrossRef]
- Jin, X.; Shen, S.; Ye, J.; Chang, H.; Wen, M. Experimental study of laser ablative process on man-made space debris. In Proc. SPIE 8796, 2nd International Symposium on Laser Interaction with Matter (LIMIS 2012); SPIE: Bellingham, WA, USA, 2013; Volume 8796, p. 879607. [Google Scholar] [CrossRef]
- Available online: https://elib.dlr.de/105165/1/Laser-Based%20Space%20Debris%20Removal.pdf (accessed on 1 August 2025).
- Available online: https://techport.nasa.gov/projects/156377 (accessed on 1 August 2025).
- Phipps, C.R.; Loktionov, E.Y.; Bonnal, C.; Boyer, S.A.E.; Sharaborova, E.; Tahan, G. Is laser space propulsion practical?: Review. Appl. Opt. 2021, 60, H1–H11. [Google Scholar] [CrossRef] [PubMed]
- Phipps, C.R.; Boustie, M.; Chevalier, J.-M.; Baton, S.; Brambrink, E.; Berthe, L.; Schneider, M.; Videau, L.; Boyer, S.A.E.; Scharring, S. Laser impulse coupling measurements at 400 fs and 80 ps using the LULI facility at 1057 nm wavelength. J. Appl. Phys. 2017, 122, 193103. [Google Scholar] [CrossRef]
- Simons, G.A.; Pirri, A.N. The fluid mechanics of pulsed laser propulsion. AIAA J. 1977, 15, 835–842. [Google Scholar] [CrossRef]
- Legner, H.H.; Douglas-Hamilton, D.H. CW laser propulsion. J. Energy 1978, 2, 85–94. [Google Scholar] [CrossRef]
- Weiss, R.F.; Pirri, A.N.; Kemp, N.H. Laser propulsion. Aeronaut. Astronaut. 1979, 17, 50–58. [Google Scholar]
- Jones, L.W.; Keefer, D.R. NASA’s laser-propulsion project. Aeronaut. Astronaut. 1982, 20, 66–73. [Google Scholar]
- Glumb, R.J.; Krier, H. Concepts and status of laser-supported rocket propulsion. J. Spacecr. Rocket. 1984, 21, 70–79. [Google Scholar] [CrossRef]
- Campbell, J.W.; Taylor, C.R. Power beaming for orbital debris removal. In High-Power Laser Ablation; SPIE: Bellingham, WA, USA, 1988; Volume 3343. [Google Scholar] [CrossRef]
- Birkan, M.A. Laser propulsion—Research status and needs. J. Propuls. Power 1992, 8, 354–360. [Google Scholar] [CrossRef]
- Phipps, C.R.; Michaelis, M.M. LISP: Laser impulse space propulsion. Laser Part. Beams 1994, 12, 23–54. [Google Scholar] [CrossRef]
- Pakhomov, A.V.; Gregory, D.A. Ablative laser propulsion: An old concept revisited. AIAA J. 2000, 38, 725–727. [Google Scholar] [CrossRef]
- Schall, W.O.; Bohn, W.L.; Eckel, H.-A.; Mayerhofer, W.; Riede, W.; Zeyfang, E. Lightcraft experiments in Germany. In High-Power Laser Ablation III; Proc. SPIE: Bellingham, WA, USA, 2000; Volume 4065. [Google Scholar] [CrossRef]
- Phipps, C.; Birkan, M.; Bohn, W.; Eckel, H.-A.; Horisawa, H.; Lippert, T.; Michaelis, M.; Rezunkov, Y.; Sasoh, A.; Schall, W.; et al. Review: Laser-ablation propulsion. J. Propuls. Power 2010, 26, 609–637. [Google Scholar] [CrossRef]
- Rafalskyi, D.; Martínez, J.M.; Habl, L.; Rossi, E.Z.; Proynov, P.; Boré, A.; Baret, T.; Poyet, A.; Lafleur, T.; Dudin, S.; et al. In-orbit demonstration of an iodine electric propulsion system. Nature 2021, 599, 411–415. [Google Scholar] [CrossRef] [PubMed]
- Palla, D.; Cristoforetti, G. Laser–accelerated plasma–propulsion system. Appl. Sci. 2021, 11, 10154. [Google Scholar] [CrossRef]
- Gao, R.M.; Kelzenberg, M.D.; Atwater, H.A. Dynamically stable radiation pressure propulsion of flexible lightsails for interstellar exploration. Nat. Commun. 2024, 15, 4203. [Google Scholar] [CrossRef]
- Miao, W.H.; Luo, X.; Long, L.; Zhang, F.; Du, A.B.; Pu, M.B.; Chen, Y.; Luo, X.G. Vector-enhanced radiation pressure for ground-based laser propulsion of space objects. Opt. Commun. 2025, 589, 132049. [Google Scholar] [CrossRef]
- Schall, W. Orbital debris removal by laser adiation. Acta Astronaut. 1991, 24, 343–351. [Google Scholar] [CrossRef]
- Kuznetsov, L.I.; Yarygin, V.N. Laser-reactive method for disposal of small space debris. Quantum Electron. 1994, 24, 555–557. [Google Scholar] [CrossRef]
- Kuznetsov, L.I. Recoil momentum at a solid surface during developed laser ablation. Quantum Electron. 1993, 23, 1035–1038. [Google Scholar] [CrossRef]
- Bulgakova, N.M.; Kuznetsov, L.I. Gas dynamics of impulsive jets and pressure oscillations of a laser-irradiated target. J. Appl. Mech. Tech. Phys. 1992, 33, 780–786. [Google Scholar] [CrossRef]
- Bulgakova, N.M.; Kuznetsov, L.I. Effect of external conditions on the formation of pressure pulsations on a target irradiated by a laser. J. Appl. Mech. Tech. Phys. 1993, 34, 62–65. [Google Scholar] [CrossRef]
- Rykalin, N.N.; Uglov, A.A.; Ignat’ev, M.B. Avto-oscillatory nature of the laser-produced plasma parameters near the target surface in high-pressure gases. In Doklady Akademii Nauk; Russian Academy of Sciences: Moscow, Russia, 1982; Volume 265, pp. 1117–1119. Available online: https://www.mathnet.ru/eng/dan/v265/i5/p1117 (accessed on 1 August 2025).
- Chichkov, B.N.; Momma, C.; Nolte, S.; von Alvensleben, F.; Tünnermann, A. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 1996, 63, 109–115. [Google Scholar] [CrossRef]
- Shugaev, M.V.; He, M.; Levy, Y.; Mazzi, A.; Miotello, A.; Bulgakova, N.M.; Zhigilei, L.V. Laser-induced thermal processes: Heat transfer, generation of stresses, melting and solidification, vaporization, and phase explosion. In Handbook of Laser Micro- and Nano-Engineering; Sugioka, K., Ed.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Bulgakov, A.V.; Bulgakova, N.M. Thermal model of pulsed laser ablation under conditions of generation and heating of plasma absorbing radiation. Quantum Electron. 1999, 29, 433–437. [Google Scholar] [CrossRef]
- Bulgakova, N.M.; Bulgakov, A.V. Pulsed laser ablation of solids: Transition from normal vaporization to phase explosion. Appl. Phys. A 2001, 73, 199–208. [Google Scholar] [CrossRef]
- Bulgakova, N.M.; Bulgakov, A.V.; Babich, L.P. Energy balance of pulsed laser ablation: Thermal model revised. Appl. Phys. A 2004, 79, 1323–1326. [Google Scholar] [CrossRef]
- Yoo, J.H.; Jeong, S.H.; Mao, X.L.; Greif, R.; Russo, R.E. Evidence for phase-explosion and generation of large particles during high power nanosecond laser ablation of silicon. Appl. Phys. Lett. 2000, 76, 783–785. [Google Scholar] [CrossRef]
- Bulgakova, N.M.; Evtushenko, A.B.; Shukhov, Y.G.; Kudryashov, S.I.; Bulgakov, A.V. Role of laser-induced plasma in ultradeep drilling of materials by nanosecond laser pulses. Appl. Surf. Sci. 2011, 257, 10876–10882. [Google Scholar] [CrossRef]
- Karnakis, D.; Fieret, J.; Rumsby, P.T.; Gower, M.C. Microhole drilling using reshaped pulsed Gaussian laser beams. In Laser Beam Shaping II; SPIE: Bellingham, WA, USA, 2001; Volume 4443, pp. 150–158. [Google Scholar] [CrossRef]
- Hamazaki, J.; Morita, R.; Chujo, K.; Kobayashi, Y.; Tanda, S.; Omatsu, T. Optical-vortex laser ablation. Opt. Express 2010, 18, 2144–2151. [Google Scholar] [CrossRef]
- Stewart, J.S.; Lippert, T.; Nagel, M.; Nüesch, F.; Wokaun, A. Red-green-blue polymer light-emitting diode pixels printed by optimized laser-induced forward transfer. Appl. Phys. Lett. 2012, 100, 203303. [Google Scholar] [CrossRef]
- Toyoda, K.; Takahashi, F.; Takizawa, S.; Tokizane, Y.; Miyamoto, K.; Morita, R.; Omatsu, T. Transfer of light helicity to nanostructures. Phys. Rev. Lett. 2013, 110, 143603. [Google Scholar] [CrossRef]
- Nivas, J.J.J.; He, S.; Rubano, A.; Vecchione, F.; Paparo, D.; Marrucci, L.; Bruzzese, R.; Amoruso, S. Direct femtosecond laser surface structuring with optical vortex beams generated by a q-plate. Sci. Rep. 2015, 5, 17929. [Google Scholar] [CrossRef]
- Kim, H.Y.; Choi, W.S.; Ji, S.Y.; Shin, Y.-Y.; Jeon, J.-W.; Ahn, S.; Cho, S.-H. Morphologies of femtosecond laser ablation of ITO thin films using gaussian or quasi-flat top beams for OLED repair. Appl. Phys. A 2018, 124, 123. [Google Scholar] [CrossRef]
- Zukerstein, M.; Hrabovský, J.; Sládek, J.; Mirza, I.; Levy, Y.; Bulgakova, N.M. Formation of tubular structures and microneedles on silicon surface by doughnut-shaped ultrashort laser pulses. Appl. Surf. Sci. 2022, 592, 153228. [Google Scholar] [CrossRef]
- Bakhtari, A.R.; Sezer, H.K.; Canyurt, O.E.; Eren, O.; Shah, M.; Marimuthu, S. A review on laser beam shaping application in laser-powder bed fusion. Adv. Eng. Mater. 2024, 26, 2302013. [Google Scholar] [CrossRef]
- Spyridaki, M.; Koudoumas, E.; Tzanetakis, P.; Fotakis, C.; Stoian, R.; Rosenfeld, A.; Hertel, I.V. Temporal pulse manipulation and ion generation in ultrafast laser ablation of silicon. Appl. Phys. Lett. 2003, 83, 1474–1476. [Google Scholar] [CrossRef]
- Sugioka, K.; Akane, T.; Obata, K.; Toyoda, K.; Midorikawa, K. Multiwavelength excitation processing using F2 and KrF excimer lasers for precision microfabrication of hard materials. Appl. Surf. Sci. 2002, 197–198, 814–821. [Google Scholar] [CrossRef]
- Théberge, F.; Chin, S.L. Enhanced ablation of silica by the superposition of femtosecond and nanosecond laser pulses. Appl. Phys. A 2005, 80, 1505–1510. [Google Scholar] [CrossRef]
- Kerrigan, H.; Masnavi, M.; Bernath, R.; Fairchild, S.R.; Richrdson, M. Laser-plasma coupling for enhanced ablation of GaAs with combined femtosecond and nanosecond pulses. Opt. Express 2021, 29, 18481. [Google Scholar] [CrossRef]
- Bulgakov, A.V.; Sládek, J.; Hrabovský, J.; Mirza, I.; Marine, W.; Bulgakova, N.M. Dual-wavelength femtosecond laser-induced single-shot damage and ablation of silicon. Appl. Surf. Sci. 2024, 643, 158626. [Google Scholar] [CrossRef]
- Gillner, A.; Finger, J.; Gretzky, P.; Niessen, M.; Bartels, T.; Reininghaus, M. High power laser processing with ultrafast and multi-parallel beams. J. Laser Micro Nanoeng. 2019, 14, 129–137. [Google Scholar] [CrossRef]
- Hauschwitz, P.; Martan, J.; Bičišt’ová, R.; Beltrami, C.; Moskal, D.; Brodsky, A.; Kaplan, N.; Mužík, J.; Štepánková, D.; Brajer, J.; et al. LIPSS-based functional surfaces produced by multi-beam nanostructuring with 2601 beams and real-time thermal processes measurement. Sci. Rep. 2021, 11, 22944. [Google Scholar] [CrossRef]
- Yang, Y.; Jia, E.; Ma, X.; Xie, C.; Liu, B.; Li, J.; Hu, M. High throughput direct writing of a mesoscale binary optical element by femtosecond long focal depth beams. Light. Adv. Manuf. 2024, 4, 466–475. [Google Scholar] [CrossRef]
- Kiefer, P.; Hahn, V.; Kalt, S.; Sun, Q.; Eggeler, Y.M.; Wegener, M. A multi-photon (7 × 7)-focus 3D laser printer based on a 3D-printed diffractive optical element and a 3D-printed multi-lens array. Light. Adv. Manuf. 2025, 4, 28–41. [Google Scholar] [CrossRef]
- Caballero-Lucas, F.; Obata, K.; Sugioka, K. Enhanced ablation efficiency for silicon by femtosecond laser microprocessing with GHz bursts in MHz bursts (BiBurst). Int. J. Extrem. Manuf. 2022, 4, 015103. [Google Scholar] [CrossRef]
- Neuenschwander, B.; Kramer, T.; Lauer, B.; Jaeggi, B. Burst mode with ps- and fs-pulses: Influence on the removal rate, surface quality, and heat accumulation. In Proc. SPIE 9350, Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XX; SPIE: Bellingham, WA, USA, 2015; Volume 9350, p. 93500U. [Google Scholar] [CrossRef]
- Žemaitis, A.; Gudauskytė, U.; Steponavičiūtė, S.; Gečys, P.; Gedvilas, M. The ultrafast burst laser ablation of metals: Speed and quality come together. Opt. Laser Technol. 2025, 180, 111458. [Google Scholar] [CrossRef]
- Stoian, R.; Mermillod-Blondin, A.; Bulgakova, N.M.; Rosenfeld, A.; Hertel, I.V.; Spyridaki, M.; Koudoumas, E.; Tzanetakis, P.; Fotakis, C. Optimization of ultrafast laser generated low-energy ion beams from silicon targets. Appl. Phys. Lett. 2005, 87, 124105. [Google Scholar] [CrossRef]
- Campbell, S.; Triphan, S.M.F.; El-Agmy, R.; Greenaway, A.H.; Reid, D.T. Direct optimization of femtosecond laser ablation using adaptive wavefront shaping. J. Opt. A Pure Appl. Opt. 2007, 9, 1100–1104. [Google Scholar] [CrossRef]
- Guillermin, M.; Liebig, C.; Garrelie, F.; Stoian, R.; Loir, A.-S.; Audouard, E. Adaptive control of femtosecond laser ablation plasma emission. Appl. Surf. Sci. 2009, 255, 5163–5516. [Google Scholar] [CrossRef]
- Derrien, T.J.-Y.; Bulgakova, N.M. Modeling of silicon in femtosecond laser-induced modification regimes: Accounting for ambipolar diffusion. In Proc. SPIE 10228, Nonlinear Optics and Applications X; SPIE: Bellingham, WA, USA, 2017; Volume 10228, p. 102280E. [Google Scholar] [CrossRef]
- Sokolowski-Tinten, K.; Bialkowski, J.; von der Linde, D. Ultrafast laser-induced order-disorder transitions in semiconductors. Phys. Rev. B 1995, 51, 14186–14198. [Google Scholar] [CrossRef]
- Honda, N.; Nagasaka, Y. Vapor–liquid equilibria of silicon by the Gibbs ensemble simulation. Int. J. Thermophys. 1999, 20, 837–846. [Google Scholar] [CrossRef]
- Bu, Y.; Zhang, B.; Liu, S.; Hou, J. Ultra-efficient temporal shaping scheme in nanosecond pulsed fiber MOPA system. J. Light. Technol. 2025, 43, 2284–2290. [Google Scholar] [CrossRef]
- Semerok, A.; Dutouquet, C. Ultrashort double pulse laser ablation of metals. Thin Solid Film. 2004, 453, 501–505. [Google Scholar] [CrossRef]
- Povarnitsyn, M.E.; Itina, T.E.; Khishchenko, K.V.; Levashov, P.R. Suppression of ablation in femtosecond double-pulse experiments. Phys. Rev. Lett. 2009, 103, 195003. [Google Scholar] [CrossRef]
- Duchateau, G.; Yamada, A.; Yabana, K. Electron dynamics in β-quartz induced by two-color 10-femtosecond laser pulses. Phys. Rev. B 2022, 105, 165128. [Google Scholar] [CrossRef]
- Zhukov, V.P.; Bulgakova, N.M. Volumetric modification of transparent materials with two-color laser irradiation: Insight from numerical modeling. Materials 2024, 17, 1763. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.K.; Choi, H.W. Review on principal and applications of temporal and spatial beam shaping for ultrafast pulsed laser. Photonics 2024, 11, 1140. [Google Scholar] [CrossRef]
- Altakroury, A.R.; Gatsa, O.; Riahi, F.; Fu, Z.; Flimelová, M.; Samokhvalov, A.; Barcikowski, S.; Doñate-Buendía, C.; Bulgakov, A.V.; Gökce, B. Size control of nanoparticles synthesized by laser ablation in liquids using donut-shaped beams. Beilstein J. Nanotechnol. 2025, 16, 407–417. [Google Scholar] [CrossRef] [PubMed]
- Pak, J.H.; Joo, J.Y.; Lee, J.H.; Park, K.S.; Son, E.S. Evaluating laser beam parameters for ground-to-space propagation through atmospheric turbulence at the Geochang SLR observatory. Curr. Opt. Photon. 2024, 8, 382–390. [Google Scholar] [CrossRef]
- Zhou, T.; Kraft, S.; Perrie, W.; Schille, J.; Löschner, U.; Edwardson, S.; Dearden, G. Backward flux re-deposition patterns during multi-spot laser ablation of stainless steel with picosecond and femtosecond pulses in air. Materials 2021, 14, 2243. [Google Scholar] [CrossRef]
- Zhou, T.; Kraft, S.; Fang, Z.; Perrie, W.; Bilton, M.; Schille, J.; Löschner, U.; Rigby, S.E.; Edwardson, S.; Dearden, G. Multi-spot ultrafast laser ablation at ambient pressure—A new window on coalescing shock wave interactions. Opt. Laser Technol. 2024, 175, 110739. [Google Scholar] [CrossRef]
- Available online: https://www.holoor.co.il/product/beam-splitter-2d/ (accessed on 1 August 2025).
- Liedahl, D.A.; Rubenchik, A.; Libby, S.B.; Nikolaev, S.; Phipps, C.R. Pulsed laser interactions with space debris: Target shape effects. Adv. Space. Res. 2013, 52, 895–915. [Google Scholar] [CrossRef]
- Scharring, S.; Wilken, J.; Eckel, H.-A. Laser-based removal of irregularly shaped space debris. Opt. Eng. 2016, 56, 011007. [Google Scholar] [CrossRef]
- Scharring, S.; Kästel, J.; Wagner, G.; Riede, W.; Klein, E.; Bamann, C.; Döberl, E.; Weinzinger, E.; Promper, W.; Flohrer, T.; et al. Potential of using ground-based high-power lasers to decelerate the evolution of space debris in LEO. In Proceedings of the 8th European Conference of Space Debris, Darmstadt, Germany, 20–23 April 2021; Available online: https://conference.sdo.esoc.esa.int/proceedings/sdc8/paper/98/SDC8-paper98.pdf (accessed on 1 August 2025).
- Boháček, P. Peaceful use of lasers in space? Potential, risks, and norms for using lasers in space. Space Policy 2022, 61, 101489. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bulgakova, N.M. On Space Debris Removal by Lasers: Can Spatially and Temporally Shaped Laser Pulses Be Advantageous for Propulsion? Aerospace 2025, 12, 806. https://doi.org/10.3390/aerospace12090806
Bulgakova NM. On Space Debris Removal by Lasers: Can Spatially and Temporally Shaped Laser Pulses Be Advantageous for Propulsion? Aerospace. 2025; 12(9):806. https://doi.org/10.3390/aerospace12090806
Chicago/Turabian StyleBulgakova, Nadezhda M. 2025. "On Space Debris Removal by Lasers: Can Spatially and Temporally Shaped Laser Pulses Be Advantageous for Propulsion?" Aerospace 12, no. 9: 806. https://doi.org/10.3390/aerospace12090806
APA StyleBulgakova, N. M. (2025). On Space Debris Removal by Lasers: Can Spatially and Temporally Shaped Laser Pulses Be Advantageous for Propulsion? Aerospace, 12(9), 806. https://doi.org/10.3390/aerospace12090806