Startup Characteristics and Thermal Instability of a Visual Loop Heat Pipe Under Acceleration Force
Abstract
1. Introduction
2. Experimental Setup
2.1. Structural Design of Visual LHP
2.2. Experimental System
2.3. Experimental Conditions
3. Results and Discussion
3.1. Startup Behavior
3.1.1. Startup Characteristics
3.1.2. Startup Time
3.2. Temperature Fluctuation
3.3. Loss of Temperature Control
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cui, P.; Liu, Z.; Wu, H. Subcooled flow boiling in ultrahigh-aspect-ratio microchannels for high heat flux cooling. Int. Commun. Heat Mass Transf. 2024, 151, 107221. [Google Scholar] [CrossRef]
- Li, G.; Zhao, Y.; Zhang, X.; Xie, J.; Fang, X. An Experimental Study on the Flow Boiling Heat Transfer Characteristics of Deionized Water Under Rotational Hypergravity. Aerospace 2025, 12, 75. [Google Scholar] [CrossRef]
- Scigliano, R.; De Simone, V.; Fusaro, R.; Ferretto, D.; Viola, N. Numerical simulation of heat pipe thermal performance for aerospace cooling system applications. Aerospace 2024, 11, 85. [Google Scholar] [CrossRef]
- Zhao, X.; Su, L.; Jiang, J.; Deng, W.; Zhao, D. A review of working fluids and flow state effects on thermal performance of micro-channel oscillating heat pipe for aerospace heat dissipation. Aerospace 2023, 10, 179. [Google Scholar] [CrossRef]
- Xiong, K.; Wang, S. Design, fabrication and characterization of porous ceramics secondary wick of a loop heat pipe to reduce heat leakage. Int. Commun. Heat Mass Transf. 2023, 141, 106582. [Google Scholar] [CrossRef]
- Zhou, D.; Guo, L.; Lan, X.; Zhang, J.; Wang, X.; Du, W.; Xin, G. Fabrication and enhanced thermal performance of a self-rewetting wick of silicon-based loop heat pipe. Int. Commun. Heat Mass Transf. 2025, 160, 108378. [Google Scholar] [CrossRef]
- Huang, J.; Chang, L.; Dong, B.; Wang, J.; Huang, H. Variable switching system for heat protection and dissipation of ultra-LEO satellites based on LHP coupled with TEC. Aerospace 2024, 11, 539. [Google Scholar] [CrossRef]
- Xiong, K.; Chen, Y.; Zhang, W.; Wang, S. Establishment and analysis of a new steady-state operation model of loop heat pipe. Int. Commun. Heat Mass Transf. 2025, 163, 108754. [Google Scholar] [CrossRef]
- Zilio, C.; Righetti, G.; Mancin, S.; Hodot, R.; Sarno, C.; Pomme, V.; Truffart, B. Active and passive cooling technologies for thermal management of avionics in helicopters: Loop heat pipes and mini-Vapor Cycle System. Therm. Sci. Eng. Prog. 2018, 5, 107–116. [Google Scholar] [CrossRef]
- Wang, H.; Lin, G.; Qin, H.; Zhang, R.; Bai, L.; Guo, Y. Design and experimental validation of a high capacity loop heat pipe for avionics cooling. Therm. Sci. Eng. Prog. 2023, 45, 102139. [Google Scholar] [CrossRef]
- Ji, X.; Wang, Y.; Xu, J.; Huang, Y. Experimental study of heat transfer and start-up of loop heat pipe with multiscale porous wicks. Appl. Therm. Eng. 2017, 117, 782–798. [Google Scholar] [CrossRef]
- He, J.; Miao, J.; Bai, L.; Lin, G.; Zhang, H.; Wen, D. Effect of non-condensable gas on the startup of a loop heat pipe. Appl. Therm. Eng. 2017, 111, 1507–1516. [Google Scholar] [CrossRef]
- Hendrayanto, P.A.; Fathoni, A.M.; Aliefiansyah, M.S.; Putra, N. Experimental study on Start-Up and heat transfer characteristics in loop heat pipes with dual heat sources for battery thermal management system. Therm. Sci. Eng. Prog. 2024, 55, 102980. [Google Scholar] [CrossRef]
- Nashine, C.; Pandey, M.; Baraya, K.K. Experimental studies on the transient characteristics and start-up behaviour of a miniature loop heat pipe. Appl. Therm. Eng. 2025, 259, 124814. [Google Scholar] [CrossRef]
- Liu, L.; Jiang, Z.; Lin, B.; Shao, B.; Li, N.; Dong, D.; Wu, Y. Effect of secondary wick on heat transfer performance of a loop heat pipe. Int. J. Therm. Sci. 2025, 208, 109488. [Google Scholar] [CrossRef]
- Zhong, S.; Xie, R.; Li, Y.; Sun, X. Operational Characteristics of Loop Heat Pipe in Microgravity and Normal Gravity Environments. J. Therm. Sci. 2024, 33, 1394–1408. [Google Scholar] [CrossRef]
- Yang, T.; Gao, T.; Zhao, S.; Zhang, P. Performance test of novel flat capillary pump loop heat pipe under anti-gravity and microgravity. Microgravity Sci. Technol. 2022, 34, 29. [Google Scholar] [CrossRef]
- Tian, T.; Li, H.; Zhang, W.; Lai, Q.; Xie, Y.; Tan, J. The start-up characteristics of a novel loop heat pipe with stainless steel capillary wick. Appl. Therm. Eng. 2025, 258, 124553. [Google Scholar] [CrossRef]
- Ku, J. Loop heat pipe startup behaviors. In Proceedings of the International Conference on Environmental Systems, Vienna, Austria, 10–14 July 2016. ICES-2016-24. [Google Scholar]
- Ku, J.; Ottenstein, L.; Kaya, T.; Rogers, P.; Hoff, C. Testing of a loop heat pipe subjected to variable accelerating forces, Part 1: Start-up. SAE Tech. Pap. 2000. [Google Scholar] [CrossRef]
- Fleming, A.J.; Thomas, S.K.; Yerkes, K.L. Titanium-water loop heat pipe operating characteristics under standard and elevated acceleration fields. J. Thermophys. Heat Transf. 2010, 24, 184–198. [Google Scholar] [CrossRef]
- Wang, H.; Lin, G.; Guo, Y.; Shen, X.; Zhao, W.; Bai, L. Experimental investigation on the performance of a high capacity dual compensation chamber loop heat pipe under the effect of acceleration. Case Stud. Therm. Eng. 2024, 61, 105013. [Google Scholar] [CrossRef]
- Gerhart, C.; Gluck, D. Summary of operating characteristics of a dual compensation chamber loop heat pipe in gravity. In Proceedings of the 11th International Heat Pipe Conference, Tokyo, Japan, 12–16 September 1999. [Google Scholar]
- Gluck, D.; Gerhart, C.; Stanley, S. Characterization of a high capacity, dual compensation chamber loop heat pipe. AIP Conf. Proc. Am. Inst. Phys. 1999, 458, 943–948. [Google Scholar]
- Lin, G.; Zhang, H.; Shao, X.; Cao, J.; Ding, T.; Miao, J. Development and test results of a dual compensation chamber loop heat pipe. J. Thermophys. Heat Transf. 2006, 20, 825–834. [Google Scholar] [CrossRef]
- Bai, L.; Lin, G.; Wen, D.; Feng, J. Experimental investigation of startup behaviors of a dual compensation chamber loop heat pipe with insufficient fluid inventory. Appl. Therm. Eng. 2009, 29, 1447–1456. [Google Scholar] [CrossRef]
- Feng, J.; Lin, G.; Bai, L. Experimental investigation on operating instability of a dual compensation chamber loop heat pipe. Sci. China Ser. E Technol. Sci. 2009, 52, 2316–2322. [Google Scholar] [CrossRef]
- Bai, L.; Tao, Y.; Guo, Y.; Lin, G. Startup characteristics of a dual compensation chamber loop heat pipe with an extended bayonet tube. Int. J. Heat Mass Transf. 2020, 148, 119066. [Google Scholar] [CrossRef]
- Bai, L.; Fu, J.; Pang, L.; Tao, Y.; Lin, G.; Wen, D. Experimental study on a dual compensation chamber loop heat pipe with dual bayonet tubes. Appl. Therm. Eng. 2020, 180, 115821. [Google Scholar] [CrossRef]
- Yang, P.; Yang, T.; Gao, T.; Zhao, S.; Liu, J.; Zhang, P. Experimental study on a dual compensation chamber loop heat pipe with a ceramic wick. Appl. Therm. Eng. 2023, 230, 120750. [Google Scholar] [CrossRef]
- Fu, J.; Bai, L.; Zhang, Y.; Lin, G. Experimental study on the thermal performance of a dual compensation chamber loop heat pipe with dual vapor and condenser lines. Therm. Sci. Eng. Prog. 2023, 43, 101994. [Google Scholar] [CrossRef]
- Fu, J.; Bai, L.; Zhang, Y.; Wang, H.; Lin, G. Improved startup performance of a dual compensation chamber loop heat pipe by sequential cooling to the compensation chambers. Int. J. Heat Mass Transf. 2024, 233, 126046. [Google Scholar] [CrossRef]
- Wang, H.; Lin, G.; Guo, Y.; Zhao, W.; Bai, L. Experimental study of a high-capacity dual compensation chamber loop heat pipe at different orientations. Int. J. Therm. Sci. 2024, 202, 109051. [Google Scholar] [CrossRef]
- Xie, Y.; Li, X.; Han, L.; Zhu, J.; Gao, H.; Wen, D. Experimental study on operating characteristics of a dual compensation chamber loop heat pipe in periodic acceleration fields. Appl. Therm. Eng. 2020, 176, 115419. [Google Scholar] [CrossRef]
- Lv, X.; Xie, Y.; Zhang, H.; Xu, Y.; Wu, H.; Day, R.; Ren, J. Temperature fluctuation of a dual compensation chamber loop heat pipe under acceleration conditions. Appl. Therm. Eng. 2021, 198, 117450. [Google Scholar] [CrossRef]
- Bartuli, E.; Vershinin, S.; Maydanik, Y. Visual and instrumental investigations of a copper–water loop heat pipe. Int. J. Heat Mass Transf. 2013, 61, 35–40. [Google Scholar] [CrossRef]
- Yan, K.; Li, N.; Zhao, R.; Wu, Y.; Xie, R. Visualization study on the condensation in a propylene loop heat pipe operating at condenser temperatures between 153 and 283 K. Appl. Therm. Eng. 2021, 185, 116349. [Google Scholar] [CrossRef]
- Zhao, S.C.; Zhang, Z.K.; Zhao, R.Z.; Liu, Z.C.; Liu, W. Experimental study on global visualization of loop heat pipe with a flat disk-shaped evaporator. Energy Rep. 2022, 8, 10895–10912. [Google Scholar] [CrossRef]
- Yamada, Y.; Nishikawara, M.; Yanada, H.; Ueda, Y. Predicting the performance of a loop heat pipe considering evaporation from the meniscus at the three-phase contact line. Therm. Sci. Eng. Prog. 2019, 11, 125–132. [Google Scholar] [CrossRef]
- Nishikawara, M.; Tomita, S.; Yokoyama, H.; Yanada, H. Relationship between phase distribution and heat-transfer coefficient of loop heat pipe evaporator investigated by lateral observation of porous media. Appl. Therm. Eng. 2024, 236, 121524. [Google Scholar] [CrossRef]
- Chang, X.; Watanabe, N.; Nagano, H. Visualization study of a loop heat pipe with two evaporators and one condenser under gravity-assisted condition. Int. J. Heat Mass Transf. 2019, 135, 378–391. [Google Scholar] [CrossRef]
- Chang, X.; Watanabe, N.; Nagai, H.; Nagano, H. Visualization of thermo-fluid behavior of loop heat pipe with two evaporators and one condenser under various orientations with uneven heat loads. Int. J. Heat Mass Transf. 2024, 221, 125054. [Google Scholar] [CrossRef]
- Zhou, X.; Hua, L.; Shao, B.; Li, N.; Jiang, Z.; Lu, Y. Visualization of vapor–liquid interface and optimization in vapor grooves of loop heat pipe. Appl. Therm. Eng. 2025, 267, 125724. [Google Scholar] [CrossRef]
- Cimbala, J.M.; Brenizer, J.S.; Chuang, A.P.Y.; Hanna, S.; Conroy, C.T.; El-Ganayni, A.A.; Riley, D.R. Study of a loop heat pipe using neutron radiography. Appl. Radiat. Isot. 2004, 61, 701–705. [Google Scholar] [CrossRef]
- Chuang, P.Y.A.; Cimbala, J.M.; Brenizer, J.S. Experimental and analytical study of a loop heat pipe at a positive elevation using neutron radiography. Int. J. Therm. Sci. 2014, 77, 84–95. [Google Scholar] [CrossRef]
- Okamoto, A.; Hatakenaka, R.; Murakami, M. Visualization of a loop heat pipe using neutron radiography. Heat Pipe Sci. Technol. Int. J. 2011, 2, 161–172. [Google Scholar] [CrossRef]
- Lin, G.; Li, N.; Bai, L.; Wen, D. Experimental investigation of a dual compensation chamber loop heat pipe. Int. J. Heat Mass Transf. 2010, 53, 3231–3240. [Google Scholar] [CrossRef]
- Yang, Y.; Zhu, K.; Wang, Y.; Wei, J.; Zheng, M.; Cui, Z. Experimental investigation and visual observation of a vapor–liquid separated flat loop heat pipe evaporator. Appl. Therm. Eng. 2016, 101, 71–78. [Google Scholar] [CrossRef]
- Wang, X.; Wei, J. Visual investigation on startup characteristics of a novel loop heat pipe. Appl. Therm. Eng. 2016, 105, 198–208. [Google Scholar] [CrossRef]
- Zhao, Y.; Chang, S.; Yang, B.; Zhang, W.; Leng, M. Experimental study on the thermal performance of loop heat pipe for the aircraft anti-icing system. Int. J. Heat Mass Transf. 2017, 111, 795–803. [Google Scholar] [CrossRef]
- Zhou, G.; Li, J. Two-phase flow characteristics of a high performance loop heat pipe with flat evaporator under gravity. Int. J. Heat Mass Transf. 2018, 117, 1063–1074. [Google Scholar] [CrossRef]
- Nishikawara, M.; Otani, K.; Ueda, Y.; Yanada, H. Liquid–vapor phase behavior and operating characteristics of the capillary evaporator of a loop heat pipe at start-up. Int. J. Therm. Sci. 2018, 129, 426–433. [Google Scholar] [CrossRef]
- Zhang, Q.; Lin, G.; Shen, X.; Bai, L.; Wen, D. Visualization study on the heat and mass transfer in the evaporator-compensation chamber of a loop heat pipe. Appl. Therm. Eng. 2020, 164, 114472. [Google Scholar] [CrossRef]
- Liu, L.; Yang, X.; Yuan, B.; Wei, J. Investigation of temperature fluctuations in a novel loop heat pipe with a vapor-driven jet injector. Int. J. Heat Mass Transf. 2021, 179, 121672. [Google Scholar] [CrossRef]
- Zhang, Y.; Luan, T.; Jiang, H.; Liu, J. Visualization study on start-up characteristics of a loop heat pipe with a carbon fiber capillary wick. Int. J. Heat Mass Transf. 2021, 169, 120940. [Google Scholar] [CrossRef]
- Song, W.; Xu, Y.; Xue, L.; Li, H.; Guo, C. Visualization experimental study on silicon-based ultra-thin loop heat pipe using deionized water as working fluid. Micromachines 2021, 12, 1080. [Google Scholar] [CrossRef]
- Wang, X.; Yang, J.; Wen, Q.; Shittu, S.; Liu, G.; Qiu, Z.; Zhao, X.; Wang, Z. Visualization study of a flat confined loop heat pipe for electronic devices cooling. Appl. Energy 2022, 322, 119451. [Google Scholar] [CrossRef]
- Du, S.; Zhang, Q.; Ling, L.; Zou, S.; Liu, L.; Meng, F. Visualization investigation on temperature fluctuation and two-phase behaviors of a flat loop heat pipe. J. Therm. Sci. 2023, 32, 1536–1546. [Google Scholar] [CrossRef]
- Chang, X.; Watanabe, N.; Nagai, H.; Nagano, H. Visualization of thermo-fluid behavior of loop heat pipe with two evaporators and one condenser under various orientation with even heat loads. Int. J. Heat Mass Transf. 2022, 198, 123397. [Google Scholar] [CrossRef]
- Xie, Y.; Fang, Z.; Zhang, H.; Wu, H.; Liu, S. Visualization study on operating performance of a dual compensation chamber loop heat pipe under acceleration condition. Appl. Therm. Eng. 2022, 217, 119157. [Google Scholar] [CrossRef]
- Xie, Y.; Pu, W.; Liu, S.; Wu, H.; Fang, Z. Visualized experimental study on steady-state performance of a loop heat pipe under elevated acceleration fields. Appl. Therm. Eng. 2024, 238, 121984. [Google Scholar] [CrossRef]
- Lee, S.H. Numerical study of convective heat transfer to supercritical water in rectangular ducts. Int. Commun. Heat Mass Transf. 2010, 37, 1465–1470. [Google Scholar] [CrossRef]
- Bai, L.; Yang, Z.; Shen, X.; Guo, Y.; Lin, G.; Wen, D. Startup characteristics of an ammonia loop heat pipe with a rectangular evaporator. Heat and Mass Transfer 2022, 58, 813–831. [Google Scholar] [CrossRef]
- He, S.; Zhou, P.; Liu, W.; Liu, Z. Experimental study on thermal performance of loop heat pipe with a composite-material evaporator for cooling of electronics. Appl. Therm. Eng. 2020, 168, 114897. [Google Scholar] [CrossRef]
Components | Material | Parameter | Dimensions |
---|---|---|---|
Evaporator | Stainless steel 316 L | ID/OD/Length (mm) | 18/20/210 |
Wick | Nickel | ID/OD/Length (mm) | 8/18/189.5 |
Pore radius (μm) | 1.1 | ||
Porosity | 48.5% | ||
Permeability (m2) | 1.3 × 10−14 | ||
CCs | Stainless steel 316 L | Volume (ml) | 50 |
Condenser channel | Copper | Length/Width/Height (mm) | 1000/3/3 |
Vapor line | Stainless steel 316 L | ID/OD/Length (mm) | 2/3/300 |
Liquid line | Stainless steel 316 L | ID/OD/Length (mm) | 2/3/380 |
Conditions | Specific Parameters |
---|---|
Acceleration magnitudes (g = 9.8 m/s2) | 1 g\3 g\5 g\7 g\9 g\11 g\13 g\15 g |
Acceleration directions | A\B\C\D |
Heat load (W) | 30\50\70\80\90\150 |
Laboratory ambient temperature (°C) | 25 |
Cooling water inlet temperature (°C) | 22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Xie, Y.; Han, L.; Kang, H.; Wu, H. Startup Characteristics and Thermal Instability of a Visual Loop Heat Pipe Under Acceleration Force. Aerospace 2025, 12, 797. https://doi.org/10.3390/aerospace12090797
Chen L, Xie Y, Han L, Kang H, Wu H. Startup Characteristics and Thermal Instability of a Visual Loop Heat Pipe Under Acceleration Force. Aerospace. 2025; 12(9):797. https://doi.org/10.3390/aerospace12090797
Chicago/Turabian StyleChen, Lijun, Yongqi Xie, Longzhu Han, Huifeng Kang, and Hongwei Wu. 2025. "Startup Characteristics and Thermal Instability of a Visual Loop Heat Pipe Under Acceleration Force" Aerospace 12, no. 9: 797. https://doi.org/10.3390/aerospace12090797
APA StyleChen, L., Xie, Y., Han, L., Kang, H., & Wu, H. (2025). Startup Characteristics and Thermal Instability of a Visual Loop Heat Pipe Under Acceleration Force. Aerospace, 12(9), 797. https://doi.org/10.3390/aerospace12090797