Enhanced Subspace Dynamic Mode Decomposition for Operational Modal Analysis of Aerospace Structures
Abstract
Featured Application
Abstract
1. Introduction
2. Background Theory and Identification Methodology
2.1. Dynamic Mode Decomposition
2.2. Enhanced Subspace DMD for OMA
3. Numerical Simulation
3.1. Simulation Model Description
3.2. Identification Results and Analysis
4. Experimental Verification
4.1. Experiment Design and Test
4.2. Identification Results and Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, D.; Wang, Y.; Hu, J.; Qian, H.; Zhu, R. Automatic Modal Identification Based on Similarity Filtering and Fuzzy Clustering. J. Vib. Control 2024, 30, 1036–1047. [Google Scholar] [CrossRef]
- Zhu, R.; Jiang, D.; Marchesiello, S.; Anastasio, D.; Zhang, D.; Fei, Q. Automatic Nonlinear Subspace Identification Using Clustering Judgment Based on Similarity Filtering. AIAA J. 2023, 61, 2666–2674. [Google Scholar] [CrossRef]
- Jiang, D.; Li, A.; Wang, Y.; Xie, S.; Cao, Z.; Zhu, R. Integrating Automatic Order Determination with Response Prediction Error Minimization for Nonlinear Subspace Identification in Structural Dynamics. Nonlinear Dyn. 2024, 112, 21881–21900. [Google Scholar] [CrossRef]
- Ma, H.; Tan, Z.; Chen, Q.; Li, Y.; Fei, Q. Output-Only Identification of Time-Varying Structural Modal Parameters under Thermal Environment. Structures 2024, 63, 106338. [Google Scholar] [CrossRef]
- Peeters, B.; De Roeck, G. Stochastic System Identification for Operational Modal Analysis: A Review. J. Dyn. Sys. Meas. Control 2001, 123, 659–667. [Google Scholar] [CrossRef]
- Reynders, E. System Identification Methods for (Operational) Modal Analysis: Review and Comparison. Arch. Comput. Methods Eng. 2012, 19, 51–124. [Google Scholar] [CrossRef]
- Zhou, J.; Kato, B.; Wang, Y. Operational Modal Analysis with Compressed Measurements Based on Prior Information. Measurement 2023, 211, 112644. [Google Scholar] [CrossRef]
- Brincker, R.; Zhang, L.; Andersen, P. Modal Identification from Ambient Responses Using Frequency Domain Decomposition. In Proceedings of the International Modal Analysis Conference (IMAC) (IMAC 18), San Antonio, TX, USA, 7–10 February 2000; pp. 625–630. [Google Scholar]
- Hasan, M.D.A.; Ahmad, Z.A.B.; Leong, M.S.; Hee, L.M. Enhanced Frequency Domain Decomposition Algorithm: A Review of a Recent Development for Unbiased Damping Ratio Estimates. J. Vibroeng. 2018, 20, 1919–1936. [Google Scholar] [CrossRef]
- James, G.H. The Natural Excitation Technique (NExT) for Modal Parameter Extraction from Operating Structures. J. Anal. Exp. Modal Anal. 1995, 10, 260. [Google Scholar]
- Katayama, T. Subspace Methods for System Identification; Springer: Berlin/Heidelberg, Germany, 2005; Volume 1. [Google Scholar]
- Reynders, E.P.B. Uncertainty Quantification in Data-Driven Stochastic Subspace Identification. Mech. Syst. Signal Process. 2021, 151, 107338. [Google Scholar] [CrossRef]
- Bertha, M.; Golinval, J.C. Identification of Non-Stationary Dynamical Systems Using Multivariate ARMA Models. Mech. Syst. Signal Process. 2017, 88, 166–179. [Google Scholar] [CrossRef]
- Schmid, P.J. Dynamic Mode Decomposition of Numerical and Experimental Data. J. Fluid. Mech. 2010, 656, 5–28. [Google Scholar] [CrossRef]
- Tu, J.H.; Rowley, C.W.; Luchtenburg, D.M.; Brunton, S.L.; Kutz, J.N. On Dynamic Mode Decomposition: Theory and Applications. J. Comput. Dyn. 2014, 1, 391–421. [Google Scholar] [CrossRef]
- Hemati, M.S.; Rowley, C.W.; Deem, E.A.; Cattafesta, L.N. De-Biasing the Dynamic Mode Decomposition for Applied Koopman Spectral Analysis of Noisy Datasets. Theor. Comput. Fluid Dyn. 2017, 31, 349–368. [Google Scholar] [CrossRef]
- Kutz, J.N.; Fu, X.; Brunton, S.L. Multiresolution Dynamic Mode Decomposition. SIAM J. Appl. Dyn. Syst. 2016, 15, 713–735. [Google Scholar] [CrossRef]
- Sayadi, T.; Schmid, P.J. Parallel Data-Driven Decomposition Algorithm for Large-Scale Datasets: With Application to Transitional Boundary Layers. Theor. Comput. Fluid Dyn. 2016, 30, 415–428. [Google Scholar] [CrossRef]
- Jovanović, M.R.; Schmid, P.J.; Nichols, J.W. Sparsity-Promoting Dynamic Mode Decomposition. Phys. Fluids 2014, 26, 24103. [Google Scholar] [CrossRef]
- Stankiewicz, W. Recursive Dynamic Mode Decomposition for the Flow around Two Square Cylinders in Tandem Configuration. J. Fluids Struct. 2022, 110, 103515. [Google Scholar] [CrossRef]
- Yang, D.; Wang, B.; Cai, G.; Chen, Z.; Ma, J.; Sun, Z.; Wang, L. Data-Driven Estimation of Inertia for Multiarea Interconnected Power Systems Using Dynamic Mode Decomposition. IEEE Trans. Ind. Inform. 2021, 17, 2686–2695. [Google Scholar] [CrossRef]
- Saito, A.; Kuno, T. Data-Driven Experimental Modal Analysis by Dynamic Mode Decomposition. J. Sound Vib. 2020, 481, 115434. [Google Scholar] [CrossRef]
- Simha, C.H.M.; Biglarbegian, M. A Note on the Use of Dynamic Mode Decomposition in Mechanics. Mech. Res. Commun. 2022, 120, 103848. [Google Scholar] [CrossRef]
- Guan, W.; Dong, L.; Zhang, A.; Cai, Y. Output-Only Modal Identification with Recursive Dynamic Mode Decomposition for Time-Varying Systems. Measurement 2024, 224, 113852. [Google Scholar] [CrossRef]
- Talati, A.; Keshav, M. Identification of Excitation Frequencies of a Vibrating Beam Using Dynamic Mode Decomposition. Mech. Based Des. Struct. Mach. 2024, 53, 839–863. [Google Scholar] [CrossRef]
- Savoeurn, N.; Janya-Anurak, C.; Uthaisangsuk, V. Determination of Dynamic Characteristics of Lattice Structure Using Dynamic Mode Decomposition. J. Appl. Mech. 2024, 91, 071003. [Google Scholar] [CrossRef]
- Rowley, C.W.; Mezić, I.; Bagheri, S.; Schlatter, P.; Henningson, D.S. Spectral Analysis of Nonlinear Flows. J. Fluid Mech. 2009, 641, 115–127. [Google Scholar] [CrossRef]
- Cirillo, G.I.; Mauroy, A.; Renson, L.; Kerschen, G.; Sepulchre, R. A Spectral Characterization of Nonlinear Normal Modes. J. Sound Vib. 2016, 377, 284–301. [Google Scholar] [CrossRef]
- Williams, M.O.; Kevrekidis, I.G.; Rowley, C.W. A Data–Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition. J. Nonlinear Sci. 2015, 25, 1307–1346. [Google Scholar] [CrossRef]
- Takeishi, N.; Kawahara, Y.; Yairi, T. Subspace Dynamic Mode Decomposition for Stochastic Koopman Analysis. Phys. Rev. E 2017, 96, 33310. [Google Scholar] [CrossRef]
- Qin, S.; Kang, J.; Wang, Q. Operational Modal Analysis Based on Subspace Algorithm with an Improved Stabilization Diagram Method. Shock. Vib. 2016, 2016, 7598965. [Google Scholar] [CrossRef]
Mode Order | Frequency/Hz | Damping Ratio |
---|---|---|
1 | 35.929 | 0.02 |
2 | 222.94 | 0.03 |
3 | 275.91 | 0.04 |
Order | Theory | ES-DMD | SSI-DATA | DMD | |||
---|---|---|---|---|---|---|---|
/Hz | Error/% | /Hz | Error/% | /Hz | Error/% | ||
1 | 35.929 | 36.066 | 0.38 | 36.091 | 0.45 | 36.505 | 1.60 |
2 | 222.94 | 222.748 | −0.086 | 222.702 | −0.107 | 224.954 | 0.903 |
3 | 275.91 | 274.582 | −0.481 | 273.904 | −0.727 | 273.412 | −0.905 |
Order | Theory | ES-DMD | SSI-DATA | DMD | |||
---|---|---|---|---|---|---|---|
Error/% | Error/% | Error/% | |||||
1 | 0.02 | 0.0196 | −2.00 | 0.0164 | −18.00 | 0.0047 | −76.5 |
2 | 0.03 | 0.0268 | −10.67 | 0.0260 | −13.33 | 0.0157 | −47.67 |
3 | 0.04 | 0.0362 | −9.50 | 0.0347 | −13.25 | 0.0245 | −38.75 |
Order | Frequency(Hz) | Damping Ratio | ||||
---|---|---|---|---|---|---|
ES-DMD | SSI-DATA | DMD | ES-DMD | SSI-DATA | DMD | |
1 | 253.84 | 253.09 | 245.67 | 0.0332 | 0.0315 | 0.0271 |
2 | 696.91 | 696.37 | 703.93 | 0.0212 | 0.0210 | 0.0188 |
3 | 1390.42 | 1384.41 | 1385.55 | 0.0129 | 0.0122 | 0.0042 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, H.; Zhu, R.; Li, Y. Enhanced Subspace Dynamic Mode Decomposition for Operational Modal Analysis of Aerospace Structures. Aerospace 2025, 12, 776. https://doi.org/10.3390/aerospace12090776
Zheng H, Zhu R, Li Y. Enhanced Subspace Dynamic Mode Decomposition for Operational Modal Analysis of Aerospace Structures. Aerospace. 2025; 12(9):776. https://doi.org/10.3390/aerospace12090776
Chicago/Turabian StyleZheng, Hao, Rui Zhu, and Yanbin Li. 2025. "Enhanced Subspace Dynamic Mode Decomposition for Operational Modal Analysis of Aerospace Structures" Aerospace 12, no. 9: 776. https://doi.org/10.3390/aerospace12090776
APA StyleZheng, H., Zhu, R., & Li, Y. (2025). Enhanced Subspace Dynamic Mode Decomposition for Operational Modal Analysis of Aerospace Structures. Aerospace, 12(9), 776. https://doi.org/10.3390/aerospace12090776