Flow and Flame Stabilization in Scramjet Engine Combustor with Two Opposing Cavity Flameholders
Abstract
1. Introduction
2. Theoretical Formulation and Numerical Method
3. Case Description
4. Results and Discussion
4.1. Non-Reacting Flowfields
4.2. Flow and Flame Transients in Reacting Flowfields
4.2.1. Isolator Flowfield
4.2.2. Combustor Flowfield
4.2.3. Dynamics of Shock Waves
4.3. Cavity Flameholding Capabilities
4.4. Quasi-Steady Reacting Flowfields
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Ф | equivalence ratio |
h | height |
k | turbulent kinetic energy |
l | length |
M | Mach number |
mass flow rate | |
p | pressure |
ρ | density |
T | temperature |
t | time |
u, v, w | velocity components |
x, y, z | spatial coordinates |
X | species molar fraction |
Y | species mass fraction |
W | width |
ω | specific turbulence dissipation rate |
Subscripts | |
C | combustor |
I | isolator |
References
- Segal, C. The Scramjet Engine: Processes and Characteristics; Cambridge University Press: New York, NY, USA, 2009. [Google Scholar]
- Choubey, G.; Devarajan, Y.; Huang, W.; Mehar, K.; Tiwari, M.; Pandey, K.M. Recent Advances in Cavity-Based Scramjet Engine-A Brief Review. Int. J. Hydrogen Energy 2019, 44, 13895–13909. [Google Scholar] [CrossRef]
- Curran, E.T.; Murthy, S.N.B. Scramjet Propulsion; AIAA: Cambridge, MA, USA, 2001. [Google Scholar]
- Le, D.B.; Goyne, C.P.; Krauss, R.H. Shock Train Leading-Edge Detection in a Dual-Mode Scramjet. J. Propuls. Power 2008, 24, 1035–1041. [Google Scholar] [CrossRef]
- Lin, K.C.; Tam, C.J.; Jackson, K.R.; Eklund, D.R.; Jackson, T.A. Characterization of Shock Train Structures Inside Constant-Area Isolators of Model Scramjet Combustors. In Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 9–12 January 2006. AIAA Paper 2006-816. [Google Scholar] [CrossRef]
- Lin, K.C.; Tam, C.J.; Jackson, K.R.; Eklund, D.R.; Jackson, T.A. Effects of Temperature and Heat Transfer on Shock Train Structures Inside Constant-Area Isolators. In Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 9–12 January 2006. [Google Scholar] [CrossRef]
- Kumar, S.; Pandey, K.M.; Sharma, K.K. Recent Developments in Technological Innovations in Scramjet Engines: A Review. Mater. Today 2021, 45, 6874–6881. [Google Scholar] [CrossRef]
- Li, X.P.; Liu, W.D.; Yang, L.C.; An, B.; Pan, Y.; Zhu, J.J. Experimental Investigation on Fuel Distribution in a Scramjet Combustor with Dual Cavity. J. Propuls. Power 2018, 34, 552–556. [Google Scholar] [CrossRef]
- Vinogradov, V.A.; Shikhman, Y.M.; Segal, C. A Review of Fuel Pre-Injection in Supersonic, Chemically Reacting Flows. Appl. Mech. Rev. 2007, 60, 139–148. [Google Scholar] [CrossRef]
- Minato, R.; Ju, Y.; Niioka, T. Numerical Analysis of Combustion Around a Strut in Supersonic Airflow. Trans. Jpn. Soc. Aeronaut. Space Sci. 2000, 43, 143–148. [Google Scholar] [CrossRef]
- Stouffer, S.D.; Baker, N.R.; Capriotti, D.P.; Northram, G.B. Effects of Compression and Expansion Ramp Fuel Injector Configuration on Scramjet Combustion and Heat Transfer. In Proceedings of the AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 11–14 January 1993. AIAA Paper 93-0609. [Google Scholar] [CrossRef]
- Jacobsen, L.S.; Gallimore, S.D.; Schetz, J.A.; O’Brien, W.F. Integration of an Aeroramp Injector/Plasma Igniter for Hydrocarbon Scramjets. J. Propuls. Power 2003, 19, 170–182. [Google Scholar] [CrossRef]
- Li, J.; Zhang, L.; Choi, J.Y.; Yang, V.; Lin, K.C. Ignition Transients in a Scramjet Engine with Air Throttling Part 1: Nonreacting Flow. J. Propuls. Power 2014, 30, 438–448. [Google Scholar] [CrossRef]
- Li, J.; Zhang, L.; Choi, J.Y.; Yang, V.; Lin, K.C. Ignition Transients in a Scramjet Engine with Air Throttling Part 2: Reacting Flow. J. Propuls. Power 2015, 31, 79–88. [Google Scholar] [CrossRef]
- Mathur, T.; Lin, K.C.; Kennedy, P.; Gruber, M.; Donbar, J.; Jackson, T.; Billig, F. Liquid JP-7 Combustion in a Scramjet Combustor. In Proceedings of the 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Las Vegas, NV, USA, 24 July–28 July 2000. AIAA Paper 2000-3581. [Google Scholar] [CrossRef]
- Storch, A.; Bynum, M.; Liu, J.; Gruber, M. Combustor Operability and Performance Verification for HIFiRE Flight 2. In Proceedings of the 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, San Francisco, CA, USA, 11–14 April 2011. AIAA Paper 2011-2249. [Google Scholar] [CrossRef]
- Davidson, D.; Ren, W.; Hanson, R. Experimental Database for Development of a HiFiRE JP-7 Surrogate Fuel Mechanism. In Proceedings of the 50th AIAA Aerospace Sciences Meering Including the New Horizons Forum and Aerospace Exposition, Nashville, TN, USA, 9–12 January 2012. AIAA Paper 2012-0620. [Google Scholar] [CrossRef]
- Puri, P.; Ma, F.; Choi, J.Y.; Yang, V. Ignition Characteristics of Cracked JP-7 Fuel. Combust. Flame 2005, 142, 454–457. [Google Scholar] [CrossRef]
- Tang, T.; Sun, M.; Yan, B.; Wang, Z.; Yu, J.; Huang, Y.; Wang, H.; Zhu, J. Flow Structures and Combustion Regimes in an Axisymmetric Scramjet Combustor with High Reynolds Number. J. Fluid Mech. 2024, 1000, A3. [Google Scholar] [CrossRef]
- Tang, T.; Wang, Z.; Huang, Y.; Sun, M.; Wang, H. Investigation of Combustion Structure and Flame Stabilization in an Axisymmetric Scramjet. AIAA J. 2023, 61, 585–601. [Google Scholar] [CrossRef]
- Tang, T.; Wang, Z.; Yu, J.; Huang, Y.; Sun, M.; Wang, H.; Zhao, G.; Yang, Y.; Xiong, D. Investigation of Multi-Scale Flow Structures and Combustion Characteristics in a Cavity-Enhanced Circular Scramjet. Combust. Flame 2024, 264, 113431–113447. [Google Scholar] [CrossRef]
- Choubey, G.; Pandey, K.M. Effect of Variation of Angle of Attack on the Performance of Two-Strut Scramjet Combustor. Int. J. Hydrogen Energy 2016, 41, 11455–11470. [Google Scholar] [CrossRef]
- Kummitha, O.R. Numerical Analysis of Hydrogen Fuel Scramjet Combustor with Turbulence Development Inserts and with Different Turbulence Models. Int. J. Hydrogen Energy 2017, 42, 6360–6368. [Google Scholar] [CrossRef]
- Kireeti, S.K.; Sastry, G.R.; Gugulothu, S.K. Numerical Investigation on Implication of Innovative Hydrogen Strut in Comparison with Multi Strut Injector on Performance and Combustion Characteristics in a Scramjet Combustor. Int. J. Hydrogen Energy 2022, 47, 41932–41946. [Google Scholar] [CrossRef]
- Kummitha, O.R.; Pandey, K.M.; Gupta, R. CFD Analysis of a Scramjet Combustor with Cavity Based Flame Holders. Acta Astronaut. 2018, 144, 244–253. [Google Scholar] [CrossRef]
- Westbrook, C.K.; Dryer, F.L. Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames. Combust. Sci. Technol. 1981, 27, 31–43. [Google Scholar] [CrossRef]
- Menter, F.R. Two-equation Eddy-viscosity Turbulence Models for Engineering Applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef]
- Wilcox, D.C. Turbulence Modeling for CFD; DCW Industries: La Canada, CA, USA, 1998. [Google Scholar]
- Hoste, J.J.O.E.; Fossati, M.; Taylor, I.J.; Gollan, R.J. Characterisation of the Eddy Dissipation Model for the Analysis of Hydrogen-Fuelled Scramjets. Aeronaut. J. 2019, 123, 536–565. [Google Scholar] [CrossRef]
- Roache, P.J. Quantification of Uncertainty in Computational Fluid Dynamics. Ann. Rev. Fluid Mech. 1997, 29, 123–160. [Google Scholar] [CrossRef]
- Karthick, S.K. Shock and Shear Layer Interactions in a Confined Supersonic Cavity Flow. Phys. Fluids 2021, 33, 066102. [Google Scholar] [CrossRef]
- Choubey, G.; Pandey, K.M. Effect of Variation of Inlet Boundary Conditions on the Combustion Flow-Field of a Typical Double Cavity Scramjet Combustor. Int. J. Hydrogen Energy 2018, 43, 8139–8151. [Google Scholar] [CrossRef]
Reference | Method | Fuel | Inlet Mach | Fuel Injection Plane | Flameholder |
---|---|---|---|---|---|
Vinogradov et al. [9] | Experiment | Kerosene | 2.5–4 | Transverse wall | Post pylon |
Minato et al. [10] | CFD | H2 | 1.5 | Streamwise strut | Mid-strut gap |
Stouffer et al. [11] | Experiment | H2 | 2.7 | Streamwise ramp | Backward step |
Jacobsen et al. [12] | Experiment | 2.4 | Streamwise ramp | Backward step | |
Li et al. [13,14] | CFD | 2.2 | Transverse wall | Cavity | |
Mathur et al. [15] | Experiment | JP-7 | 2–3 | Transverse wall | Cavity |
Storch et al. [16] | CFD | 2.5–5 | Transverse wall | Dual cavities | |
Tang et al. [19,20,21] | CFD+Exp | 2.9 | Transverse wall | Circular cavity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Small, J.C.; Zhang, L.; Crawford, B.G.; Viti, V. Flow and Flame Stabilization in Scramjet Engine Combustor with Two Opposing Cavity Flameholders. Aerospace 2025, 12, 723. https://doi.org/10.3390/aerospace12080723
Small JC, Zhang L, Crawford BG, Viti V. Flow and Flame Stabilization in Scramjet Engine Combustor with Two Opposing Cavity Flameholders. Aerospace. 2025; 12(8):723. https://doi.org/10.3390/aerospace12080723
Chicago/Turabian StyleSmall, Jayson C., Liwei Zhang, Bruce G. Crawford, and Valerio Viti. 2025. "Flow and Flame Stabilization in Scramjet Engine Combustor with Two Opposing Cavity Flameholders" Aerospace 12, no. 8: 723. https://doi.org/10.3390/aerospace12080723
APA StyleSmall, J. C., Zhang, L., Crawford, B. G., & Viti, V. (2025). Flow and Flame Stabilization in Scramjet Engine Combustor with Two Opposing Cavity Flameholders. Aerospace, 12(8), 723. https://doi.org/10.3390/aerospace12080723