A Study on the Influence of Flight Parameters on Two-Phase Flow and Radiation in the Plume of Solid Rocket Motors
Abstract
1. Introduction
2. Calculation Methods
2.1. Numerical Calculation Methods for Two-Phase Combustion Flow
2.2. Atmospheric Far-Field Boundary Conditions and Simplified Mechanism of Plume Chemical Reactions
2.3. Numerical Calculation Methods for Two-Phase Radiation
2.4. Analysis of the Plume Calculation Domain
2.5. Analysis of Grid Independence
3. Results
3.1. Effects of Flight Altitude on Plume Characteristics
3.2. Effects of Flight Velocity on Plume Characteristics
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Higgins, C.J.; Smithson, T.; Coxhill, I.; Fournier, P.; Ringuette, S. Characterising the Infrared Signature of a Liquid Propellant Engine Plume. In Proceedings of the 52nd AIAA/SAE/ASEE Joint Propulsion Conference, Salt Lake City, UT, USA, 25–27 July 2016. [Google Scholar] [CrossRef]
- Yang, Z.; Envelope, J.Z.P.; Shan, Y. Effects of forward-flight speed on plume flow and infrared radiation of IRS-integrating helicopter-ScienceDirect. Chin. J. Aeronaut. 2022, 35, 155–168. [Google Scholar] [CrossRef]
- Niu, Q. Phenomenology Study on High-Speed Target Radiation in Continuous-Flow Regime. Northwestern Polytechnical University, Xi’an, China, 2019. [Google Scholar]
- Ozawa, T.; Garrison, M.B.; Levin, D.A. Accurate Molecular and Soot Infrared Radiation Model for High-Temperature Flows. J. Thermophys. Heat Transf. 1971, 21, 19–27. [Google Scholar] [CrossRef]
- Stowe, R.; Ringuette, S.; Fournier, P.; Smithson, T.; Pimentel, R.; Alexander, D.; Link, R. Effect of flight and motor operating conditions on infrared signature predictions of rocket exhaust. Int. J. Energet. Mater. Chem. Propuls. 2015, 14, 29–56. [Google Scholar] [CrossRef]
- Watts, D. Assessing Computational Fluid Dynamics Turbulence Models for Rocket Exhaust Plume Simulation. In Proceedings of the 52nd AIAA/SAE/ASEE Joint Propulsion Conference, Salt Lake City, UT, USA, 25–27 July 2016. [Google Scholar] [CrossRef]
- Murty, M.S.R.C.; Chakraborty, D. Plume Interaction and Base Flow Analysis of a Twin Engine Flight Vehicle. J. Inst. Eng. (India) Ser. C 2017, 98, 379–385. [Google Scholar] [CrossRef]
- Jeppson, M.B.; Beckstead, M.W.; Jing, Q. A kinetic model for the premixed combustion of a fine AP/HTPB composite propellant. Proceeding of the 36th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 12–15 January 1998. [Google Scholar]
- Tanner, M.W. Multidimensional Modeling of Solid Propellant Burning Rates and Aluminum Agglomeration and One-Dimensional Modeling of RDX/GAP and AP/HTPB. Ph.D. Thesis, Brigham Young University, Provo, UT, USA, 2008. [Google Scholar]
- Davis, S.G.; Joshi, A.V.; Wang, H. An optimized kinetic model of H2/CO combustion. Proc. Combust. Inst. 2005, 30, 1283–1292. [Google Scholar] [CrossRef]
- Smith, G.P.; Golden, D.M.; Frenklach, M.; Moriarty, N.W.; Eiteneer, B.; Goldenberg, M.; Bowman, C.T.; Hanson, R.K.; Song, S.; Gardiner, W.C., Jr.; et al. GRI-Mech 3.0. [DB/OL]. 1999. Available online: https://www.me.berkeley.edu/gri_mech/ (accessed on 4 August 2025).
- Korobeinichev, O.P.; Ermolin, N.E.; Chernov, A.A.; Emel’yanov, I.D. Flame structure, kinetics and mechanism of chemical reactions in flames of mixed composition based on ammonium perchlorate and polybutadiene rubber. Combust. Explos. Shock. Waves 1992, 28, 366–371. [Google Scholar] [CrossRef]
- Denison, M.R.; Lamb, J.J.; Bjorndahl, W.D.; Wong, E.Y.; Lohn, P.D. Solid Rocket Exhaust in the Stratosphere: Plume Diffusion and Chemical Reactions. J. Spacecr. Rocket. 1994, 31, 435–442. [Google Scholar] [CrossRef]
- Zou, Y. Calculation of Non-Equilibrium Reactive Plume Characteristics for Solid Rocket Motors. Master’s Thesis, Northwestern Polytechnical University, Xi’an, China, 2024. [Google Scholar]
- Sun, Z.; Xu, D.; He, G. Effect of flight status parameters on missile motor plume. J. Solid Rocket. Technol. 2005, 3, 188–191. [Google Scholar]
- Yang, W.; Kuang, L.; Chu, K.; Liu, P. Study of Gas-Particle Flow in Solid Rocket Motor Based on Computational Fluid Method-Discrete Element Method. J. Propuls. Technol. 2019, 40, 1546–1553. [Google Scholar] [CrossRef]
- NASA TM-X-74335; U.S. Standard Atmosphere. NTRS: Chicago, IL, USA, 1976. Available online: https://ntrs.nasa.gov/citations/19770009539 (accessed on 4 August 2025).
- Philippe, R.; Anouar, S. Updated band model parameters for H2O, CO2, CH4 and CO radiation at high temperature. Ternational J. Heat Mass Transf. 2012, 55, 3349–3358. [Google Scholar]
- Harrison, J.; Brewster, M.Q. Simple model of thermal emission from burning aluminum in solid propellants. Thermophys. Heat Transf. 2009, 23, 630–634. [Google Scholar] [CrossRef]
- Kuzmin, V.A.; Maratkanova Zagray, I.A. Modeling of thermal radiation of heterogeneous combustion products in model solid rocket engine plume. Procedia Eng. 2017, 206, 1801–1807. [Google Scholar] [CrossRef]
- Anfimov, N.; Karabadyak, G.; Khmelinin, B.; Plastinin, Y.; Rodionov, A. Analysis of mechanisms and nature of radiation from aluminum oxide in different phase states in solid rocket exhaust plumes. Proceeding of the AIAA 28th Thermophysics, Orlando, FL, USA, 6–9 July 1993. [Google Scholar]
- Na, J.; Yang, L.; Li, W.; Zhang, M.; Cui, M. Modeling and analysis of wake flame temperature field characteristics of solid rocket engine. Transducer Microsyst. Technol. 2023, 42, 10–13+18. [Google Scholar]
- She, S.; Li, F.; Wang, B.; Zhang, X.; Fan, F. Real-Time Simulation of Plume Infrared Image Based on Particle System. Syst. Simul. Technol. 2022, 18, 285–290. [Google Scholar]
- Bao, X.; Yv, X.; Wamg, Z.; Mao, H.; Xiao, Z. Effects of Flight Height on Flow and Radiation Characteristics of Solid Rocket Two-Phase Plume. J. Propuls. Technol. 2021, 42, 569–577. [Google Scholar]
- Wang, Z.; Song, Z.; Zhang, B.; Li, J.; Xv, C. Variation law of flow field and radiation characteristics of solid plume with flight state. J. Southeast Univ. (Nat. Sci. Ed.) 2021, 51, 1040–1048. [Google Scholar]
- Paoli, R.; Poubeau, A.; Cariolle, D. Large-Eddy Simulations of a Reactive Solid Rocket Motor Plume. Am. Inst. Aeronaut. Astronaut. 2020, 58, 1639–1656. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Bao, Y.Y.; Zhao, Y.; Ding, Y.; Chen, J.; Wang, J. Solid rocket plume temperature and heat flux measurements. J. Solid Rocket. Technol. 2018, 41, 289–294. [Google Scholar]
- Huang, Z.; Li, X.; Feng, Y.; Guo, Y.; Ma, D. Infrared radiation characteristics of aircraft exhaust system with binary rectangle nozzle. Laser Infrared 2017, 47, 460–464. [Google Scholar]
- Zhang, X. Research on the Infrared Radiation Characteristic of Hypersonic Aircraft Plume. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2017; p. 16. [Google Scholar]
- Niu, Q.; Gao, W.; Sun, Y.; Dong, S. Study on Influence of High-Energy Explosive Components on Infrared Radiation Signature of Air to Air Missile Plume. J. Ordnance Equip. Eng. 2021, 42, 1–7. [Google Scholar]
- Vuorinen, V.; Yu, J.; Tirunagari, S.; Kaario, O.; Larmi, M.; Duwig, C.; Boersma, B.J. Large-eddy simulation of highly underexpanded transient gas jets. Phys. Fluids 2013, 25, 016101. [Google Scholar] [CrossRef]
- Feng, Y.S.; Li, X.X.; Lu, Y.; Jin, W. Numerical Calculation of Infrared Radiation Characteristics of the Exhaust Plume Outside a Rectangular Nozzle. Acta Armamentarii 2013, 34, 437–442. [Google Scholar]
- Liu, Z.; Shao, L.; Wang, Y.; Sun, X. Influence on Afterburning on Infrared Radiation of Solid Rocket Exhaust Plume. Acta Opt. Sin. 2013, 33, 40–47. [Google Scholar]
- Hu, S. Research on the Flow Field and Acoustic Field Characteristics of Supersonic Gas Jet in Solid Rocket Mortors. Northwestern Polytechnical University, Xi’an, China, 2012; p. 45. [Google Scholar]
- Wang, W.C.; Li, S.P.; Zhang, Q.; Wang, N.F.; He, D.W. Research on the calculation method of infrared signature of rocket motor exhaust plume. J. Propuls. Technol. 2010, 31, 423–427. [Google Scholar]
- Zhang, G.X.; Zhou, W.M.; Zhang, G.C. Study on characteristics of flow field in exhaust plume for SRM. J. Solid Rocket Technol. 2008, 31, 19–23. [Google Scholar]
- Ross, M.N.; Benbrook, J.R.; Sheldon, W.R.; Zittel, P.F.; McKenzie, D.L. Observation of Stratospheric Ozone Depletion in Rocket Exhaust Plumes. Nature 1997, 390, 62–64. [Google Scholar]
No. | Chemical Reaction | Rate Parameters | ||
---|---|---|---|---|
A/s−1 | n | Ea /kJ·mol−1 | ||
1 | H + O2 = O + OH | 2.65 × 1016 | −0.671 | 17.04 |
2 | O + H2 = H + OH | 3.87 × 104 | 2.7 | 6.26 |
3 | OH + H2 = H + H2O | 2.16 × 108 | 1.51 | 3.43 |
4 | 2OH = O + H2O | 3.57 × 104 | 2.4 | −2.11 |
5 | 2H + M = H2 + M | 1.00 × 1018 | −1 | 0 |
6 | H + OH + M = H2O + M | 2.20 × 1022 | −2 | 0 |
7 | CO + OH = CO2 + H | 4.76 × 107 | 1.228 | 0.07 |
8 | H + Cl2 = HCl + Cl | 8.60 × 1013 | 0 | 1.17 |
9 | Cl + H2 = HCl + H | 1.45 × 1013 | 0 | 4.37 |
10 | H2O + Cl = HCl + OH | 1.68 × 1013 | 0 | 17.22 |
11 | OH + Cl = HCl + O | 5.90 × 1012 | 0 | 5.68 |
12 | H + Cl + M = HCl + M | 1.40 × 1022 | −2 | 0 |
13 | 2Cl + M = Cl2 + M | 7.26 × 1014 | 0 | −1.79 |
Author | De/m | Computational Domain/m | Computational Domain/De | Dimension |
---|---|---|---|---|
Jiaqi Na [22] | 0.2 | 4.5 × 2.5 | 22.5 × 12.5 | 3 |
Shaobo She [23] | 0.6 | 40 × 3 | 67 × 5 | 3 |
Xingdong Bao [24] | 0.023 | 10 × 0.5 | 434.7 × 21.7 | 2 |
Zhibo Wang [25] | 0.015 | 2.5 × 0.6 | 167 × 40 | 2 |
Paoli [26] | \ | \ | 13,400 × 13,400 | 3 |
Yehui Zhao [27] | 0.016 | 4 × 1.5 | 250 × 94 | 2 |
Zhangbin Huang [28] | 0.6 | 30 × 12 | 50 × 20 | 3 |
Xiaoxian Zhang [29] | 0.303 | 1.8 × 9.06 | 40 × 20 | 3 |
Qinglin Niu [30] | 0.0225 | 2.5 × 1.6 | 111 × 71 | 2 |
Vuorinen [31] | 0.0014 | \ | 70 × 40 | 3 |
Yunson Feng [32] | 0.718 | 10 × 3.6 | 14 × 5 | 3 |
Zunyang Liu [33] | 0.6 | 300 × 20 | 500 × 33 | 2 |
Shengchao Hu [34] | 0.09144 | \ | 40 × 20 | 3 |
Weichen Wang [35] | 0.032 | 10 × 1 | 312 × 31.25 | 2 |
Guangxi Zhang [36] | \ | \ | 200 × 130 | 2 |
Zhenhua Sun [15] | 0.15 | 20 × 5 | 133 × 33 | 2 |
Ma = 0 | Ma = 1 | Ma = 2 | Ma = 5 | |
---|---|---|---|---|
H = 0 km | 187 × 56 | 221 × 14 | 223 × 8 | 308 × 9 |
H = 10 km | 216 × 95 | 247 × 53 | 282 × 42 | 338 × 23 |
H = 20 km | 352 × 154 | 386 × 85 | 413 × 72 | 479 × 51 |
H = 30 km | 558 × 180 | 625 × 153 | 657 × 83 | 915 × 66 |
p/Pa | T/K | c/(m/s) | ρ/(kg/m3) | |
---|---|---|---|---|
0 | 1.0133 × 105 | 288.14 | 349.2047 | 1.2266 |
5 | 5.4114 × 104 | 255.69 | 328.9540 | 0.7377 |
10 | 2.6516 × 104 | 223.24 | 307.3720 | 0.4140 |
Component | Mole Fraction/Xi | ||
---|---|---|---|
Titan IIIC(HTPB) [6] | D5 I(NEPE) [19] | Some Missile(RDX) [12] | |
CO | 2.45 × 10−1 | 4.05 × 10−1 | 2.45 × 10−1 |
CO2 | 1.81 × 10−2 | 5.60 × 10−2 | 5.93 × 10−2 |
Cl | 1.20 × 10−3 | 8.06 × 10−3 | —— |
H | 3.20 × 10−3 | 2.27 × 10−3 | 1.68 × 10−3 |
OH | 1.07 × 10−4 | 1.64 × 10−2 | 4.51 × 10−4 |
H2O | 1.05 × 10−1 | 1.27 × 10−1 | 2.29 × 10−1 |
N2 | 8.05 × 10−2 | —— | 1.71 × 10−1 |
H2 | 3.14 × 10−1 | 1.86 × 10−2 | 1.64 × 10−1 |
HCl | 1.50 × 10−1 | 5.22 × 10−2 | 1.05 × 10−1 |
Re-Ignition Core Area/m | Re-Ignition Core Area/De | Core Area Length/De | |
---|---|---|---|
Ma 1 | 0.3824~0.9954 | 16.62~43.28 | 26.67 |
Ma 2 | 0.4050~1.4154 | 17.61~61.54 | 43.93 |
Ma 3 | 0.4651~1.9710 | 20.22~85.70 | 65.48 |
Ma 4 | 0.5742~3.4013 | 24.97~147.88 | 122.91 |
Ma 5 | 0.7961~6.0063 | 34.61~261.14 | 226.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, M.; Zou, Y.; Zhang, R.; Ba, Y.; Liu, Y. A Study on the Influence of Flight Parameters on Two-Phase Flow and Radiation in the Plume of Solid Rocket Motors. Aerospace 2025, 12, 711. https://doi.org/10.3390/aerospace12080711
Peng M, Zou Y, Zhang R, Ba Y, Liu Y. A Study on the Influence of Flight Parameters on Two-Phase Flow and Radiation in the Plume of Solid Rocket Motors. Aerospace. 2025; 12(8):711. https://doi.org/10.3390/aerospace12080711
Chicago/Turabian StylePeng, Moding, Yuxuan Zou, Ruitao Zhang, Yan Ba, and Yang Liu. 2025. "A Study on the Influence of Flight Parameters on Two-Phase Flow and Radiation in the Plume of Solid Rocket Motors" Aerospace 12, no. 8: 711. https://doi.org/10.3390/aerospace12080711
APA StylePeng, M., Zou, Y., Zhang, R., Ba, Y., & Liu, Y. (2025). A Study on the Influence of Flight Parameters on Two-Phase Flow and Radiation in the Plume of Solid Rocket Motors. Aerospace, 12(8), 711. https://doi.org/10.3390/aerospace12080711